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ABSTRACT

Dynamical prediction systems have shown potential to meet the emerging need for seasonal forecasts of

regional Arctic sea ice. Observationally constrained initial conditions are a key source of skill for these

predictions, but the direct influence of different observation types on prediction skill has not yet been sys-

tematically investigated. In this work, we perform a hierarchy of observing system experiments with a coupled

global data assimilation and prediction system to assess the value of different classes of oceanic and atmo-

spheric observations for seasonal sea ice predictions in the Barents Sea. We find notable skill improvements

due to the inclusion of both sea surface temperature (SST) satellite observations and subsurface conductivity–

temperature–depth (CTD) measurements. The SST data are found to provide the crucial source of in-

terannual variability, whereas the CTD data primarily provide climatological and trend improvements.

Analysis of the Barents Sea ocean heat budget suggests that ocean heat content anomalies in this region are

driven by surface heat fluxes on seasonal time scales.

1. Introduction

Observations in the sparsely sampled polar regions

are paramount to advancing understanding of high-

latitude variability and change and improving polar

predictions on time scales of days to decades. Given the

high cost and logistical barriers to collecting these

measurements, it is crucial to assess which observations

are most essential and to determine where resources

should be invested for maximum benefit. In this work,

we consider this question from the perspective of sea-

sonal sea ice predictions in the Barents Sea.

The sea ice cover in the Barents Sea is a dominant

contributor to winter Arctic sea ice variability and

trends (Cavalieri and Parkinson 2012) and influences

local economic activity such as fisheries, shipping, and

natural resource industries (Jung et al. 2016). These

factors have motivated a need for accurate seasonal sea

ice predictions in this region. A number of recent stud-

ies, using both statistical methods (Schlichtholz 2011;

Onarheim et al. 2015) and fully coupled dynamical

prediction systems (Krikken et al. 2016; Bushuk et al.

2017), have demonstrated that detrended Barents sea

ice extent (SIE) anomalies can be skillfully predicted up

to nine months in advance. Additionally, idealized pre-

diction studies using a ‘‘perfect model’’ approach esti-

mate that Barents sea ice is potentially predictable at
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lead times of 16–36 months (Koenigk and Mikolajewicz

2009; Day et al. 2014; Bushuk et al. 2019). These studies

suggest that future skill improvements are achievable;

however, they may overestimate potential skill due to

overly persistent Barents SIE anomalies (Kumar et al.

2014; Blanchard-Wrigglesworth and Bushuk 2019).

Closing this prediction skill gap requires a detailed un-

derstanding of the physical mechanisms providing pre-

dictability in the Barents Sea, and the ability to observe,

assimilate, and simulate the salient aspects of these

mechanisms.

Barents sea ice variability is driven by a multitude of

related factors, including anomalies in oceanic volume

and heat transport through the Barents Sea Opening

(BSO; Smedsrud et al. 2010; Årthun et al. 2012;

Smedsrud et al. 2013; Zhang 2015; Li et al. 2017), ther-

modynamic and dynamic influences of atmospheric

forcing from the North Atlantic Oscillation (Deser et al.

2000; Vinje 2001; Deser and Teng 2008), local persis-

tence of sea surface temperature (SST) anomalies

(Blanchard-Wrigglesworth et al. 2011; Day et al. 2014;

Bushuk et al. 2015; Bushuk and Giannakis 2015;

Ordoñez et al. 2018), variability in wind-driven ice ex-

port from the central Arctic (Kwok et al. 2005; Kwok

2009), and local wind and surface heat flux (SHF)

anomalies (Sorteberg and Kvingedal 2006; Schlichtholz

andHoussais 2011). It has been long understood that the

temperature of inflowing Atlantic water through the

BSO provides an important control on the Barents

winter sea ice edge (see Fig. 59 of Helland-Hansen and

Nansen 1909). Recent studies have utilized this fact to

make skillful retrospective predictions of Barents SIE,

attributing their skill to the persistence of Barents Sea

ocean heat content (OHC) anomalies on seasonal time

scales (Schlichtholz 2011; Onarheim et al. 2015; Bushuk

et al. 2017). Schlichtholz (2011) found that a linear re-

gression model based on summer (June–September)

subsurface ocean temperature anomalies at the BSO

could skillfully predict detrended sea ice area (SIA)

anomalies the following winter (December–March).

Using a statistical model based on winter-centered an-

nual mean (July–June) observed BSO ocean heat

transport (OHT) and Barents SIA, Onarheim et al.

(2015) demonstrated skillful predictions, relative to a

linear trend forecast, of the following year’s SIA.

Bushuk et al. (2017) reported detrended winter Barents

SIE prediction skill at lead times of 5–9 months in a

dynamical prediction system based on a fully coupled

general circulation model (GCM), and attributed this

skill to subsurface ocean temperature initial conditions

(ICs) and storage of these OHC anomalies below the

mixed layer. Both Schlichtholz (2011) and Bushuk et al.

(2017) highlighted the fall/winter reemergence of SST

anomalies originating the previous spring as a crucial

mechanism influencing Barents sea ice predictability.

A question that remains unclear from these studies is

the relative role of lateral OHT versus SHF anomalies in

driving Barents OHC variability, and, by extension, the

relative importance of subsurface versus surface obser-

vations for predictions of Barents sea ice. This work

provides insight into this question by directly quantify-

ing the value of different classes of oceanic and atmo-

spheric observations in terms of their influence on

seasonal prediction skill for sea ice. We do this by

performing a hierarchy of observing system experiments

(OSEs) with a coupled global data assimilation system,

in which certain observation types are systematically

excluded during the assimilation procedure. Initializing

retrospective predictions from these OSEs allows for a

direct assessment of the influence of various observation

types on seasonal prediction skill. This study is the first

time that anOSEmethodology, which is commonly used

in the weather and seasonal forecasting community

(e.g., Bouttier andKelly 2001; Lord et al. 2004), has been

applied to the problem of sea ice prediction. This ap-

proach reveals the key physical mechanisms underlying

Barents sea ice predictability and provides guidance for

the development of next-generation seasonal prediction

systems and future observing networks.

The plan of this paper is as follows. Section 2 presents

the dynamical seasonal prediction system used in this

study, the observational datasets used for data assimi-

lation, the experimental design of the OSEs, and our

methods for prediction skill assessment. In section 3, we

first assess the fidelity of ocean and sea ice state esti-

mates across the OSE assimilation runs in terms of their

climatology, trends, and interannual variability. Next,

we evaluate the Barents SIE skill of retrospective sea-

sonal predictions initialized from the OSE runs. Finally,

we consider the relative contributions of surface and

subsurface oceanic data and examine the physical mech-

anisms contributing to Barents sea ice predictability.

Conclusions are presented in section 4.

2. Methods

a. The GFDL seasonal prediction system

This study is based on GCM experiments performed

with the Geophysical Fluid Dynamics Laboratory

(GFDL) Coupled Model version 2.1 (CM2.1; Delworth

et al. 2006), which has nominal horizontal resolutions of

18 latitude 3 18 longitude in the ocean and sea ice

components and 28 latitude 3 2.58 longitude in the at-

mosphere and land components. The CM2.1 model

forms the basis for one of the GFDL’s dynamical
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seasonal prediction systems, which contributes quasi-

operational seasonal forecasts to the North American

Multi-Model Ensemble (NMME; Kirtman et al. 2014).

These seasonal predictions are initialized using the

GFDL’s Ensemble Coupled Data Assimilation System

(ECDA; Zhang et al. 2007; Zhang and Rosati 2010),

which is based on the CM2.1 model and described in

the following subsection. Note that earlier studies on

regional sea ice predictions at GFDL have used the

Forecast-oriented LowOcean Resolutionmodel (FLOR;

Vecchi et al. 2014; Bushuk et al. 2017), which contributes

seasonal forecasts to the NMME initialized with ocean

and sea ice ICs from ECDA. We use CM2.1 for this

study because 1) this reduces the potential for initiali-

zation shocks in the OSE retrospective predictions,

as the ECDA system is based on this model; 2) CM2.1

has significantly reduced computational cost relative

to FLOR (by a factor of roughly 20); and 3) CM2.1 has

similar seasonal prediction skill to FLOR for Barents

SIE.

The sea ice component of CM2.1 is the sea ice simu-

lator version 1 (SIS1; Delworth et al. 2006). SIS1 is a

dynamic–thermodynamic sea ice model, which uses a

modified Semtner three-layer thermodynamic scheme

with two ice layers and one snow layer (Winton 2000), a

subgrid-scale ice-thickness distribution with five thick-

ness categories (Bitz et al. 2001), and an elastic–viscous–

plastic rheology to compute internal ice stresses (Hunke

and Dukowicz 1997). The ocean component of CM2.1 is

the Modular Ocean Model version 4 (MOM4; Griffies

2012), which employs a rescaled geopotential height

vertical coordinate (z*; Griffies et al. 2011). CM2.1 uses

50 vertical ocean levels, with layer thicknesses of 10m in

the upper 230m of the ocean. CM2.1’s atmospheric

component is Atmospheric Model version 2.1 (AM2.1;

Delworth et al. 2006), which uses a cubed-sphere finite-

volume dynamical core with 24 vertical levels (Lin 2004;

Putman and Lin 2007).

b. The data assimilation system

The ECDA system employs an ensemble adjustment

Kalman filter methodology (EAKF; Anderson 2001)

with 12 ensemble members. The EAFK is a sequential

DA method. In the forecast step, the coupled model

ensemble is integrated forward in time, producing a

prior distribution of model states. In the analysis step,

available observations are assimilated and are used to

update the model state vector via flow-dependent co-

variances, which are computed using the prior distri-

bution. The updated ensemble of model states is

referred to as the posterior distribution, and depends

on both the observational error and model error co-

variances. The ECDA system uses a weakly coupled

DA approach, meaning that observations in a given

model component are used to update state variables

within that component via flow-dependent covariances,

but covariances are not computed across different

model components. The coupling in this system arises

via the use of the coupled model in the forecast step,

allowing for updates in a given model component to be

communicated to other model components via fluxes of

heat, momentum, and mass. We note that recent work

by Kimmritz et al. (2018) investigating SIC assimilation

in a perfect model framework showed that strongly

coupled DA, in which SIC observations are used to

update both sea ice and ocean temperature and salinity

states, generally outperformed a weakly coupled ap-

proach, in which only the sea ice state was directly

updated.

The ECDA system assimilates 3D atmospheric tem-

peratures from the NCEP–DOE Atmospheric Model

IntercomparisonProject (AMIP-II) reanalysis (Kanamitsu

et al. 2002), satellite SSTs from the Met Office Hadley

Centre’s sea ice and SST dataset (HadISST1; Rayner

et al. 2003) (prior to 2011) and NOAA’s daily Optimum

Interpolation SST dataset (OISST; Reynolds et al.

2007) (post 2011), and a variety of subsurface ocean

temperature and salinity (T/S) observations. The sub-

surface ocean observations come from theWorld Ocean

Database (WOD; Levitus et al. 2013), the Global

Temperature and Salinity Profile Programme (GTSPP;

Sun et al. 2010) and the Argo program (Roemmich

et al. 2004). These ocean data comprise a variety of

observation types, including profiling floats (PFL), high-

resolution conductivity–temperature–depth (CTD) data,

expendable bathythermographs (XBT), and ocean sta-

tion data (OSD). The dominant contributions in the

Barents Sea come from OSD (low-resolution CTD and

bottle data) prior to the early 1990s and from high-

resolution CTD data (depth increments of less than 2m)

after the early 1990s (see Fig. S1 in the online supple-

mental material; see also Abrahamsen 2014). The

ECDA system does not directly assimilate sea ice ob-

servations, but the sea ice state is constrained in the

weakly coupled assimilation procedure via fluxes from

the atmospheric and oceanic model components. Sea

ice DA is planned as future work in this system, which

was originally developed with a focus on tropical and

midlatitude applications.

ECDA uses a spatial localization of covariances in

order to restrict spurious correlations between remote

spatial locations. The localization weighting function is a

fifth-order piecewise polynomial function [Eq. (4.10) of

Gaspari and Cohn (1999)], which has a specified half-

width parameter c, is identically zero for distances

beyond 2c, and qualitatively resembles a Gaussian
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function. We refer to the half-width parameter c as the

localization distance.

In the ocean component, ECDA uses a horizontal

localization distance of 1000 km and a vertical locali-

zation of twice the thickness of the nearest ocean

model layer. This vertical localization means that a

given ocean observation generally influences the

nearest ocean layer and 63 layers in the vertical. SST

observations are treated identically to ocean T/S pro-

file observations, and therefore influence the upper

four ocean layers. The ocean state vector consists of

both T and S at all depths, so both T and S are updated

given an observation of T or S. The observational er-

rors used by ECDA are 0.58C for T and 0.1 psu for S.

The daily-mean SST data are assimilated with daily

frequency and ocean profiles are assimilated whenever

available.

In the atmospheric component, 3D reanalysis tem-

peratures that have been regridded to the atmospheric

model grid are assimilated. A 500-km localization is

used in the horizontal and the vertical localization is

confined to the model layer of the observed quantity.

The atmospheric state vector consists of temperature

and horizontal velocities at all pressure levels. The ob-

servational atmospheric temperature error used in

ECDA is 18C. The atmospheric data are assimilated

with 6-hourly frequency.

ECDA employs a full-field initialization approach,

which aims to initialize the model close to the observed

state. This approach has the advantage of correcting

systematic model biases but the disadvantage of in-

troducing greater initialization shock and model drift,

since the model will tend to relax to its attractor when

run in forecast mode. An alternative approach used in

other prediction systems is anomaly initialization

(Meehl et al. 2014), in which the observed anomaly is

added to the model’s climatology. This tends to result

in a more balanced initial state with less model drift,

but a larger bias. On the seasonal time scale, full-field

initialized forecasts have been shown to generally have

higher skill than anomaly-initialized forecasts (Smith

et al. 2013; Magnusson et al. 2013), whereas anomaly

initialization may offer advantages on interannual-to-

decadal time scales (Smith et al. 2013; Volpi et al. 2017)

but the differences are somewhat equivocal (Hazeleger

et al. 2013; Polkova et al. 2014). We assess the impact of

model drift in forecasts initialized from ECDA in

section 3b.

c. Observing System Experiments

To isolate the impact of specific observations on

Barents sea ice predictions in the GFDL prediction

system, we perform a series of OSEs. In these experi-

ments, certain data sources are systematically excluded

during the assimilation procedure. We consider a hier-

archy of six OSE assimilation runs in this study, which

are summarized in Table 1: 1) a ‘‘Control’’ run in which

all mentioned data are assimilated; 2) a ‘‘No CTD’’ run

in which CTD data are excluded; 3) a ‘‘No Subsurface’’

run in which all subsurface ocean data are excluded;

4) an ‘‘SST Only’’ run in which only SST data are as-

similated; 5) an ‘‘Atmosphere Only’’ run in which only

TABLE 1. Summary of OSEs performed in this study. Hindcast period refers to the years over which seasonal retrospective predictions are

performed. Note that OSE prediction skill is evaluated over the period of 1997–2016.

Experiment name Atmospheric 3D temp SST CTD Other subsurface Hindcast period

Control ✓ ✓ ✓ ✓ 1981–2016

No CTD ✓ ✓ 3 ✓ 1995–2016

No subsurface ✓ ✓ 3 3 1995–2016

SST only 3 ✓ 3 3 1995–2016

Atmosphere only ✓ 3 3 3 1995–2016

Uninitialized 3 3 3 3 1861–2016

FIG. 1. The Barents Sea domain considered in this study (blue

region). The boxed regions enclose the Atlantic water subdomain

(defined as 708–758N, 258–508E) and the Arctic water subdomain

(defined as 778–818N, 258–508E). The BSO is marked as the section

from 708 to 74.58N at 208E. Ocean bathymetry (m) is plotted in

contours.
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atmospheric temperatures are assimilated; and 6) an

‘‘Uninitialized’’ run in which no data are assimilated.

Each of these OSE runs is forced with historical time-

varying radiative conditions prior to 2005 and represen-

tative concentration pathway 4.5 (RCP4.5; Meinshausen

et al. 2011) after 2005. TheNoCTD,No Subsurface, SST

Only, and Atmosphere Only runs are initialized from

the Control run on 1 January 1995 and run to December

2016. These runs show signs of adjustment over the first

two years of integration. We compute all climatologies,

trends, and prediction skill metrics over the years 1997–

2016 to exclude this initial period of adjustment. The

Control run is initialized on 1 January 1960 and the

Uninitialized (historical) run is initialized on 1 January

1860. When assessing the ocean and sea ice state esti-

mates for the OSE assimilation runs, we consider the

12-member ensemble mean. For the Uninitialized run,

we consider the ensemble mean computed over a

10-member ensemble of historical simulations. The

OSEs of this study extend and build upon an earlier set

of experiments performed with the CM2.1 prediction

system (Xue et al. 2017).

d. Prediction skill assessment

The Barents Sea domain considered in this study fol-

lows the definition of Bushuk et al. (2017), which has

approximate latitude–longitude bounds of 648–818N and

208–608E (see Fig. 1). This domain has a total area of 1.3

millionkm2 and contains 438 ocean model grid points

with nominal horizontal resolution of 55km. To assess the

influence of different observation types onBarents sea ice

prediction skill, we perform suites of retrospective sea-

sonal predictions initialized from the Control, No CTD,

No Subsurface, SST Only, and Atmosphere Only OSEs.

FIG. 2. Barents Sea JFMocean (a)–(g) temperature and (h)–(n) salinity climatologies at 100-mdepth fromWOA13 observations and the

OSEs. The black contour shows the January–March (JFM) climatological sea ice edge fromNSIDC observations and the OSEs. The gray

contour indicates the 18C isotherm. These climatologies are computed over the years 1997–2016. The horizontal distribution of tem-

perature and salinity is similar at other depth levels.
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For each year from1995–2016 and eachof theseOSEs, we

run 10-member ensemble forecasts for one year initialized

on start dates of 1 January, 1 April, 1 July, and 1 October.

This set of retrospective predictions represents a total of

4400 years of model integration. For the Control run, the

retrospective forecasts span 1981–2016.

We assess these forecasts against monthly-averaged

passive microwave satellite SIC data from the National

Snow and Ice Data Center (NSIDC) processed using the

NASA Team Algorithm (dataset ID: NSIDC-0051;

Cavalieri et al. 1996). The prediction skill of SIE is as-

sessed using the anomaly correlation coefficient (ACC)

and the normalized root-mean-square error (NRMSE).

The ACC is the Pearson correlation coefficient between

the predicted and observed time series, and theNRMSE is

the root-mean-square deviation between these time series

normalized by the standard deviation of the observed time

series.We computeACC andNRMSEusing both full and

linearly detrended time series. ACC values close to one

andNRMSE values close to zero indicate a high degree of

skill, whereas anACCvalue of zero and anNRMSEvalue

of one indicate no skill relative to a climatological refer-

ence forecast, respectively. We assess the statistical sig-

nificance of our computed ACC and NRMSE values

using a bootstrapped resampling approach, in which the

prediction ensemble is repeatedly randomly sampled with

replacement in order to produce empirical distribution

estimates of theACCandNRMSE statistics (Efron 1982).

For each computed ACC and NRMSE value, we report a

95% confidence interval based on a bootstrapped sample

of 10000 realizations. We also assess our ocean state es-

timates using the World Ocean Atlas 2013 (WOA13) cli-

matology and 3-monthly temperature and salinity datasets

(Locarnini et al. 2013; Zweng et al. 2013).

3. Results

a. Ocean and sea ice state estimates in OSEs

The Barents Sea is characterized by a polar front,

which separates relatively warm and saline Atlantic

water (T. 38C and S. 34.8 psu) inflowing through the

BSO from relatively cold and fresh Arctic water (T ,
08C and S . 34.7 psu) located in the northern part of

the sea (Årthun et al. 2012; Oziel et al. 2016; Lien et al.

2017). As originally noted by Helland-Hansen and

Nansen (1909), the position of this front is critical in

setting the Barents winter sea ice edge.We find that the

presence of a Barents Sea polar front is well repro-

duced by the OSE assimilation experiments (see

Fig. 2). However, the position of this front, and the

corresponding sea ice edge, is shifted along an axis

oriented in the northeast direction. As the polar front

shifts across these experiments, the relative proportion

of Atlantic and Arctic water masses in the Barents

Sea changes. Ahead, we consider ocean profiles com-

puted over ‘‘Atlantic water’’ (defined as 708–758N
and 258–508E) and ‘‘Arctic water’’ (defined as 778–
818N and 258–508E) subdomains of the Barents Sea

(see Fig. 1).

We begin by evaluating the fidelity of ocean and sea

ice state estimates in the OSE assimilation experiments

in terms of their climatology (Figs. 3 and 4). The free-

running CM2.1 model (the Uninitialized run) has a

polar front located too far to the southwest (Fig. 2g)

and has climatological biases in the Barents Sea char-

acterized by overly extensive sea ice (Fig. 3, dashed

gray curve) and ocean temperatures that are too cold

at all depths throughout the year (Figs. 4a,b,e,f).

The Arctic water subdomain is too saline, particularly

below 100-m depth (Figs. 4d,h), and the Atlantic water

subdomain has a fresh bias in the upper 100m

(Figs. 4c,g).

We find that the temperature and SIE biases are no-

tably improved with the inclusion of SST data in the

assimilation procedure (see the SST Only run in Figs. 3

and 4, cyan curve), whereas the water column has

been freshened relative to the free-running model

(Figs. 4c,d,g,h). These temperature and sea ice im-

provements primarily result from warmer temperatures

in the Atlantic water subdomain (Figs. 4a,e), whereas

the salinity degradation is largest in the Arctic water

subdomain (Figs. 4d,h). This freshening effect is possibly

associated with reduced sea ice formation and a cor-

responding reduction in brine rejection, as well as the

lack of a surface or subsurface salinity constraint in the

SSTOnly run.We find a second notable improvement in

the ocean and sea ice state estimates due to the inclusion

of subsurface ocean data (the Control run). The Control

FIG. 3. Barents SIE climatologies computed from the OSE runs.

Climatologies are computed over 1997–2016 from NSIDC obser-

vations (black), the Control run (blue), the No CTD run (green),

the No Subsurface run (magenta), the SST Only run (cyan), the

Atmosphere Only run (red), and the Uninitialized run (dashed

gray).
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FIG. 4. Temperature and salinity profiles for JFM and JAS computed over 1997–2016 from World Ocean Atlas

2013 (WOA13) observations (black), the Control run (blue), the No CTD run (green), the No Subsurface run

(magenta), the SST Only run (cyan), Atmosphere Only run (red), and the Uninitialized run (dashed gray). These

profiles are computed over (a),(c),(e),(g) anAtlantic water subdomain of the Barents Sea (708–758N, 258–508E) and
(b),(d),(f),(h) an Arctic water subdomain of the Barents Sea (778–818N, 258–508E).
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run captures the observed SIE (Fig. 3, blue curve)

and Atlantic subdomain temperature climatologies

(Figs. 4a,e) with quite high fidelity, and has an improved

salinity climatology relative to the other OSE runs

(Figs. 4c,d,g,h). The temperature improvements in this

run primarily occur in the Atlantic subdomain, whereas

salinity generally shows improvements in both the At-

lantic and Arctic subdomains. The improved stratifica-

tion of the Control run suggests more realistic coupling

via vertical mixing between the surface and subsurface

ocean layers.

Furthermore, the No CTD run reveals that the critical

subsurface ocean contribution comes from CTD data, as

the temperature, salinity, and SIE climatologies are each

degraded when CTD data are excluded from the as-

similation procedure (compare the Control run to the

No CTD run in Figs. 3 and 4). The improvements as-

sociated with CTD data occur primarily in the Atlantic

water subdomain (Figs. 4a,c,e,g, green curves). We ad-

ditionally find more modest degradations in climatology

when the remaining subsurface ocean data are excluded

(the No CTD run vs the No Subsurface run). The pri-

mary degradation in this case is a freshening of the water

column in both winter and summer (Figs. 4c,d,g,h, ma-

genta curves). A similar degradation occurs when at-

mospheric data are excluded, as the SST Only run has

larger salinity biases than the No Subsurface run. The

SST Only run resembles the No Subsurface run in terms

of sea ice (Fig. 3) and Atlantic water temperatures

(Figs. 4a,e), whereas the Atmosphere Only run (red

curves) has larger biases in these fields. This suggests

that SST generally provides a stronger sea ice and upper

ocean temperature constraint than surface atmospheric

temperatures. Note that despite assimilating surface

ocean temperatures, the SSTOnly run retains a cold bias

in the near-surface ocean. This biasmay be related to the

vertical localization used in this system, which limits the

influence of a given SST observation to the upper 40m

and may allow for biases in deeper ocean layers to in-

fluence the near-surface layers via vertical mixing.

Taken together, the results shown in Figs. 3 and 4 sug-

gest that SST and CTD observations provide the most

critical data for constraining the ocean and sea ice cli-

matologies in the Barents Sea, and that atmospheric

temperatures and other subsurface ocean data provide

secondary improvements.

Next, we consider the ability of this assimilation sys-

tem to capture interannual variations in ocean tem-

peratures and sea ice (Figs. 5a,b). As earlier work has

shown that subsurface temperature anomalies stored

beneath the summer thermocline provide an impor-

tant source of predictability for Barents winter SIE

(Schlichtholz 2011; Bushuk et al. 2017), we consider

ocean temperatures averaged between 50- and 250-m

depth over the Atlantic water subdomain. We find that

the Control run captures both the long-term trend

and interannual variations in subsurface temperatures

with high fidelity (see Fig. 5a). Interestingly, while the

No CTD, No Subsurface, SST Only, and Atmosphere

Only runs are biased cold relative to the Control, they

exhibit similar interannual variability, suggesting that

surface data alone are sufficient to constrain the in-

terannual variability of the Barents Sea subsurface heat

content.We return to the relative roles of surface versus

subsurface data in section 3c. Finally, we find that

the Uninitialized model ensemble mean is biased

cold, does not capture the observed interannual vari-

ability, and underestimates the magnitude of the trend.

This clearly illustrates the crucial constraints provided

by oceanic and atmospheric data assimilation, as

FIG. 5. Ocean and sea ice interannual variability from the OSE

runs. (a) Barents Sea Atlantic water subdomain subsurface tem-

perature anomalies (relative to the WOA climatology) averaged

between 50 and 250m for WOA13 (black) and the OSE runs

(colors). Thick lines are 1-yr running means of the monthly data.

(b) January–March (JFM) Barents SIE from NSIDC (black) and

the OSE assimilation runs. (c) Predictions of JFM Barents SIE

initialized from the OSE runs on 1 Jul (lead 6 month). Predictions

initialized at other lead times display qualitatively similar behavior.

7024 JOURNAL OF CL IMATE VOLUME 32

Unauthenticated | Downloaded 12/17/20 01:00 PM UTC



incorporation of these data leads to improvements in

the system’s representation of climatology, trends, and

interannual variability.

The observed Barents winter SIE negatively covaries

with subsurface temperatures (Schlichtholz 2011; Bushuk

et al. 2017) and exhibits analogous behavior across the

OSEs. In particular, we find that 1) the Control run

matches the observed SIE trend and interannual vari-

ability with high fidelity; 2) the No CTD, No Subsurface,

SST Only, and Atmosphere Only runs each have posi-

tive SIE biases but similar interannual variability to the

Control run; and 3) the Uninitialized model ensemble

mean fails to capture the observed interannual vari-

ability and trend magnitude (Fig. 5b). Overall, we find

that the various OSEs generally display monotonic im-

provements in climatology and interannual variability

as additional data are incorporated in the assimilation

procedure.

b. Sea ice prediction skill

We next assess the value of these improved ICs for

seasonal predictions of sea ice in the Barents Sea. In

order for seasonal predictions to benefit from improved

ICs, the prediction model must accurately simulate the

dynamical evolution of the initial state, thereby retain-

ing memory of the ICs. We find that, up to lead times of

11 months (the maximum length of these seasonal pre-

dictions), the SIE predictions initialized from the dif-

ferent OSEs retain a clear memory of their initial ocean

and sea ice states. In particular, predictions initialized

from the No CTD, No Subsurface, SST Only, and At-

mosphere Only runs have positive SIE biases, whereas

the Control run predictions have a substantially reduced

bias, associated with their initialization from a state

with a warmer subsurface ocean and less extensive sea

ice (see Fig. 5c). Analogous to the state estimates in

Figs. 5a and 5b, we find that the predicted winter SIE

from the Control, No CTD, No Subsurface, SST Only,

and Atmosphere Only runs also exhibit similar in-

terannual variability. In Fig. 6a, we consider the drift of

this system by comparing SIE climatologies from the

assimilation runs and lead-6-month predictions. In pre-

diction mode, all OSEs exhibit some degree of drift to-

ward the free-running model climatology; however, the

drift is relatively modest in the runs that assimilate

subsurface ocean data. For example, the OSE Control

retains roughly 80% of its difference with the Unin-

itialized run, indicating that the full-field initialization

used by this system is a viable prediction approach on

the seasonal time scale.

In Fig. 7, we plot the prediction skill of forecasts ini-

tialized from the OSEs for target months of January–

June for full (nondetrended) SIE time series. For all

considered targetmonths, we find clear improvements in

NRMSE as additional data sources are incorporated

into the assimilation procedure. In particular, there are

monotonic reductions in NRMSE (prediction skill im-

provements) associated with the incorporation of SST

data (cf. the Uninitialized and SST Only predictions in

Figs. 7a–f), atmospheric temperature data (cf. the SST

Only and No Subsurface predictions), CTD data (cf. the

No CTD and Control predictions), and other subsurface

ocean data (cf. the No Subsurface and No CTD pre-

dictions). The Atmosphere Only predictions are less

skillful than the SST Only predictions, again indicating

that SST provides a stronger constraint than surface

atmospheric temperatures. The Control run NRMSE

values are generally significant with respect to a refer-

ence climatological prediction, whereas the NRMSE

values of the other experiments are not. This demon-

strates the large impact of model mean-state biases on

forecast skill degradation.

The ACC values, which are unaffected by mean bia-

ses, are similar between the Control and No CTD pre-

dictions and lower for the No Subsurface, SSTOnly, and

FIG. 6. Barents JFM SIE (a) climatology and (b) trends from ob-

servations (black), the Control (blue), No CTD (green), No Sub-

surface (magenta), SST Only (cyan), Atmosphere Only (red), and

Uninitialized (gray) OSE runs. For the OSEs, SIE trends and clima-

tological values are shown for both (left) the assimilation runs (DA)

and (right) lead-6-month predictions initialized the previous 1 Jul (L6).

Climatologies and trends are computed over years 1997–2016.
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FIG. 7. Sea ice prediction skill. Barents Sea SIE NRMSE and ACC values for target months January–June for predictions initialized

from the Control (blue), No CTD (green), No Subsurface (magenta), SSTOnly (cyan), andAtmosphere Only (red) assimilation runs and

the Uninitialized run (dashed gray). Error bars indicate 95% confidence intervals as estimated by bootstrapping. Triangle markers in-

dicate months in which predictions are statistically more skillful than a climatological reference forecast. The NRMSE and ACC of the

climatological reference forecast are 1 and 0, respectively. Prediction skill is computed using years 1997–2016.
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Atmosphere Only predictions (Figs. 7g–l). The Control

and No CTD ACC values are statistically higher than

both the Uninitialized predictions and a climatological

prediction at all lead times. The lower ACC skill in the

runs that do not assimilate subsurface ocean data is

primarily related to underestimated Barents SIE trends

in these predictions (see Fig. 6b). Indeed, the linearly

detrended prediction skill plotted in Fig. 8 shows no

systematic statistical differences between these experi-

ments, with the exception of the Atmosphere Only run,

which has lower detrended ACC and higher detrended

NRMSE values. This result indicates that SST data are

providing the crucial source of interannual variations in

predicted SIE, whereas CTD and other subsurface data

are primarily providing corrections of climatological

biases and trends, respectively. Note that this set of

OSEs (see Table 1) has shown that SST data are suffi-

cient to provide interannual skill, but we have not shown

whether SST data are necessary. Answering this ques-

tion would require a CTD Only experiment, which we

plan to explore in future work.

The linear trend in Barents SIE (see Fig. 5b) over the

OSE period likely has contributions from both radiative

forcing and internal decadal climate variability. While

all OSE runs have common radiative forcing, we recover

improved predicted trends in the runs that assimilate

subsurface ocean data, suggesting that subsurface data

provide a useful constraint on decadal ocean variations

and/or the forced response of the subsurface ocean. We

note that Yeager et al. (2015) found skillful predictions

of Atlantic sector SIE trends in decadal prediction ex-

periments initialized based on an ice-ocean simulation

forced by surface atmospheric fields (Danabasoglu et al.

2014) but without any direct assimilation of subsurface

ocean data. This suggests that the necessary conditions

to skillfully predict Barents SIE trends are likely de-

pendent on the model and the initialization technique.

These Barents SIE predictions are skillful on seasonal

time scales. UsingACC5 0.5 as a threshold for practical

prediction skill, we find that the Control run is skillful at

3–7 months for detrended SIE, and beyond 11 months

for the full time series. For nearly all target months and

all OSEs, the skill of the initialized predictions exceeds

the uninitialized prediction skill, demonstrating an un-

ambiguous benefit of assimilating observational data.

This improved skill is due to improvements in both

ocean and sea ice ICs (see Figs. 3–6), the relative im-

portance of which is dependent on lead time. At rela-

tively short lead times (0–3months) persistence of initial

sea ice anomalies are a critical source of prediction skill,

whereas at longer lead times (6–9 months) when the

Barents Sea is nearly ice free, ocean ICs serve as the key

source of predictability.

Predictions of the winter sea ice edge also show clear

improvements due to the incorporation of ocean data in

the assimilation procedure (Fig. 9), with particularly

notable improvements owing to the inclusion of CTD

data. While the Control run predictions generally cap-

ture the ice edge reasonably well, they fail to predict a

feature seen in recent low sea ice years in which the ice

edge retreats beyond the northern tip of Novaya Zemlya

(see Fig. 9d). This prediction error is possibly related to

the significantly higher density of CTD observations in

the western portion of the Barents Sea comparedwith its

eastern side.We also note that the predicted Control run

ice edge is generally located too far westward, and that

the prediction error in Fig. 9dmay be related to this bias.

While SST provides the dominant source of winter

and spring interannual skill, the relative importance of

atmospheric temperatures and SST shifts in the month

of June. In June–October, the Atmosphere Only run

has higher ACC values (both nondetrended and de-

trended) than the SST only run (see Figs. S2 and S3 in

the supplemental material, and note that this region is

essentially ice-free in August and September). The at-

mospheric constraint is active at all grid points—ice

covered and open ocean—whereas SST only provides

useful information at ice-free grid points where the SST

differs from the freezing point of seawater. Therefore,

these summer season skill differences are consistent

with the atmospheric data providing a thermodynamic

constraint on sea ice thickness in ice-covered regions,

which subsequently provides improved ACC skill during

the melt season. The NRMSE skill differences between

the Atmosphere Only and SST Only runs are more

equivocal, suggesting that atmospheric temperatures

primarily improve the representation of sea ice thickness

interannual variability rather than the climatology.

c. Surface and subsurface oceanic contributions to
predictability

We have demonstrated that both SST and CTD data

make substantial positive contributions to seasonal sea

ice predictions in the Barents Sea, with SST data pro-

viding the key source of interannual variability and CTD

data primarily providing a correction to the model’s

mean-state bias. This finding provides insight into the

mechanisms underlying the observed prediction skill, as

we have shown that surface data alone are sufficient to

constrain interannual OHC anomalies (Fig. 5a) and to

skillfully predict detrended SIE anomalies (Fig. 8). This

suggests a possible ‘‘top down’’ mechanism for Barents

sea ice predictability as proposed by Schlichtholz (2011),

in which anomalous surface heat fluxes provide the key

driver of OHC anomalies and the subsurface ocean acts

as a reservoir that stores the memory of this surface
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FIG. 8. Detrended Barents SIE NRMSE and ACC values for target months January–June for predictions initialized from the Control

(blue), No CTD (green), No Subsurface (magenta), SSTOnly (cyan), and Atmosphere Only (red) assimilation runs and the Uninitialized

run (dashed gray). Error bars indicate 95% confidence intervals as estimated by bootstrapping. Trianglemarkers indicatemonths in which

predictions are statistically more skillful than a reference forecast based on the linear trend. The NRMSE and ACC of the linear trend

reference forecast are 1 and 0, respectively. Prediction skill is computed using years 1997–2016.
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forcing. A second plausible mechanism is the lateral

advectionmechanism ofÅrthun et al. (2012), who found

that winter-centered annual mean Barents OHC vari-

ability was primarily driven by variations in BSO At-

lantic water volume transport.

To investigate these two viable mechanisms, we con-

sider the net SHF over the Barents Sea, which acts as a

driver of OHC anomalies in the top-down mechanism,

and damps OHC anomalies in the lateral mechanism.

We perform this analysis using the OSE Control run, as

this run has the best constraint on OHC and highest

seasonal prediction skill. Computing lagged regressions

between the detrended SHF (defined as positive down-

ward) and detrended July OHC in the Atlantic water

subdomain, we find that positive July OHC anomalies

are associated with positive SHF anomalies the previous

FIG. 9. Sea ice edge predictions. Predictions of the observed Barents Sea March sea ice edge (black) from the

Control (blue), No CTD (green), No Subsurface (magenta), SST Only (cyan), Atmosphere Only (red), and Un-

initialized (gray) OSE runs. Predicted ice edges for lead time of 8 months are shown for years (a) 1997, (b) 2001,

(c) 2005, (d) 2007, (e) 2010, and (f) 2015. The differences in ice-edge position are qualitatively similar for other lead

times. These years are chosen to sample different characteristic sea ice states within the OSE period (see Fig. 5b).
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winter and negative SHF anomalies the following au-

tumn (see Fig. 10), with the dominant contributions

coming from sensible and latent heat fluxes. This finding

supports the top-down mechanism, suggesting that

winter SHF anomalies drive OHC anomalies, which

persist beneath the seasonal thermocline through the

summer months and are released to the atmosphere the

following autumn as the mixed layer deepens. We note

that this finding is insensitive to the choice of July OHC,

since Barents OHC anomalies are persistent on in-

terannual time scales (Fig. 5a).

Surface fluxes produced via a coupled data assimila-

tion procedure that assimilates both atmospheric and

oceanic data can potentially be unrealistic, particularly

in the presence of systematic model biases. To check the

robustness of our findings from theOSEControl run, we

repeat the lagged regression analysis by directly using

surface fluxes from different atmospheric reanalyses and

July OHC from WOA13 observational data. Specifi-

cally, we compute lagged regressions using fluxes from

both ERA-Interim atmospheric reanalysis (Dee et al.

2011) and NCEP–DOE Reanalysis II (Kanamitsu et al.

2002; i.e., the reanalysis product used by ECDA for at-

mospheric temperature data). We find robust lagged

regression patterns across these products, which agree

with those identified in the OSEControl run (see Fig. S4

in the supplemental material). In particular, both rean-

alyses show that positive July OHC anomalies are asso-

ciated with positive SHF anomalies the previous winter

and negative SHF anomalies the following autumn, con-

sistent with the findings from the OSE Control run.

Next, we consider the influence of BSO ocean trans-

port on Barents SeaOHC.We define the BSO section as

708–74.58N and 208E (see Fig. 1), which provides a flux

gate between northern mainland Norway and Bear Is-

land, and compute eastwardOHT relative to a reference

temperature of 08C and eastward ocean volume trans-

port (OVT). Compared to the annual-mean BSO

transport estimates of Smedsrud et al. (2010) spanning

1997–2007 [OHT 49.7 TW; OVT 2.0 Sv (1 Sv [
106m3 s21)], the free-running model (Uninitialized run)

has lower heat transport (36.7 TW) and higher volume

transport (2.6 Sv). The Control OSE run has a more

realistic OHT (49.5 TW) while retaining a similar vol-

ume transport (2.6 Sv). In Fig. 11, we plot time series of

BSO OVT and OHT anomalies from the OSEs. Com-

paring to the inferred BSO OHT trend of 35 TW per 37

years of Li et al. (2017), the Control run’s OHT trend is

considerably improved (26 TW per 37 years) relative to

the Uninitialized run (9 TW per 37 years). We find that

FIG. 10. Regression of the OSE Control run SHF (Wm22; defined as positive downward) on Barents July OHC at different leads and lags

in months. Positive leads correspond to the SHF preceding July OHC and positive lags correspond to SHF following July OHC.
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the No Subsurface, SST Only, and Atmosphere Only

runs have declining volume transports through the BSO,

and correspondingly lack the positive OHT trend of the

OSE Control experiment. These underestimated OHT

trends in the runs that do not assimilate subsurface data

are consistent with their underestimated SIE trends (see

Fig. 6b).

We now use the OSE Control run to perform a de-

composition analysis of BSO OHT. We find that BSO

OHT anomalies display a lagged relationship with July

OHC, with maximum correlation occurring when OHT

leads by 4 months (March OHT; see Fig. 12a). Decom-

posing the OHT anomalies into volume transport anom-

alies (Fig. 12c) and temperature anomalies (Fig. 12b), we

find that March temperature anomalies are the dominant

source of July OHC variations with volume transport

anomalies playing a much weaker role. These tempera-

ture anomalies could either be 1) produced upstream in

the North Atlantic and advected into the Barents Sea or

2) produced locally in theBarents Sea via SHF anomalies.

In the first case the SHF acts to damp the Barents tem-

perature anomalies, whereas in the second case the

SHF acts to drive the temperature anomalies. Our SHF

analysis in Fig. 10 supports case 2, suggesting that winter

SHF anomalies are the driver of BarentsOHCanomalies.

We additionally find that Barents SHF anomalies lead

March OHT by 3–4 months, which is also consistent with

winter SHF anomalies being the driver of OHT andOHC

anomalies. Overall, these results support the top-down

mechanism of Schlichtholz (2011) over the lateral mech-

anism of Årthun et al. (2012). Note that while we have

shown that SHF forcing dominates on seasonal time

scales, this does not preclude a crucial role for OVT

anomalies on longer time scales (e.g., Zhang 2015;

Tietsche et al. 2016).

4. Conclusions

We have performed a hierarchy of observing system

experiments (OSEs) with a coupled global data assimi-

lation and prediction system in order to quantify the

value of various classes of oceanic and atmospheric

observations for seasonal forecasts of Barents Sea SIE.

This hierarchy consists of six data assimilation experi-

ments, in which oceanic and atmospheric data sources

are systematically excluded during the assimilation

procedure. We have initialized retrospective seasonal

predictions spanning 1995–2016 from these assimilation

experiments to directly evaluate the impact of specific

observation types on SIE prediction skill. The sea ice

and ocean state estimates in the OSEs generally display

monotonic improvements in both climatology and in-

terannual variability due to the assimilation of SST, at-

mospheric temperature, CTD, and other subsurface

ocean data, respectively. Particularly notable improve-

ments in climatology are associated with the assimila-

tion of CTD data, whereas SST data are found to

provide the crucial source of interannual variability for

SIE and subsurface ocean temperatures.

These improved initial conditions have a striking im-

pact on seasonal prediction skill for Barents SIE, dem-

onstrating the unambiguous benefits of assimilating

surface and subsurface ocean data. For target months of

January–June, we have found monotonic improvements

in NRMSE prediction skill associated with the in-

corporation of SST, atmospheric temperature, CTD, and

other subsurface ocean data, respectively. The most sig-

nificant improvements in NRMSE are specifically asso-

ciated with CTD data. We have found that ACC skill for

SIE is higher in runs that assimilate subsurface ocean

data, primarily due to a more realistic representation of

sea ice trends in these runs. Using ACC 5 0.5 as a

threshold for practical prediction skill, we found that the

Control OSE run (which includes all data types consid-

ered in this study) is skillful at 3–7 months for detrended

SIE, and beyond 11 months for the full time series. The

FIG. 11. Time series of (a) OVT (Sv) and (b) OHT (TW)

anomalies through the BSO for the Control (blue), No CTD

(green), No Subsurface (magenta), SST Only (cyan), Atmo-

sphere Only (red), and Uninitialized (Gray) OSE runs. The

anomalies are computed relative to the Control run. The heat

transport is computed relative to a reference temperature of 08C.
Thick lines are 1-yr running means of the monthly data.
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detrended SIE prediction skill is similar in all runs that

assimilate SST, indicating that SST data provide the

critical source of interannual variability whereas sub-

surface ocean data primarily provide improvements in

terms of climatology and trends. This finding is supported

by analysis of the surface heat budget, which shows that

winter SHF anomalies are the driver of Barents SeaOHC

variability on seasonal time scales.

The prediction systemmakes use of the relatively slow

time scales of the Barents Sea subsurface ocean to

produce skillful sea ice forecasts. Our findings suggest

that an unbiased model could achieve similar skill to the

Control run using only SST assimilation. However,

positive Barents SIE biases are common across CMIP3

(Parkinson et al. 2006) and CMIP5 models (Li et al.

2017), suggesting that subsurface ocean data assimila-

tion would likely be broadly beneficial across other

dynamical prediction systems. For summer SIE pre-

dictions, we have found that atmospheric temperatures

provide a stronger constraint on interannual skill than

SST, suggesting a benefit to atmospheric data assimila-

tion over ice-covered regions.

These results highlight the imperative need to sustain

existing satellite SST and in situ CTD observing net-

works, and also suggest that future sea ice prediction

improvements could be realized by expanding sub-

surface ocean observations in the Arctic, potentially via

polar Argo floats equipped with ice-avoidance technol-

ogy (Riser et al. 2018). We advocate that the OSE ap-

proach employed in this study is an important paradigm

for the future advancement of polar prediction capa-

bilities, as it simultaneously provides an assessment of

data assimilation systems, improves understanding of

the physical mechanisms impacting prediction skill, and

FIG. 12. Lagged correlations between different decompositions of BSO OHT and July OHC from the OSE

Control run. Negative lags correspond toOHT leading JulyOHC and positive lags correspond toOHT lagging July

OHC. Shown are (a) full OHT, (b) OHT computed using climatological currents and time-varying temperatures

(uT), (c) OHT computed using time-varying currents and climatological temperatures (uT), and (d) OHT

anomalies associated with eddy temperature fluxes (u0T0). Correlation values using full and detrended time series

are plotted in blue and red, respectively.
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provides guidance on the intelligent design of observa-

tional networks.

Acknowledgments. We thank Madlen Kimmritz and

two anonymous reviewers for constructive feedback

that improved the manuscript. We thank Liping Zhang

and Feiyu Lu for comments on a preliminary version of

this manuscript. M.B. was supported by NOAA’s Cli-

mate Program Office, Climate Variability and Pre-

dictability Program (Award GC15-504). We thank

Fanrong Zeng for providing the OSE Uninitialized

simulations and You-Soon Chang for assistance with

quality control of WOD data. The NASA team sea ice

concentration observations used in this study are avail-

able from the National Snow and Ice Data Center

website (http://nsidc.org/data/NSIDC-0051/versions/1).

The World Ocean Atlas 3-monthly temperature and

salinity datasets are available from the NOAANational

Centers for Environmental Information website (https://

www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT).

TheNCEP–DOEII reanalysis data are available from the

NOAA Earth System Research Laboratory website

(https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.

reanalysis2.html). The ERA-Interim reanalysis data

are available from the ECMWF website (https://

www.ecmwf.int/en/forecasts/datasets/archive-datasets/

reanalysis-datasets/era-interim). The OSE assimilation

and prediction runs presented in this study are available

upon request.

REFERENCES

Abrahamsen, E., 2014: Sustaining observations in the polar oceans.

Philos. Trans. Roy. Soc., 372, 20130337, https://doi.org/

10.1098/RSTA.2013.0337.

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for

data assimilation. Mon. Wea. Rev., 129, 2884–2903, https://

doi.org/10.1175/1520-0493(2001)129,2884:AEAKFF.
2.0.CO;2.

Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and

R. Ingvaldsen, 2012:Quantifying the influence ofAtlantic heat

on Barents sea ice variability and retreat. J. Climate, 25, 4736–

4743, https://doi.org/10.1175/JCLI-D-11-00466.1.

Bitz, C., M. Holland, A. Weaver, and M. Eby, 2001: Simulating the

ice-thickness distribution in a coupled climate model.

J. Geophys. Res., 106, 2441–2463, https://doi.org/10.1029/

1999JC000113.

Blanchard-Wrigglesworth, E., andM. Bushuk, 2019: Robustness of

Arctic sea-ice predictability in GCMs.Climate Dyn., 52, 5555–

5566, https://doi.org/10.1007/s00382-018-4461-3.

——, K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persis-

tence and inherent predictability of Arctic sea ice in a GCM

ensemble and observations. J. Climate, 24, 231–250, https://

doi.org/10.1175/2010JCLI3775.1.

Bouttier, F., and G. Kelly, 2001: Observing-system experiments in the

ECMWF4D-Var data assimilation system.Quart. J. Roy.Meteor.

Soc., 127, 1469–1488, https://doi.org/10.1002/qj.49712757419.

Bushuk, M., and D. Giannakis, 2015: Sea-ice reemergence in a

model hierarchy. Geophys. Res. Lett., 42, 5337–5345, https://

doi.org/10.1002/2015GL063972.

——,——, and A. J. Majda, 2015: Arctic sea ice reemergence: The

role of large-scale oceanic and atmospheric variability.

J. Climate, 28, 5477–5509, https://doi.org/10.1175/JCLI-D-14-

00354.1.

——, R.Msadek,M.Winton, G. Vecchi, R. Gudgel, A. Rosati, and

X. Yang, 2017: Skillful regional prediction of Arctic sea ice on

seasonal timescales. Geophys. Res. Lett., 44, 4953–4964,

https://doi.org/10.1002/2017GL073155.

——, ——, ——, ——, X. Yang, A. Rosati, and R. Gudgel, 2019:

Regional Arctic sea-ice prediction: Potential versus opera-

tional seasonal forecast skill. Climate Dyn., 52, 2721–2743,

https://doi.org/10.1007/S00382-018-4288-Y.

Cavalieri, D. J., and C. L. Parkinson, 2012: Arctic sea ice variability

and trends, 1979–2010.Cryosphere, 6, 881–889, https://doi.org/

10.5194/tc-6-881-2012.

——, ——, P. Gloersen, and H. J. Zwally, 1996 (updated yearly):

Sea ice concentrations from Nimbus-7 SMMR and DMSP

SSM/I-SSMIS Passive Microwave Data, version 1. NASA

DAAC at the National Snow and Ice Data Center, accessed

20 May 2018, https://doi.org/10.5067/8GQ8LZQVL0VL.

Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations

in Coordinated Ocean-ice Reference Experiments phase II

(CORE-II). Part I: Mean states. Ocean Modell., 73, 76–107,

https://doi.org/10.1016/j.ocemod.2013.10.005.

Day, J., S. Tietsche, and E. Hawkins, 2014: Pan-Arctic and regional

sea ice predictability: Initialization month dependence.

J. Climate, 27, 4371–4390, https://doi.org/10.1175/JCLI-D-13-

00614.1.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis:

Configuration and performance of the data assimilation sys-

tem.Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/

10.1002/qj.828.

Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global cou-

pled climate models. Part I: Formulation and simulation

characteristics. J. Climate, 19, 643–674, https://doi.org/10.1175/

JCLI3629.1.

Deser, C., and H. Teng, 2008: Evolution of Arctic sea ice concen-

tration trends and the role of atmospheric circulation forcing,

1979–2007. Geophys. Res. Lett., 35, L02504, https://doi.org/

10.1029/2007GL032023.

——, J. E.Walsh, andM. S. Timlin, 2000: Arctic sea ice variability in

the context of recent atmospheric circulation trends. J. Climate,

13, 617–633, https://doi.org/10.1175/1520-0442(2000)013,0617:

ASIVIT.2.0.CO;2.

Efron, B., 1982: The Jackknife, the Bootstrap, and Other Resam-

pling Plans. SIAM, 92 pp.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation

functions in two and three dimensions. Quart. J. Roy. Meteor.

Soc., 125, 723–757, https://doi.org/10.1002/qj.49712555417.

Griffies, S. M., 2012: Elements of the Modular Ocean Model

(MOM). GFDL Ocean Group Technical Report. Tech. Rep.

No. 7, NOAA/GFDL, 632 pp.

——, and Coauthors, 2011: The GFDLCM3 coupled climatemodel:

Characteristics of the ocean and sea ice simulations. J. Climate,

24, 3520–3544, https://doi.org/10.1175/2011JCLI3964.1.
Hazeleger, W., V. Guemas, B. Wouters, S. Corti, I. Andreu-

Burillo, F. Doblas-Reyes, K. Wyser, and M. Caian, 2013:

Multiyear climate predictions using two initialization strate-

gies. Geophys. Res. Lett., 40, 1794–1798, https://doi.org/

10.1002/grl.50355.

15 OCTOBER 2019 BU SHUK ET AL . 7033

Unauthenticated | Downloaded 12/17/20 01:00 PM UTC

http://nsidc.org/data/NSIDC-0051/versions/1
https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT
https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://doi.org/10.1098/RSTA.2013.0337
https://doi.org/10.1098/RSTA.2013.0337
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/JCLI-D-11-00466.1
https://doi.org/10.1029/1999JC000113
https://doi.org/10.1029/1999JC000113
https://doi.org/10.1007/s00382-018-4461-3
https://doi.org/10.1175/2010JCLI3775.1
https://doi.org/10.1175/2010JCLI3775.1
https://doi.org/10.1002/qj.49712757419
https://doi.org/10.1002/2015GL063972
https://doi.org/10.1002/2015GL063972
https://doi.org/10.1175/JCLI-D-14-00354.1
https://doi.org/10.1175/JCLI-D-14-00354.1
https://doi.org/10.1002/2017GL073155
https://doi.org/10.1007/S00382-018-4288-Y
https://doi.org/10.5194/tc-6-881-2012
https://doi.org/10.5194/tc-6-881-2012
https://doi.org/10.5067/8GQ8LZQVL0VL
https://doi.org/10.1016/j.ocemod.2013.10.005
https://doi.org/10.1175/JCLI-D-13-00614.1
https://doi.org/10.1175/JCLI-D-13-00614.1
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/JCLI3629.1
https://doi.org/10.1175/JCLI3629.1
https://doi.org/10.1029/2007GL032023
https://doi.org/10.1029/2007GL032023
https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1175/2011JCLI3964.1
https://doi.org/10.1002/grl.50355
https://doi.org/10.1002/grl.50355


Helland-Hansen, B., and F. Nansen, 1909: The Norwegian Sea: Its

physical oceanography based upon the Norwegian research

1900–1904. Det Mallingske Bogtrykkeri, 402 pp.

Hunke, E., and J. Dukowicz, 1997: An elastic–viscous–plastic

model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867,

https://doi.org/10.1175/1520-0485(1997)027,1849:AEVPMF.
2.0.CO;2.

Jung, T., and Coauthors, 2016: Advancing polar prediction capa-

bilities on daily to seasonal time scales. Bull. Amer. Meteor.

Soc., 97, 1631–1647, https://doi.org/10.1175/BAMS-D-14-

00246.1.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. Hnilo,

M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Re-

analysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643,

https://doi.org/10.1175/BAMS-83-11-1631.

Kimmritz, M., F. Counillon, C. Bitz, F. Massonnet, I. Bethke,

and Y. Gao, 2018: Optimising assimilation of sea ice con-

centration in an Earth system model with a multicategory

sea ice model. Tellus, 70A, 1–23, https://doi.org/10.1080/

16000870.2018.1435945.

Kirtman, B. P., and Coauthors, 2014: The North American multi-

model ensemble: Phase-1 seasonal-to-interannual prediction;

phase-2 toward developing intraseasonal prediction. Bull.

Amer. Meteor. Soc., 95, 585–601, https://doi.org/10.1175/

BAMS-D-12-00050.1.

Koenigk, T., and U. Mikolajewicz, 2009: Seasonal to interannual

climate predictability in mid and high northern latitudes in a

global coupled model. Climate Dyn., 32, 783–798, https://

doi.org/10.1007/s00382-008-0419-1.

Krikken, F., M. Schmeits, W. Vlot, V. Guemas, and W. Hazeleger,

2016: Skill improvement of dynamical seasonal Arctic sea ice

forecasts. Geophys. Res. Lett., 43, 5124–5132, https://doi.org/

10.1002/2016GL068462.

Kumar, A., P. Peng, and M. Chen, 2014: Is there a relationship

between potential and actual skill?Mon.Wea. Rev., 142, 2220–

2227, https://doi.org/10.1175/MWR-D-13-00287.1.

Kwok, R., 2009: Outflow of Arctic Ocean sea ice into the Green-

land and Barents Seas: 1979–2007. J. Climate, 22, 2438–2457,

https://doi.org/10.1175/2008JCLI2819.1.

——, W. Maslowski, and S. W. Laxon, 2005: On large outflows of

Arctic sea ice into the Barents Sea. Geophys. Res. Lett., 32,

L22503, https://doi.org/10.1029/2005GL024485.

Levitus, S., and Coauthors, 2013: The World Ocean Database.

Data Sci. J., 12, WDS229–WDS234, https://doi.org/10.2481/

DSJ.WDS-041.

Li, D., R. Zhang, and T. R. Knutson, 2017: On the discrepancy

between observed and CMIP5 multi-model simulated Barents

Sea winter sea ice decline. Nat. Comm., 8, 14991, https://

doi.org/10.1038/ncomms14991.

Lien, V. S., P. Schlichtholz, Ø. Skagseth, and F. B. Vikebø, 2017:
Wind-driven Atlantic water flow as a direct mode for reduced

Barents Sea ice cover. J. Climate, 30, 803–812, https://doi.org/

10.1175/JCLI-D-16-0025.1.

Lin, S.-J., 2004: A ‘‘vertically Lagrangian’’ finite-volume dynamical

core for global models. Mon. Wea. Rev., 132, 2293–2307,

https://doi.org/10.1175/1520-0493(2004)132,2293:AVLFDC.
2.0.CO;2.

Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1,World

Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

Lord, S., T. Zapotocny, and J. Jung, 2004: Observing system exper-

iments with NCEP’s global forecast system. Third WMO

Workshop on the Impact of Various Observing Systems on Nu-

merical Weather Prediction, Alpbach, Austria, WMO, 56–62.

Magnusson, L., M. Alonso-Balmaseda, S. Corti, F. Molteni, and

T. Stockdale, 2013: Evaluation of forecast strategies for sea-

sonal and decadal forecasts in presence of systematic model

errors. Climate Dyn., 41, 2393–2409, https://doi.org/10.1007/

s00382-012-1599-2.

Meehl,G.A., andCoauthors, 2014:Decadal climate prediction:An

update from the trenches. Bull. Amer. Meteor. Soc., 95, 243–

267, https://doi.org/10.1175/BAMS-D-12-00241.1.

Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas

concentrations and their extensions from 1765 to 2300. Cli-

matic Change, 109, 213–241, https://doi.org/10.1007/s10584-

011-0156-z.

Onarheim, I. H., T. Eldevik, M. Årthun, R. B. Ingvaldsen, and

L. H. Smedsrud, 2015: Skillful prediction of Barents Sea ice

cover. Geophys. Res. Lett., 42, 5364–5371, https://doi.org/

10.1002/2015GL064359.

Ordoñez, A. C., C.M. Bitz, and E. Blanchard-Wrigglesworth, 2018:

Processes controlling Arctic and Antarctic sea ice pre-

dictability in the Community Earth SystemModel. J. Climate,

31, 9771–9786, https://doi.org/10.1175/JCLI-D-18-0348.1.

Oziel, L., J. Sirven, and J.-C. Gascard, 2016: The Barents Sea

frontal zones and water masses variability (1980–2011).Ocean

Sci., 12, 169–184, https://doi.org/10.5194/os-12-169-2016.

Parkinson, C. L., K. Y. Vinnikov, and D. J. Cavalieri, 2006: Eval-

uation of the simulation of the annual cycle of Arctic and

Antarctic sea ice coverages by 11major global climatemodels.

J. Geophys. Res., 111, C07012, https://doi.org/10.1029/

2005JC003408.

Polkova, I., A. Köhl, andD. Stammer, 2014: Impact of initialization

procedures on the predictive skill of a coupled ocean–

atmosphere model. Climate Dyn., 42, 3151–3169, https://

doi.org/10.1007/s00382-013-1969-4.

Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on

various cubed-sphere grids. J. Comput. Phys., 227, 55–78,

https://doi.org/10.1016/j.jcp.2007.07.022.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.

Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan,

2003: Global analyses of sea surface temperature, sea ice,

and night marine air temperature since the late nineteenth

century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/

2002JD002670.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey,

and M. G. Schlax, 2007: Daily high-resolution-blended ana-

lyses for sea surface temperature. J. Climate, 20, 5473–5496,

https://doi.org/10.1175/2007JCLI1824.1.

Riser, S. C., D. Swift, and R. Drucker, 2018: Profiling floats in

SOCCOM: Technical capabilities for studying the Southern

Ocean. J. Geophys. Res. Oceans, 123, 4055–4073, https://

doi.org/10.1002/2017JC013419.

Roemmich, D., S. Riser, R. Davis, and Y. Desaubies, 2004: Au-

tonomous profiling floats: Workhorse for broad-scale ocean

observations. Mar. Technol. Soc. J., 38, 21–29, https://doi.org/

10.4031/002533204787522802.

Schlichtholz, P., 2011: Influence of oceanic heat variability on sea

ice anomalies in the Nordic Seas. Geophys. Res. Lett., 38,

L05705, https://doi.org/10.1029/2010GL045894.

——, andM.-N. Houssais, 2011: Forcing of oceanic heat anomalies

by air–sea interactions in the Nordic Seas area. J. Geophys.

Res., 116, C01006, https://doi.org/10.1029/2009JC005944.

Smedsrud, L. H., R. Ingvaldsen, J. E. Ø. Nilsen, and Ø. Skagseth,

2010: Heat in the Barents Sea: Transport, storage and surface

fluxes.Ocean Sci., 6, 219–234, https://doi.org/10.5194/os-6-219-

2010.

7034 JOURNAL OF CL IMATE VOLUME 32

Unauthenticated | Downloaded 12/17/20 01:00 PM UTC

https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
https://doi.org/10.1175/BAMS-D-14-00246.1
https://doi.org/10.1175/BAMS-D-14-00246.1
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1080/16000870.2018.1435945
https://doi.org/10.1080/16000870.2018.1435945
https://doi.org/10.1175/BAMS-D-12-00050.1
https://doi.org/10.1175/BAMS-D-12-00050.1
https://doi.org/10.1007/s00382-008-0419-1
https://doi.org/10.1007/s00382-008-0419-1
https://doi.org/10.1002/2016GL068462
https://doi.org/10.1002/2016GL068462
https://doi.org/10.1175/MWR-D-13-00287.1
https://doi.org/10.1175/2008JCLI2819.1
https://doi.org/10.1029/2005GL024485
https://doi.org/10.2481/DSJ.WDS-041
https://doi.org/10.2481/DSJ.WDS-041
https://doi.org/10.1038/ncomms14991
https://doi.org/10.1038/ncomms14991
https://doi.org/10.1175/JCLI-D-16-0025.1
https://doi.org/10.1175/JCLI-D-16-0025.1
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
https://doi.org/10.1007/s00382-012-1599-2
https://doi.org/10.1007/s00382-012-1599-2
https://doi.org/10.1175/BAMS-D-12-00241.1
https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.1002/2015GL064359
https://doi.org/10.1002/2015GL064359
https://doi.org/10.1175/JCLI-D-18-0348.1
https://doi.org/10.5194/os-12-169-2016
https://doi.org/10.1029/2005JC003408
https://doi.org/10.1029/2005JC003408
https://doi.org/10.1007/s00382-013-1969-4
https://doi.org/10.1007/s00382-013-1969-4
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1002/2017JC013419
https://doi.org/10.1002/2017JC013419
https://doi.org/10.4031/002533204787522802
https://doi.org/10.4031/002533204787522802
https://doi.org/10.1029/2010GL045894
https://doi.org/10.1029/2009JC005944
https://doi.org/10.5194/os-6-219-2010
https://doi.org/10.5194/os-6-219-2010


——, and Coauthors, 2013: The role of the Barents Sea in the

Arctic climate system. Rev. Geophys., 51, 415–449, https://

doi.org/10.1002/rog.20017.

Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of

full-field and anomaly initialization for seasonal to decadal

climate prediction. Climate Dyn., 41, 3325–3338, https://

doi.org/10.1007/s00382-013-1683-2.

Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the

Barents Sea winter ice extent. J. Climate, 19, 4772–4784,

https://doi.org/10.1175/JCLI3885.1.

Sun, C., and Coauthors, 2010: The data management system for the

global temperature and salinity profile programme. Pro-

ceedings of OceanObs’09: Sustained Ocean Observations and

Information for Society (Vol. 2), ESAPublicationWPP-306, 8

pp., https://doi.org/10.5270/OceanObs09.cwp.86.

Tietsche, S., E. Hawkins, and J. J. Day, 2016: Atmospheric and

oceanic contributions to irreducible forecast uncertainty of

Arctic surface climate. J. Climate, 29, 331–346, https://doi.org/

10.1175/JCLI-D-15-0421.1.

Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of

regional tropical cyclone activity. J. Climate, 27, 7994–8016,

https://doi.org/10.1175/JCLI-D-14-00158.1.

Vinje, T., 2001: Anomalies and trends of sea-ice extent and at-

mospheric circulation in the Nordic Seas during the period

1864–1998. J. Climate, 14, 255–267, https://doi.org/10.1175/

1520-0442(2001)014,0255:AATOSI.2.0.CO;2.

Volpi, D., V. Guemas, and F. J. Doblas-Reyes, 2017: Comparison

of full field and anomaly initialisation for decadal climate

prediction: Towards an optimal consistency between the

ocean and sea-ice anomaly initialisation state. Climate Dyn.,

49, 1181–1195, https://doi.org/10.1007/s00382-016-3373-3.

Winton, M., 2000: A reformulated three-layer sea ice model.

J. Atmos. Oceanic Technol., 17, 525–531, https://doi.org/

10.1175/1520-0426(2000)017,0525:ARTLSI.2.0.CO;2.

Xue, Y., C. Wen, X. Yang, D. Behringer, A. Kumar, G. Vecchi,

A. Rosati, and R. Gudgel, 2017: Evaluation of tropical Pacific

observing systems using NCEP and GFDL ocean data as-

similation systems. Climate Dyn., 49, 843–868, https://doi.org/

10.1007/s00382-015-2743-6.

Yeager, S. G., A. R. Karspeck, and G. Danabasoglu, 2015:

Predicted slowdown in the rate of Atlantic sea ice loss. Geo-

phys. Res. Lett., 42, 10 704–10 713, https://doi.org/10.1002/

2015GL065364.

Zhang, R., 2015: Mechanisms for low-frequency variability of

summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA, 112,

4570–4575, https://doi.org/10.1073/pnas.1422296112.

Zhang, S., and A. Rosati, 2010: An inflated ensemble filter

for ocean data assimilation with a biased coupled GCM.

Mon. Wea. Rev., 138, 3905–3931, https://doi.org/10.1175/

2010MWR3326.1.

——, M. Harrison, A. Rosati, and A. Wittenberg, 2007: System

design and evaluation of coupled ensemble data assimilation

for global oceanic climate studies.Mon. Wea. Rev., 135, 3541–

3564, https://doi.org/10.1175/MWR3466.1.

Zweng, M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean

Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

15 OCTOBER 2019 BU SHUK ET AL . 7035

Unauthenticated | Downloaded 12/17/20 01:00 PM UTC

https://doi.org/10.1002/rog.20017
https://doi.org/10.1002/rog.20017
https://doi.org/10.1007/s00382-013-1683-2
https://doi.org/10.1007/s00382-013-1683-2
https://doi.org/10.1175/JCLI3885.1
https://doi.org/10.5270/OceanObs09.cwp.86
https://doi.org/10.1175/JCLI-D-15-0421.1
https://doi.org/10.1175/JCLI-D-15-0421.1
https://doi.org/10.1175/JCLI-D-14-00158.1
https://doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<0255:AATOSI>2.0.CO;2
https://doi.org/10.1007/s00382-016-3373-3
https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2
https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2
https://doi.org/10.1007/s00382-015-2743-6
https://doi.org/10.1007/s00382-015-2743-6
https://doi.org/10.1002/2015GL065364
https://doi.org/10.1002/2015GL065364
https://doi.org/10.1073/pnas.1422296112
https://doi.org/10.1175/2010MWR3326.1
https://doi.org/10.1175/2010MWR3326.1
https://doi.org/10.1175/MWR3466.1


Unauthenticated | Downloaded 12/17/20 01:00 PM UTC

https://doi.org/10.1175/JCLI-D-18-0712.s1
https://doi.org/10.1175/JCLI-D-18-0712.s1
mailto:kcwang@bnu.edu.cn
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses



