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VARIATIONAL APPROXIMATION OF INTERFACE ENERGIES AND

APPLICATIONS

SAMUEL AMSTUTZ, DANIEL GOURION, AND MOHAMMED ZABIBA

Abstract. Minimal partition problems consist in finding a partition of a domain into a given

number of components in order to minimize a geometric criterion. In applicative fields such

as image processing or continuum mechanics, it is standard to incorporate in this objective an
interface energy that accounts for the lengths of the interfaces between components. The present

work is focused on the theoretical and numerical treatment of minimal partition problems with

such interface energies. The considered approach is based on a Γ-convergence approximation
combined with convex analysis techniques.

1. Introduction

Consider a partition of a bounded domain Ω of Rd into relatively closed subsets Ω1, . . . ,ΩN ,
called phases, that may intersect only through their boundaries:

Ω =

N⋃
j=1

Ωj , with Ωi ∩ Ωj = ∂Ωi ∩ ∂Ωj ∩ Ω for i 6= j.

Denote the interface separating Ωi and Ωj by Γij :

Γij = ∂Ωi ∩ ∂Ωj ∩ Ω for i 6= j,

with the additional convention Γii = ∅, see Figure 1. The prototype problem of minimal partition
can be written as

minimize

N∑
i=1

∫
Ωi

gi(x)dx+ I(Ω1, . . . ,ΩN ) (1.1)

over all partitions (Ω1, . . . ,ΩN ) of Ω, where g1, . . . , gN are given functions in L1(Ω), and I(Ω1, . . . ,ΩN )
is the total interface energy. This energy is here chosen as

I(Ω1, . . . ,ΩN ) =
1

2

∑
1≤i<j≤N

αijHd−1(Γij), (1.2)

where αij ≥ 0 is a coefficient called surface tension associated with Γij and Hd−1(Γij) is the d− 1
dimensional Hausdorff measure of Γij . It is convenient to assume that the surface tensions satisfy
αij = αji whenever i 6= j and αii = 0. We denote

SN =
{

(αij) ∈ RN×N : αij = αji and αii = 0
}
.

In order to guarantee the lower semicontinuity of the interface energy, it is required that the
surface tensions be nonnegative and satisfy the triangle inequality [4]

αij ≤ αik + αkj ∀i, j, k. (1.3)
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Figure 1. A partition of a domain into sets (Ωj) that intersect only at their
boundaries. Interface Γij separates Ωi from Ωj .

This condition is also discussed in [15, 16, 19]. We will therefore mainly place ourselves in the
classes of surface tensions

S+
N = {(αij) ∈ SN : αij ≥ 0},

TN =
{

(αij) ∈ S+
N : αij ≤ αik + αkj ∀i, j, k

}
.

For the rigorous mathematical analysis, the lower semicontinuity of (1.2) needs to be formulated in
an appropriate framework, namely the space of sets of finite perimeter, or Caccioppoli sets [6,9,23].
In this setting, the total interface energy writes

1

2

∑
1≤i<j≤N

αijHd−1 (∂MΩi ∩ ∂MΩj ∩ Ω) , (1.4)

where Ω1, . . . ,ΩN are now assumed to be sets of finite perimeter in Ω such that Ω = ∪Ni=1Ωi up
to a Lebesgue negligible set and |Ωi ∩ Ωj | = 0 for all i 6= j, denoting by | · | the d-dimensional
Lebesgue measure. Moreover, ∂MΩi is the measure theoretical (or essential) boundary of Ωi in Ω.
We refer to [6, 9, 23] for details on sets of finite perimeter and geometric measure theory.

Domain functionals of perimetric type are known to be difficult to handle within numerical
optimization procedures. The most direct approach in shape optimization relies on the concept
of shape derivative, often implemented by means of level-sets, see e.g. the seminal paper [3]
and [2] for a multiphase application. Drawbacks of this setting are that it does not allow all
types of topology changes, and that it raises the difficulty, when perimetric terms are involved,
of the numerical evaluation of curvatures. In this paper we follow another path, and propose
an approximation of the energy (1.4) by a Γ-converging parameterized functional. This latter
is constructed upon the solutions of auxiliary elliptic boundary value problems, in the spirit of
[7, 8]. This is in contrast with the celebrated Modica-Mortola Γ-convergence approximation of
the perimeter [26] which, borrowing the terminology of numerical schemes, could be qualified as
explicit. The Modica-Mortola functional, special case of the Ginzburg Landau free energy, has been
used in particular by several authors to address minimal partition problems, see e.g. [10–12, 27],
and specifically [15] where the energy (1.4) is considered. Closely related to our approach is the
parabolic approximation, applied to (1.4) in [19], see also [1, 25] for the two phase case. Nonlocal
functionals, either elliptic or parabolic, lend themselves to optimization procedures which are less
sensitive to the spatial discretization than local, explicit ones. In particular, descent steps are
unrelated to mesh size. As we will see, the elliptic framework has a further advantage: it provides
a variational formulation which enables the implementation of alternating minimization schemes.
The separated subproblems may be linear or quadratic and be solved in one shot without line
search. Finally, different from Γ-convergence based methods, we mention the convex approximation
of minimal partition problems from [17].

On the mathematical side, two main questions are addressed in the present work. The first one
is the Γ-convergence of the approximating functionals, which we establish under two alternative
sets of assumptions. In the first setting we assume that the surface tensions satisfy an algebraic
property, denoted by (αij) ∈ B+

N , implying that the total interface energy can be written as a
conical combination of perimeters of clusters of phases. This allows to use results on the two-phase
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case from [7,8], under generalized forms. In the second setting we only assume that (αij) ∈ TN , but
we suppose that Ω is a Cartesian product of intervals. To prove the Γ− lim inf inequality we follow
a very different approach, to a large extent inspired from [19]. Our most novel contribution deals
with the second issue, namely the construction of the aforementioned variational formulation.
It is based on Legendre-Fenchel duality arguments, therefore it involves convexity assumptions.
We actually propose two complementary formulations in order to cope with all surface tensions
(αij) ∈ TN .

The paper is organized as follows. In section 2 we recall and extend some useful results from [7,8].
In section 3 we introduce our interface energy approximation and analyze its pointwise convergence.
Section 4 deals with the lower semicontinuity and equicoercivity properties. In section 5 we recall
and complement known combinatorial issues concerning the decomposition of the interface energy
as a weighted sum of perimeters, and prove our two Γ-convergence results. Sections 6 and 7 are
dedicated to the variational formulation. The resulting algorithm is presented in section 8, together
with some numerical examples. In section 9 we describe an enrichment of the algorithm in order
to take into account volume constraints. A technical lemma is deferred in appendix.

2. Preliminary: a gradient-free perimeter approximation

To set up the mathematical framework, we assume that the hold-all Ω is an open and bounded
subset of Rd, d ∈ {2, 3}, with Lipschitz boundary, and we first define the functional F : L∞(Ω, {0, 1})→
R ∪ {+∞} by

F (u) =


1

2
|Du|(Ω) if u ∈ BV (Ω, {0, 1}),

+∞ otherwise.

We recall that the total variation of u satisfies |Du|(Ω) = Hd−1(∂MΩ1 ∩ Ω) whenever u ∈
BV (Ω, {0, 1}) and u is the characteristic function of a Lebesgue-measurable subset Ω1 of Ω, de-
noted by u = χΩ1

, see again [6, 9, 23]. Then we say that Ω1 is a set of finite perimeter and that

Hd−1(∂MΩ1 ∩ Ω) is the relative perimeter of Ω1 in Ω. We also define the extended functional F̃
over the convex set L∞(Ω, [0, 1]) by

F̃ (u) =

{
F (u) if u ∈ L∞(Ω, {0, 1}),
+∞ otherwise.

In all what follows we denote

〈u, v〉 =

∫
Ω

u(x) · v(x)dx

for every pair of scalar or vector valued functions u, v having suitable regularity. It is shown in [7,8]

that a variational approximation of F̃ , in the sense of Γ-convergence, is provided by the family of
functionals (F̃ε)ε>0 defined by

F̃ε(u) = inf
υ∈H1(Ω)

{
ε‖∇υ‖2L2(Ω) +

1

ε

(
‖υ‖2L2(Ω) + 〈u, 1− 2υ〉

)}
. (2.1)

We recall below some results proven in [7, 8]. The first one is a straightforward reformulation of
(2.1) with the help of Euler-Lagrange equations.

Proposition 2.1. Let u ∈ L2(Ω) be given and Lεu := vε ∈ H1(Ω) be the (weak) solution of{
−ε2∆vε + vε = u in Ω,

∂nvε = 0 on ∂Ω.
(2.2)

Then we have

F̃ε(u) =
1

ε
〈1− Lεu, u〉.
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It follows straightforwardly from (2.2) that Lε1 = 1. Also, the weak formulation yields for all
u, v ∈ L2(Ω)

〈Lεu, v〉 =

∫
Ω

(
ε2∇(Lεu) · ∇(Lεv) + (Lεu) · (Lεv)

)
dx,

whereby the operator Lε : L2(Ω)→ L2(Ω) is self-adjoint and positive definite. It follows that

F̃ε(u) =
1

ε
〈Lεu, 1− u〉.

Moreover, the weak maximum principle yields 0 ≤ u ≤ 1⇒ 0 ≤ Lεu ≤ 1.
The second result will be useful for existence issues at ε fixed.

Lemma 2.2. The functional F̃ε is continuous on L∞(Ω, [0, 1]) for the weak-∗ topology of L∞(Ω).

The third result establishes the lim inf inequality of the Γ−convergence of the approximating
functionals. From now on, convergence statements for ε → 0 will refer to the convergence of the
corresponding quantity considering any sequence (εk) of positive numbers such that limk→+∞ εk =
0.

Proposition 2.3. Let u ∈ L∞(Ω, [0, 1]) and (uε) be a sequence of functions of L∞(Ω, [0, 1]) such
that uε → u strongly in L1(Ω). Then we have

lim inf
ε→0

F̃ε(u
ε) ≥ F̃ (u).

Proofs of the lim sup inequality of the Γ-convergence may involve more geometrical aspects, with
a possible influence of the space dimension and the shape of Ω. In [8] it was proved for a Lipschitz
domain Ω in any dimension, with the help of a recovery sequence (uε). However, recovery sequences
become problematic in the multiphase case, since independent recovery sequences (uεi )1≤i≤N have

no reason to satisfy
∑N
i=1 u

ε
i = 1, even if this property is verified at the limit. In [7] the lim sup

inequality was proved for the constant recovery sequence uε = u, which is obviously a remedy to
the above limitation, in two dimensions for Ω rectangular. Here we extend this result to Lipschitz
domains in dimension d ∈ {2, 3}.

Proposition 2.4. For all u ∈ BV (Ω, {0, 1}) and all ε > 0 we have

lim sup
ε→0

F̃ε(u) ≤ 1

2
|Du|(Ω).

Proof. We first note that for all u ∈ BV (Ω, {0, 1}) we can write

F̃ε(u) = Fε(u) :=
1

ε
〈u− Lεu, u〉.

Moreover, standard arguments provide the variational formulation

Fε(u) = inf
w∈H1(Ω)

{
ε‖∇w‖2L2(Ω) +

1

ε
‖w − u‖2L2(Ω)

}
.

We will estimate Fε(u) through three steps.
Step 1. In the first step we assume that u ∈ H1(Ω, [0, 1]). We have in particular for all w ∈ C2(Ω)

Fε(u) ≤ ε‖∇w‖2L2(Ω) +
1

ε
‖w − u‖2L2(Ω),

which rewrites

Fε(u) ≤ ε
∫
∂Ω

∂nw(w − u)ds+ ε

∫
Ω

∇w · ∇udx+
1

ε

∫
Ω

(−ε2∆w + w − u)(w − u)dx. (2.3)

Here we have used the Green formula for BV functions [6, 9], which applies in Lipschitz domains.
We recall that u admits a trace in L1

Hd−1(∂Ω), and that this trace can be lifted by a function in

W 1
1 (Ω̃ \ Ω), where Ω̃ is a bounded open smooth set containing Ω, see [6, 20]. Call ũ the obtained

extension of u, further extended by 0 outside Ω̃. Inequality (2.3) extends by density to any function

w ∈ C1(Ω̃) with ∆w ∈ L2(Ω̃). We choose w = wε := Φε ? ũ where Φε is the fundamental solution
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of the operator −ε2∆ + I. By construction, it holds −ε2∆wε + wε = ũ a.e. in Ω̃. Hence, since
ũ ∈W 1,1(Ω̃), wε ∈ C1(Ω̃) [21] and

Fε(u) ≤ ε
∫
∂Ω

∂nwε(wε − u)ds+ ε

∫
Ω

∇wε · ∇udx. (2.4)

The construction from [20] permits to assume the 0 ≤ ũ ≤ 1 a.e. in Ω̃. Using Φε(x) = ε−dΦ1(ε−1x)
we obtain

ε∇wε(x) =

∫
Rd
∇Φ1(z)ũ(x− εz)dz.

Let ν be a unit vector of Rd. We infer

ε∇wε(x) · ν =

∫
Rd
∇Φ1(z) · νũ(x− εz)dz ≤

∫
Rd

max(∇Φ1(z) · ν, 0)dz.

Due to the radial symmetry of Φ1 we can without loss of generality assume that ν is oriented along
the first basis vector of Rd. It follows that

ε∇wε(x) · ν ≤
∫

Rd
max(∂x1Φ1(z), 0)dz.

We subsequently infer

ε∇wε(x) · ν ≤
∫

R
max

(∫
Rd−1

∂x1
Φ1(z1, z̄)dz̄, 0

)
dz1

because, due to radial symmetry, the sign of ∂x1
Φ1(z1, z̄) only depends on the coordinate z1. By

uniqueness, the function

z1 7→
∫

Rd−1

Φ1(z1, z̄)dz̄

is the one dimensional fundamental solution, i.e.,∫
Rd−1

Φ1(z1, z̄)dz̄ =
1

2
e−|z1|.

We arrive at

ε∇wε(x) · ν ≤
∫ +∞

0

1

2
e−z1dz1 =

1

2
,

whereby, since ν is arbitrary,

ε|∇wε(x)| ≤ 1

2
.

Coming back to (2.4) we obtain

Fε(u) ≤ 1

2

∫
∂Ω

|wε − u|ds+
1

2

∫
Ω

|∇u|dx =
1

2

∫
∂Ω

|Φε ? ũ− u|ds+
1

2

∫
Ω

|∇u|dx. (2.5)

Step 2. We now assume that u ∈ BV (Ω, [0, 1]). By density of C∞(Ω) inBV (Ω) for the intermediate
convergence [6, 9], there exists a sequence of functions uk ∈ H1(Ω) such that uk → u in L1(Ω)
and |Duk|(Ω) → |Du|(Ω). The construction by mollifiers allows to assume that 0 ≤ uk ≤ 1.
By Parseval’s equality, as the Fourier transform of Φ1 is FΦ1(ξ) = 1/(1 + |ξ|2), we infer that
Φ1 ∈ L2(Rd). Since obviously uk → u also in L2(Ω), ũk → ũ in L2(Rd) by continuity of the trace
operator for the intermediate convergence, and Fε is continuous on L2(Ω), taking limits in (2.5)
yields

Fε(u) ≤ 1

2

∫
∂Ω

|Φε ? ũ− u|ds+
1

2

∫
Ω

|Du|. (2.6)

Step 3. It remains to estimate the first integral in (2.6), which denoting wε = Φε ? ũ can be
rewritten ∫

∂Ω

|wε − u|ds =

∫
∂Ω

∣∣∣∣∫
Rd

Φ1(y) (ũ(x− εy)− ũ(x)) dy

∣∣∣∣ ds(x).
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Let α > 0. Due to the decay of Φ1 at infinity there exists ρ > 0 such that∫
∂Ω

∣∣∣∣∣
∫

Rd\Bρ(0)

Φ1(y) (ũ(x− εy)− ũ(x)) dy

∣∣∣∣∣ ds(x) ≤ α.

The Cauchy-Schwarz inequality yields∫
∂Ω

|wε − u|ds ≤ Hd−1(∂Ω)1/2‖Φ1‖L2(Rd)

(∫
∂Ω

∫
Bρ(0)

|ũ(x− εy)− ũ(x)| dyds(x)

)1/2

+ α.

By a change of variable this rewrites as∫
∂Ω

|wε − u|ds ≤ Hd−1(∂Ω)1/2‖Φ1‖L2(Rd)

(∫
∂Ω

ε−d
∫
Bερ(0)

|ũ(x− z)− ũ(x)| dzds(x)

)1/2

+ α.

Theorem 3.87 of [6] states the following: for Hd−1- a.e. x ∈ ∂Ω it holds

lim
t→0

t−d
∫

Ω∩Bt(x)

|u(y)− u(x)|dy = 0.

Obviously the same limit holds for the exterior part, which entails

lim
ε→0

ε−dρ−d
∫
Bερ(0)

|ũ(x− z)− ũ(x)| dz = 0

for Hd−1- a.e. x ∈ ∂Ω. Then it follows from Lebesgue’s dominated convergence theorem that

lim
ε→0

∫
∂Ω

ε−d
∫
Bερ(0)

|ũ(x− z)− ũ(x)| dzds(x) = 0.

We infer that, for ε small enough, ∫
∂Ω

|wε − u|ds ≤ 2α.

This completes the proof. �

As straightforward consequences of Propositions 2.3 and 2.4, one obtains the desired Γ-convergence
and pointwise convergence results.

Theorem 2.5. When ε → 0, the functionals F̃ε Γ−converge in L∞(Ω, [0, 1]) endowed with the

strong topology of L1(Ω) to the functional F̃ defined by

F̃ (u) =


1

2
|Du|(Ω) if u ∈ BV (Ω, {0, 1}),

+∞ otherwise.

Theorem 2.6. For all u ∈ L∞(Ω, [0, 1]) it holds

lim
ε→0

F̃ε(u) = F̃ (u). (2.7)

3. Approximation of interface energies: pointwise convergence

Given two subsets Ωi and Ωj of Ω, we look for an approximation of the interface energy
H1(∂MΩi ∩ ∂MΩj ∩ Ω). The starting point is the following result established within the proof
of Proposition 1 of [5].

Lemma 3.1. Let Ωi,Ωj be sets of finite perimeter such that |Ωi ∩ Ωj | = 0. There exists an
Hd−1-negligible set L such that

∂M (Ωi ∪ Ωj) \ L ⊂ ∂MΩi∆∂MΩj ⊂ ∂M (Ωi ∪ Ωj).

We obtain the following extension of Proposition 1 of [5].
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Proposition 3.2. Let (Ωi)i=1,...m be sets of finite perimeter such that |Ωi ∩Ωj | = 0 for any i 6= j.
Then

Hd−1 (∂M (∪mi=1Ωi) ∩ Ω) =

m∑
i=1

Hd−1(∂MΩi ∩ Ω)− 2
∑

1≤i<j≤m

Hd−1(∂MΩi ∩ ∂MΩj ∩ Ω).

Proof. First we derive from Lemma 3.1 that if |Ωi ∩ Ωj | = 0 then

Hd−1(∂M (Ωi∪Ωj)∩Ω) = Hd−1(∂MΩi∩Ω)+Hd−1(∂MΩj ∩Ω)−2Hd−1(∂MΩi∩∂MΩj ∩Ω). (3.1)

This proves the proposition for m = 2. The general case is obtained by induction. For readability
we present the proof for m = 3. Using (3.1) we obtain

Hd−1(∂M (Ω1 ∪ Ω2 ∪ Ω3) ∩ Ω) = Hd−1(∂MΩ1 ∩ Ω) +Hd−1(∂MΩ2 ∩ Ω) +Hd−1(∂MΩ3 ∩ Ω)

−2Hd−1(∂MΩ1 ∩ ∂MΩ2 ∩ Ω)− 2Hd−1(∂M (Ω1 ∪ Ω2) ∩ ∂MΩ3 ∩ Ω).

Using Lemma 3.1 we get

Hd−1(∂M (Ω1 ∪ Ω2) ∩ ∂MΩ3 ∩ Ω) = Hd−1((∂MΩ1 ∩ ∂MΩ3 ∩ Ω)∆(∂MΩ2 ∩ ∂MΩ3 ∩ Ω)).

Now, we will prove that

Hd−1(∂MΩ1 ∩ ∂MΩ2 ∩ ∂MΩ3) = 0. (3.2)

Call Ω
1
2
i the set of points of density 1

2 relatively to Ωi, see e.g. [6]. By definition we have

Ω
1
2
1 ∩ Ω

1
2
2 ∩ Ω

1
2
3 = ∅.

As a consequence, it follows that

0 = Hd−1(Ω
1
2
1 ∩ Ω

1
2
2 ∩ Ω

1
2
3 ) = Hd−1(∂MΩ1 ∩ ∂MΩ2 ∩ ∂MΩ3), (3.3)

since the two sets above coincide up to an Hd−1-negligible set, see [6]. We infer that

Hd−1((∂MΩ1 ∩ ∂MΩ3 ∩ Ω)∆(∂MΩ2 ∩ ∂MΩ3 ∩ Ω))

= Hd−1(∂MΩ1 ∩ ∂MΩ3 ∩ Ω) +Hd−1(∂MΩ2 ∩ ∂MΩ3 ∩ Ω)

and subsequently

Hd−1(∂M (Ω1 ∪ Ω2 ∪ Ω3) ∩ Ω) = Hd−1(∂MΩ1 ∩ Ω) +Hd−1(∂MΩ2 ∩ Ω) +Hd−1(∂MΩ3 ∩ Ω)

− 2Hd−1(∂MΩ1 ∩ ∂MΩ2 ∩ Ω)− 2Hd−1(∂MΩ1 ∩ ∂MΩ3 ∩ Ω)− 2Hd−1(∂MΩ2 ∩ ∂MΩ3 ∩ Ω).

This proves the result for m = 3. �

We have now all the ingredients to prove the pointwise convergence result.

Theorem 3.3. Let Ωi,Ωj be two subsets of finite perimeter of Ω such that |Ωi ∩ Ωj | = 0. If
ui = χΩi and uj = χΩj , then

Hd−1(∂MΩi ∩ ∂MΩj ∩ Ω) = lim
ε→0

2

ε
〈Lεui, uj〉.

Proof. By Proposition 3.2, we have

Hd−1(∂MΩi ∩ ∂MΩj ∩ Ω) =
1

2

[
Hd−1(∂MΩi ∩ Ω) +Hd−1(∂MΩj ∩ Ω)−Hd−1(∂M (Ωi ∪ Ωj) ∩ Ω)

]
.

Using Theorem 2.6 we obtain

Hd−1(∂MΩi ∩ ∂MΩj ∩ Ω) = lim
ε→0

[
F̃ε(ui) + F̃ε(uj)− F̃ε(ui + uj)

]
= lim
ε→0

[
1

ε
〈1− Lεui, ui〉+

1

ε
〈1− Lεuj , uj〉 −

1

ε
〈1− Lε(ui + uj), ui + uj〉

]
= lim
ε→0

2

ε
〈Lεui, uj〉.
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Figure 2. (left) given partition, (right) convergence history of Gε(ui, uj) com-
puted with the FEM (solid lines), the FDM (dashed lines) and the exact values
(horizontal lines).

�

We denote

Gε(ui, uj) =
1

ε
〈Lεui, uj〉. (3.4)

We present an example to illustrate the pointwise convergence of the functional Gε in Figure 2. The
values of the function Gε are computed using two discretization methods, namely the finite element
method (FEM) with Q1 elements and the finite difference method (FDM) with 5 points stencil.
The parameter ε has the dimension of a length. In fact, in view of (2.2), it is a characteristic width
of the diffuse interface represented by the slow variable vε. Thus we start with a characteristic
size of Ω, namely ε0 = εmax = max(m,n) where (m,n) is the size of the grid (its stepsize is fixed
as unitary). Then we divide ε by two between each computation, that is, we choose εi = εmax/2

i.
In order to approximate (2.2) properly, ε must not be taken significantly smaller than the grid
resolution. Thus we stop the algorithm as soon as εi ≤ εmin = 1. We observe that the computed
values of Gε(ui, uj) are always smaller using the FDM than using the FEM. This is due to higher
diffusion of the FEM.

4. Lower semicontinuity and equicoercivity

4.1. Lower semicontinuity. The following important result is found in [4]. An alternative proof
is given in [19] when Ω is a Cartesian product of intervals, in which case it is also a consequence
of Theorem 5.11.

Theorem 4.1. Let (αij) ∈ S+
N . The condition (1.3) is necessary and sufficient for the function

I : (Ω1, . . . ,ΩN ) 7→ 1

2

∑
1≤i<j≤N

αijHd−1(∂MΩi ∩ ∂MΩj ∩ Ω)

to be lower semicontinous for the convergence in measure in the set of N -tuples (Ω1, . . . ,ΩN ) of

Lebesgue-measurable subsets of Ω such that χΩi ∈ BV (Ω) for all i and
∑N
i=1 χΩi = 1.

This property will lead to the existence of minimizers for the exact minimal partition problem in
Theorem 5.2. In addition, lower-semicontinuity is a necessary condition for Γ-convergence [9, 14],
which will be addressed later. Equicoercivity is another important property. Basically, together
with Γ-convergence, it implies that sequences of minimizers of approximating functionals converge
up to a subsequence to a minimizer of the limiting functional, see again, e.g., [9, 14].
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4.2. Equicoercivity. We will rely on the following theorem from [7].

Theorem 4.2. Let uε be a sequence of functions of L∞(Ω, [0, 1]) such that supε>0F̃ε(u
ε) < +∞.

There exists u ∈ L∞(Ω, {0, 1}) such that uε → u strongly in L1(Ω) for a subsequence.

We set

Iε(u1, . . . , uN ) =
∑

1≤i<j≤N

αijGε(ui, uj) =
1

ε

∑
1≤i<j≤N

αij〈Lεui, uj〉.

We now prove the equicoercivity of the functionals Iε.

Theorem 4.3. Assume that (αij) ∈ S+
N with αij ≥ α > 0. Let (uε1, . . . , u

ε
N ) be a sequence of

N -tuples of functions in L∞(Ω, [0, 1]) such that
∑N
i=1 u

ε
i = 1 for all ε and supε>0Iε(uε1, . . . , uεN ) <

+∞. For all i, there exists ui ∈ L∞(Ω, {0, 1}) such that uεi → ui strongly in L1(Ω) for a subse-

quence. Moreover we have
∑N
i=1 ui = 1.

Proof. Using (3.4), we obtain∑
1≤i<j≤N

αijGε(u
ε
i , u

ε
j) =

1

ε

∑
1≤i<j≤N

αij〈Lεuεi , uεj〉

≥ α

ε

∑
1≤i<j≤N

〈Lεuεi , uεj〉 =
α

2ε

∑
1≤i 6=j≤N

〈Lεuεi , uεj〉 =
α

2ε

N∑
i=1

〈Lεuεi ,
N∑
j=1
j 6=i

uεj〉.

Due to
∑
j 6=i u

ε
j = 1− uεi we infer

∑
1≤i<j≤N

αijGε(u
ε
i , u

ε
j) ≥

α

2

N∑
i=1

1

ε
〈Lεuεi , 1− uεi 〉 =

α

2

N∑
i=1

F̃ε(u
ε
i ).

The result follows from Theorem 4.2. �

5. Conical combinations of perimeters and Γ-convergence

In this section we rewrite the interface energy as a linear combination of perimeters of aggregated
phases. If all coefficients can be taken nonnegative (conical combination) then the Γ-convergence
of the approximating functional is straightforward. Therefore special attention is paid to the signs
of the coefficients.

Let S ⊂ {1, . . . , N}. From now on, we will denote ΩS = ∪i∈SΩi and S̄ = {1, . . . , N} \ S.

5.1. Algebraic properties of interface energies.

Lemma 5.1. Let Ω1, . . . ,ΩN be subsets of finite perimeter of Ω such that |Ω \ ∪Ni=1Ωi| = 0 and
|Ωi ∩ Ωj | = 0 for i 6= j. Let Lij = Hd−1(∂MΩi ∩ ∂MΩj ∩ Ω), PS = Hd−1(∂MΩS ∩ Ω). Then

PS =
∑
i∈S
j /∈S

Lij = PS .

Proof. By the definition of the essential boundary, we have

∂MΩi = ∂M
(
Rd \ Ωi

)
= ∂M

(
∪
j 6=i

Ωj ∪
(
Rd \ Ω

))
.

As an elementary property of the essential boundary, we have that ∂M (A ∪ B) ⊂ ∂MA ∪ ∂MB.
Moreover, as Ω is open, we have ∂MΩ ∩ Ω = ∅. This yields

∂M

(
∪
j 6=i

Ωj ∪
(
Rd \ Ω

))
∩ Ω ⊂

(
∪
j 6=i
∂MΩj

)
∩ Ω,
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which implies that

∂MΩi ∩ Ω = ∪
j 6=i

(∂MΩj ∩ ∂MΩi ∩ Ω). (5.1)

For i 6= j, i 6= k, j 6= k, following (3.2), we have

Hd−1((∂MΩi ∩ ∂MΩj ∩ Ω) ∩ (∂MΩi ∩ ∂MΩk ∩ Ω)) = Hd−1(∂MΩi ∩ ∂MΩj ∩ ∂MΩk ∩ Ω) = 0.
(5.2)

We deduce from (5.1),(5.2) that

P{i} =
∑
j 6=i

Lij .

From this fact and Proposition 3.2, we obtain that

PS =
∑
i∈S

P{i} − 2
∑

(i,j)∈S2

i<j

Lij =
∑
i∈S
j /∈S

Lij .

�

We arrive at the announced existence result.

Theorem 5.2. Assume that (αij) ∈ TN with αij ≥ α > 0. Let g1, · · · , gN ∈ L1(Ω). The problem

minimize J (Ω1, . . . ,ΩN ) :=

N∑
i=1

∫
Ωi

gi(x)dx+ I(Ω1, . . . ,ΩN ), (5.3)

in the set of N -tuples (Ω1, . . . ,ΩN ) of Lebesgue-measurable subsets of Ω such that χΩi ∈ BV (Ω)

for all i and
∑N
i=1 χΩi = 1, admits at least a solution.

Proof. We have the inequality

J (Ω1, . . . ,ΩN ) ≥ −
N∑
i=1

‖gi‖L1(Ω) +
α

2

∑
1≤i<j≤N

Hd−1(∂MΩi ∩ ∂MΩj ∩ Ω).

Lemma 5.1 entails

J (Ω1, . . . ,ΩN ) ≥ −
N∑
i=1

‖gi‖L1(Ω) +
α

4

N∑
i=1

Hd−1(∂MΩi ∩ Ω).

Therefore, for a minimizing sequence (Ωk1 , . . . ,Ω
k
N ), the quantity

∑N
i=1Hd−1(∂MΩki ∩Ω) is bounded.

By a standard property of bounded sequences of sets of finite perimeters, see e.g. [6, 9, 23], there
exists a family (Ω1, . . . ,ΩN ) of subsets of finite perimeters of Ω such that Ωki → Ωi in measure
for each i, for a non-relabeled subsequence. Equivalently, χΩki

→ χΩi in L1(Ω), which implies

that
∑N
i=1 χΩi = 1. The lower-semicontinuity of Theorem 4.1 shows that (Ω1, . . . ,ΩN ) is a global

minimizer. �

5.2. Algebraic properties of approximate interface energies. We now prove the approxi-
mate counterpart of Lemma 5.1.

Lemma 5.3. Let Ωi, . . . ,ΩN be subsets of finite perimeter of Ω such that |Ω \ ∪Ni=1Ωi| = 0 and

|Ωi ∩ Ωj | = 0 for i 6= j. Let ui = χΩi , Lεij =
1

ε
〈Lεui, uj〉, PεS =

1

ε
〈1− Lε

∑
i∈S ui,

∑
i∈S ui〉. Then

PεS =
∑
i∈S
j /∈S

Lεij = Pε
S
.
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Proof. We have

PεS =
1

ε

〈
1− Lε

∑
i∈S

ui,
∑
i∈S

ui

〉
=

1

ε

〈
Lε
∑
i∈S

ui, 1−
∑
i∈S

ui

〉
.

Using 1−
∑
i∈S ui =

∑
j /∈S uj we obtain

PεS =
1

ε

〈
Lε
∑
i∈S

ui,
∑
j /∈S

uj

〉
=

1

ε

∑
i∈S
j /∈S

〈Lεui, uj〉 =
∑
i∈S
j /∈S

Lεij .

�

We emphasize that the properties stated in Lemmas 5.1 and 5.3 are formally the same. This
will allow to obtain similar reformulations for the interface energy and its approximation. The
approximate counterpart of Theorem 5.2 is stated below.

Theorem 5.4. Assume that (αij) ∈ S+
N with αij ≥ α > 0. Let g1, · · · , gN ∈ L1(Ω). The problem

minimize Jε(u1, . . . , uN ) :=

N∑
i=1

∫
Ω

uigi(x)dx+ Iε(u1, . . . , uN ), (5.4)

in the set of N -tuples (u1, . . . , uN ) ∈ L∞(Ω, [0, 1])N such that
∑N
i=1 ui = 1 a.e., admits at least a

solution.

Proof. Consider a minimizing sequence (uk1 , . . . , u
k
N ) ∈ L∞(Ω, [0, 1])N such that

∑N
i=1 u

k
i = 1.

Up to a subsequence, this sequence converges weakly-∗ to some (u1, . . . , uN ) ∈ L∞(Ω, [0, 1])N .

Obviously it holds
∑N
i=1 ui = 1. By Lemma 2.2, (u1, . . . , uN ) is a minimizer of (5.4). �

5.3. Matrix representation of algebraic properties. We define the column vector L made
of the values (Lij) in a chosen order. Similarly we define the column vector α of the surface
tensions (αij) and P the vector gathering the values PS , for S ∈ S ⊂ P({1, . . . , N}). The set
S is made as small as possible by exploiting the property of complementation. We adopt the
following construction: when N is odd the elements of S are the subsets of {1, . . . , N} containing
between 1 and (N −1)/2 elements; when N is even the elements of S are the subsets of {1, . . . , N}
containing between 1 and N/2− 1 elements and the subsets containing N/2 elements including 1
(see Table 1 for N ≤ 5). An alternative - bijective - set could be taken as the set of nonempty
subsets of {1, . . . , N − 1}, so that ]S = 2N−1 − 1. In view of Lemma 5.1, we can define a matrix

M = (mij) ∈ R]S×(N2 ) such that

P = ML. (5.5)

Note that mij ∈ {0, 1}.
Let β = (βS)S∈S . Starting from the dot products

β · P = β · ML = Mᵀβ · L,

one infers that ∑
1≤i<j≤N

αijLij =
∑
S∈S

βSPS (5.6)

holds for any L and corresponding P as soon as the columns of coefficients satisfy the linear system

Mᵀβ = α. (5.7)

Due to

Lij =
1

2
(Pi + Pj − Pij), (5.8)
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N=2 {{1}}
N=3 {{1}, {2}, {3}}
N=4 {{1}, {2}, {3}, {4}, {12}, {13}, {14}}
N=5 {{1}, {2}, {3}, {4}, {5}, {12}, {13}, {14}, {15},

{23}, {24}, {25}, {34}, {35}, {45}}
Table 1. The set S of values of S.

it turns out that M has full rank. However there are in general multiple ways to find a β corre-
sponding to a given α. For the purpose of proving a Γ-convergence property, possible nonnegative
solutions of this system will be privileged.

5.4. Existence of conical combination. We define the set

B+
N = {(αij) ∈ SN : ∃(βS) ≥ 0 s.t. α = Mᵀβ} ⊂ S+

N .

We now address the identification of the set B+
N . We consider SN , TN and B+

N as subsets of

the Euclidean space RN(N−1)/2. Note that SN is the full linear space, while TN and B+
N are

polyhedral convex cones. Indeed, TN is defined as intersection of half-spaces of RN(N−1)/2, and
B+
N is the convex cone generated by the row vectors of M. The sets TN and B+

N are sometimes
called the semimetric cone (or metric cone) and the cut cone (or Hamming cone), respectively, see
for example [18]. For the sake of completeness, we recall that a matrix (αij) ∈ SN is called `1-
embeddable if there exists some integer K and N points x1, . . . , xN ∈ RK such that αij = ‖xi−xj‖1
for all 1 ≤ i < j ≤ N . It is known that the set of `1-embeddable matrices is equal to B+

N (see for

example [18], proposition 4.2.2). It is also known that B+
N ⊂ TN for any N ≥ 2 and that B+

N = TN
for N ≤ 4. Nevertheless we present our own proofs of these results, without using the concept of
`1-embeddability.

Theorem 5.5. For any N ≥ 2 it holds B+
N ⊂ TN .

Proof. Using the conic descriptions of B+
N and TN , we only have to check that any row vector

of M is an element of TN . Consider an arbitrary row of M. It corresponds to a set S ∈ S. Call
(mij) the entries of this row vector in the system of indices associated with phases. Recall that
mij ∈ {0, 1}. Consider a nontrivial triangle inequality mij ≤ mik + mkj (with i, j and k distinct
integers) defining TN . In view of Lemma 5.1, if both i and j are in S, then mij = 0 and the
inequality is satisfied. The same holds if both i and j are not in S. If i ∈ S and j /∈ S, then
mij = 1. In this case, either k ∈ S and mkj = 1, or k /∈ S and mik = 1. In both cases the triangle
inequality is satisfied. Obviously the same occurs if i /∈ S and j ∈ S. Thus any row vector of M
belongs to TN , which implies that B+

N ⊂ TN . �

Theorem 5.6. If N = 3, 4 then TN ⊂ B+
N .

Proof. We will use the notations βi for β{i} and βij for β{ij}. We treat separately the two cases.

• Case 1: N = 3. The unique solution of (5.7) is

β1 =
−α23 + α12 + α13

2
, β2 =

−α13 + α12 + α23

2
, β12 =

−α12 + α13 + α23

2
.

If (αij) ∈ T3, then β1, β2, and β12 are nonnegative, which implies that T3 ⊂ B+
3 .

• Case 2: N = 4. Solving (5.7) for N = 4, we choose the particular solution

β12 =
−α12 + α14 + α24

2
, β13 =

−α13 + α14 + α34

2
, β23 =

−α23 + α24 + α34

2
,

β1 =
α12 + α13 − α24 − α34

2
, β2 =

α12 + α23 − α14 − α34

2
,

β3 =
α13 + α23 − α14 − α24

2
, β4 = 0.
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It is immediate to see that if (αij) ∈ T4, then β12, β13, and β23 are nonnegative. Now,
we want to prove that if (αij) ∈ T4, then β1, β2, and β3 are nonnegative too. Let us
define for i = 1, . . . , 4, Σi =

∑
j 6=i αij . Up to reordering the phases, we assume that

Σ4 ≤ Σ3 ≤ Σ2 ≤ Σ1. Then we have
Σ4 ≤ Σ1

Σ4 ≤ Σ2

Σ4 ≤ Σ3

⇒


α14 + α24 + α34 ≤ α12 + α13 + α14

α14 + α24 + α34 ≤ α12 + α23 + α24

α14 + α24 + α34 ≤ α13 + α23 + α34

⇒


α24 + α34 ≤ α12 + α13

α14 + α34 ≤ α12 + α23

α14 + α24 ≤ α13 + α23

⇒


β1 ≥ 0

β2 ≥ 0

β3 ≥ 0

.

�

We now discuss the numerical search for some (βS) ≥ 0, given coefficients (αij). Let us first
recall the definition of a conical combination and Carathéodory’s theorem. Given a finite number
of vectors v1, v2, . . . , vp in a real vector space, a conical combination of these vectors is a vector of
the form

λ1v1 + λ2v2 + . . .+ λpvp,

where the real numbers λ1, · · · , λp are non-negative.

Theorem 5.7 (Carathéodory). In a vector space of dimension n, all conical combination of m
vectors (m > n), can be written as a conical combination of n of these vectors.

By the above theorem and the linear system (5.7), when α = (αij) ∈ B+
N , α can be written

as a conical combination of
(
N
2

)
rows of the matrix M. Calling B the corresponding submatrix,

we have Bβ = α, with β ≥ 0. Denoting k = rank B, then α belongs to the space spanned by k
linearly independent columns of B. By Carathéodory’s theorem again, α is a conical combination
of k columns of B. By completion of these vectors (since Mᵀ has full rank), α writes as a conical

combination of
(
N
2

)
linearly independent columns of Mᵀ. This leads to Algorithm 1.

Data: Given α = (αij) ∈ R(N2 )×1, M ∈ R]S×(N2 ).
1 repeat

2 Loop on the set of square invertible submatrices Λ ∈ R(N2 )×(N2 ) of Mᵀ;

3 Compute β = Λ−1α;

4 until β ≥ 0;

5 Complete β by zeros at the entries corresponding to the columns of Mᵀ that have been
removed.

Algorithm 1: Search for (βS) ≥ 0.

Using Algorithm 1 we are in particular able to find counterexamples to Theorem 5.6 when
N = 5. For instance, it is immediately seen that the matrix

(αij) =


0 2 3 2 1
2 0 1 2 3
3 1 0 3 3
2 2 3 0 1
1 3 3 1 0


satisfies the triangle inequality, but Algorithm 1 terminates without finding any β ≥ 0.

The complexity of Algorithm 1 rapidly grows with N : for example for N = 6, there are
300540195

(
N
2

)
×
(
N
2

)
submatrices of Mᵀ. Hence, it is impossible in practice to use this algo-

rithm for N > 5. For this reason we propose a second algorithm. Let (B+
N )◦ denote the polar cone
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of B+
N . Moreau’s decomposition theorem directly implies that α ∈ B+

N if and only if the projection

of α on (B+
N )◦ is 0. This leads us to the following positive definite quadratic program:

min
ai·y≤0 ∀i

‖α− y‖2, (5.9)

where (ai) are the rows of M. Then α ∈ B+
N if and only if the optimal value of this program is

0. This program is easily tractable up to N = 13. This technique, however, does not provide any
possible β. Note that the algorithms developed in sections 8 and 9 do not require the knowledge
of such β.

5.5. Γ-convergence with nonnegative coefficients. Define the set

ẼN =

{
(u1, . . . , uN ) ∈ L∞(Ω, [0, 1])N :

N∑
i=1

ui = 1 a.e.

}

and the functional Ĩ : ẼN → R such that

Ĩ(u1, . . . , uN ) =


1

2

∑
1≤i<j≤N αijH1(∂MΩi ∩ ∂MΩj ∩ Ω) if ui ∈ BV (Ω, {0, 1}) ∀i, ui = χΩi ,

+∞ otherwise.

Theorem 5.8. If (αij) ∈ B+
N , then the functionals Iε Γ- converge to Ĩ in ẼN endowed with the

strong topology of L1(Ω)N .

Proof. We first prove the lim inf inequality. Let (uεi ) ∈ ẼN be a sequence such that (uεi ) converges
to ui. From (3.4), (5.6) and Lemma 5.3 we have∑

1≤i<j≤N

αijGε(u
ε
i , u

ε
j) =

1

ε

∑
S∈S

βS

〈
1− Lε

∑
i∈S

uεi ,
∑
i∈S

uεi

〉
. (5.10)

This entails

lim inf
ε→0

∑
1≤i<j≤N

αijGε(u
ε
i , u

ε
j) ≥

∑
S∈S

lim inf
ε→0

1

ε
βS

〈
1− Lε

∑
i∈S

uεi ,
∑
i∈S

uεi

〉
.

We infer from Theorem 2.5 and (5.6) that

lim inf
ε→0

∑
1≤i<j≤N

αijGε(u
ε
i , u

ε
j) ≥ Ĩ(u1, . . . , uN ).

Second, due to the pointwise convergence (Theorem 3.3), the lim sup inequality holds for the
constant recovery sequence. �

5.6. Γ-convergence in the general case. Here we generalize Theorem 5.8 to arbitrary surface
tensions when Ω is a Cartesian product of intervals. Our proof is widely inspired from [19],
nevertheless it incorporates some adaptations to our context. In [19] the functional

Eε(u1, · · · , uN ) =
1

ε

∑
1≤i<j≤N

αij

∫
D

Gε ? uiujdx (5.11)

is considered. The convolution kernel Gε is mainly chosen as the Gaussian, and more generally it
is assumed to fulfill some properties which are not all satisfied in our case. The main ingredient
in the proof of [19] is an approximate monotonicity argument. Here we follow the same path. We
start with a rough estimate of derivative, however different from [19] since we exploit here the
underlying boundary value problems instead of the convolution structure. Therefore, we do not
need at this stage any geometric assumption on Ω.
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Lemma 5.9. For all (u1, · · · , uN ) ∈ ẼN we have

d

dε
Iε(u1, · · · , uN ) =

1

2ε2

N∑
i,j=1

αij

∫
Ω

(
−3vεi uj + 2vεi v

ε
j

)
dx, (5.12)

with vεi := Lεui, and
d

dε

(
ε3Iε(u1, · · · , uN )

)
≥ 0.

Proof. For arbitrary N -tuples v = (v1, · · · , vN ) ∈ H1(Ω)N , w = (w1, · · · , wN ) ∈ H1(Ω)N , we
define the Lagrangian

L(ε, v, w) =
1

2ε

N∑
i,j=1

αij

∫
Ω

viujdx+

N∑
i=1

∫
Ω

(ε2∇vi · ∇wi + viwi − uiwi)dx.

Whenever vi = vεi the last integral vanishes, which results in

L(ε, vε, w) = Iε(u1, · · · , uN ) ∀w ∈ H1(Ω)N . (5.13)

Differentiating the Lagrangian with respect to v in the direction v̂ yields

∂L
∂v

(ε, v, w)v̂ =
1

2ε

N∑
i,j=1

αij

∫
Ω

v̂iujdx+

N∑
i=1

∫
Ω

(ε2∇v̂i · ∇wi + v̂iwi)dx,

which can be rearranged as

∂L
∂v

(ε, v, w)v̂ =

N∑
i=1

∫
Ω

(ε2∇wi · ∇v̂i + wiv̂i)dx+
1

2ε

N∑
j=1

αij

∫
Ω

uj v̂idx

 .

This vanishes as soon as, for all i = 1, · · · , N ,

wi = − 1

2ε

N∑
j=1

αijv
ε
j =: wεi . (5.14)

Going back to (5.13) we infer

d

dε
Iε(u1, · · · , uN ) =

∂L
∂ε

(ε, vε, wε).

By definition of the Lagrangian this entails

d

dε
Iε(u1, · · · , uN ) = − 1

2ε2

N∑
i,j=1

αij

∫
Ω

vεi ujdx+

N∑
i=1

∫
Ω

2ε∇vεi · ∇wεi dx.

Using now the expression (5.14) of the adjoint state we arrive at

d

dε
Iε(u1, · · · , uN ) = − 1

2ε2

N∑
i,j=1

αij

∫
Ω

vεi ujdx−
N∑

i,j=1

αij

∫
Ω

∇vεi · ∇vεjdx.

Using that ∫
Ω

(ε2∇vεi · ∇vεj + vεi v
ε
j )dx =

∫
Ω

uiv
ε
jdx

we infer

d

dε
Iε(u1, · · · , uN ) = − 3

2ε2

N∑
i,j=1

αij

∫
Ω

vεi ujdx+
1

ε2

N∑
i,j=1

αij

∫
Ω

vεi v
ε
jdx,

that is (5.12). We recognize that

d

dε
Iε(u1, · · · , uN ) = −3

ε
Iε(u1, · · · , uN ) +

1

ε2

N∑
i,j=1

αij

∫
Ω

vεi v
ε
jdx.
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This implies that

d

dε

(
ε3Iε(u1, · · · , uN )

)
= ε

N∑
i,j=1

αij

∫
Ω

vεi v
ε
jdx ≥ 0.

�

The key estimate is the following.

Lemma 5.10. If (αij) ∈ TN and Ω is a Cartesian product of open intervals, then for all ε ≤ ε0

and (u1, · · · , uN ) ∈ ẼN we have

Iε(u1, · · · , uN ) ≥
(

ε0

ε0 + ε

)3

Iε0(u1, · · · , uN ). (5.15)

Proof. We assume that Ω = (0, L1) × · · · × (0, Ld) and we define the extended domain D =
(0, 2L1)× · · · × (0, 2Ld). We extend the functions u1, · · · , uN to D by successive symmetries, then
to Rd by periodicity, keeping the same notation. This leads to the representation Lεui = Φε ? ui,
with the convolution kernel

Φε(x) =
1

εd
Φ(
x

ε
), (5.16)

Φ(x) =
1

2π
K0(|x|) for d = 2, Φ(x) =

1

4π|x|
e−|x| for d = 3,

involving the modified Bessel function K0 in the two-dimensional case. Indeed, Φε is the funda-
mental solution of the operator −ε2∆ + I, and the construction yields the Neumann boundary
condition on ∂Ω. We obtain

f(ε) := Iε(u1, · · · , uN ) =
1

2ε

N∑
i,j=1

αij

∫
Ω

Φε ? uiujdx =
1

2d+1

1

ε

N∑
i,j=1

αij

∫
D

Φε ? uiujdx.

This formulation is identical to (5.11), except that the kernel is different, in particular it admits
here a singularity at 0. A change of variable using (5.16) and the symmetry of the kernel yields

f(ε) =
1

2d+1

1

ε

N∑
i,j=1

αij

∫
D

∫
Rd

Φ(h)ui(x+ εh)uj(x)dhdx.

This rewrites as

f(ε) =
1

2d+1

1

ε

∫
Rd

Φ(h)Ψ(εh)dh, (5.17)

with

Ψ(h) =

N∑
i,j=1

αij

∫
D

ui(x+ h)uj(x)dx.

For the above function Ψ (note that it does not involve the kernel), it is shown in [19] (proof of
Lemma A.2) that

Ψ(h+ h′) ≤ Ψ(h) + Ψ(h′) ∀h, h′ ∈ Rd. (5.18)

This obviously entails Ψ(nh) ≤ nΨ(h) for all n ∈ N \ {0}, and, in view of (5.17)

f(nε) ≤ f(ε) ∀n ∈ N \ {0}. (5.19)

We conclude similarly to [19], choosing n such that

n− 1 <
ε0

ε
≤ n

and combining (5.19) and Lemma 5.9 to derive

f(ε) ≥ f(nε) = (nε)−3(nε)3f(nε) ≥ (nε)−3ε3
0f(ε0) =

( ε0

nε

)3

f(ε0) >

(
ε0

ε0 + ε

)3

f(ε0).

�
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The exponent 3 appearing in (5.15) is not necessarily the same as the exponent d+ 1 obtained
in [19], but it enables the same proof of Γ-convergence, as shown below.

Theorem 5.11. If (αij) ∈ TN and Ω is a Cartesian product of open intervals, then the functionals

Iε Γ- converge to Ĩ in ẼN endowed with the strong topology of L1(Ω)N .

Proof. As in Theorem 5.8 only the lim inf inequality needs to be checked. We exploit the ap-
proximate monotonicity in the same way as in [19]. Let (uεi ) ∈ ẼN be a sequence such that (uεi )
converges to ui. For any ε0 > 0, owing to Lemma 5.10 and the continuity of Iε0 , we have

lim inf
ε→0

Iε(uε) ≥ Iε0(u).

It suffices then to pass to the limit when ε0 → 0 using the pointwise convergence to achieve the
proof. �

6. Convexity issues

6.1. Conditional negative semidefiniteness.

Definition 6.1. A real symmetric N × N matrix Q = (αij) is said to be conditionally negative

semidefinite if
∑N
i,j=1 αijξiξj ≤ 0 for all ξ = (ξ1, . . . , ξN )ᵀ ∈ RN such that

∑N
i=1 ξi = 0. We denote

Q � 0.

In contrast we use the standard notation Q ≤ 0 if Q is negative semidefinite.
We define the (N − 1)× (N − 1) submatrix of Q = (αij) by

Q̃ = (αij)1≤i,j≤N−1

and the column vector C = (Ci) by

C = (αiN )1≤i≤N−1. (6.1)

We also define the (N − 1)× (N − 1) matrix

Q̄ = Q̃− 1Cᵀ − C1ᵀ =: (ᾱij), (6.2)

where 1 = (1, . . . , 1)ᵀ. Let ξ = (ξ1, . . . , ξN )ᵀ ∈ RN , ξ̃ = (ξi)1≤i≤N−1. If Q ∈ SN and
∑N
i=1 ξi = 0

it is immediately obtained that Qξ · ξ = Q̄ξ̃ · ξ̃. This leads to the following characterization.

Lemma 6.1. Let Q ∈ SN . Then Q � 0 if and only if Q̄ ≤ 0.

6.2. Sufficient condition for conditional negative semidefiniteness. According to [19], a
sufficient condition for a matrix to be conditionally negative semidefinite is its `1-embeddability.
Since Q is `1-embeddable if and only if Q ∈ B+

N , we infer the following statement, for which we
provide a direct proof.

Theorem 6.2. If Q ∈ B+
N , then Q � 0.

Proof. The set of conditionally negative semidefinite matrices is a convex cone, and B+
N is the

polyhedral cone generated by the row vectors of the matrix M. Therefore, as in the proof of
Theorem 5.5, it is enough to prove that any row vector of M defines a conditionally negative
semidefinite matrix Q. Consider an arbitrary row vector of M with entries (mij) in the system of
indices associated with phases, and denote by S ∈ S its row index in the same system. Let ξ ∈ RN
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such that
∑N
i=1 ξi = 0. We have

∑
1≤i<j≤N

mijξiξj =

N−1∑
i=1

ξi

miNξN +

N−1∑
j=i+1

mijξj


=

N−1∑
i=1

ξi

miN (−ξ1 − . . .− ξN−1) +

N−1∑
j=i+1

mijξj


= −

N−1∑
i=1

miNξ
2
i +

∑
1≤i<j≤N−1

(mij −miN −mjN )ξiξj .

Since miN ∈ {0, 1} then miN = m2
iN . Moreover, we claim that

mij −miN −mjN = −2miNmjN .

Indeed, if either i ∈ S, j ∈ S and N /∈ S or i /∈ S, j /∈ S and N ∈ S, then mij −miN −mjN =
−2miNmjN = −2. In the other cases we check that mij −miN −mjN = −2miNmjN = 0. We
derive ∑

1≤i<j≤N

mijξiξj = −
N−1∑
i=1

m2
iNξ

2
i − 2

∑
1≤i<j≤N−1

miNmjNξiξj

= −

(
N−1∑
i=1

miNξi

)2

≤ 0.

�

By Theorem 5.6 we obtain the following useful implication.

Corollary 6.3. If N = 3, 4 and Q ∈ TN , then Q � 0.

The converse of Corollary 6.3 is false. For N = 3 a counterexample is given by the matrix

Q =

 0 1 1
1 0 3
1 3 0

 . (6.3)

We have det(Q̄) = 3 and trace(Q̄) = −8, which implies that Q � 0, but α23 > α12 + α13.
Corollary 6.3 is not true for N ≥ 5. A counterexample is given by

Q =


0 1 2 1 1
1 0 2 2 2
2 2 0 1 1
1 2 1 0 2
1 2 1 2 0

 .

This matrix satisfies the triangle inequality, but the corresponding Q̄ admits a positive eigenvalue.

7. Variational formulations of the approximate interface energy

For algorithmic purposes we give in this section variational formulations of the approximate
interface energy Iε. Our approach relies on Legendre-Fenchel duality. Since this is strongly related
to convexity we distinguish between two cases. In the first case we assume that Q � 0, which covers
a rather wide range of situations as seen in Corollary 6.3. Then the energy is concave with respect
to its natural variables and the Legendre-Fenchel transform directly provides a formulation as a
minimization problem. In the second case we assume that Q � 0, which corresponds to a convex
energy. We follow a parametric duality approach to obtain concavity with respect to well-chosen
perturbation variables. The general case is obtained by additive decomposition of the quadratic
form.
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Other variational formulations, based on the representation of the total interface energy as a
linear combination of perimeters, are given in [28].

7.1. Case Q � 0. We assume that Q is a conditionally negative semidefinite symmetric N × N
matrix. Note that, with the aforementioned additive decomposition in mind, we do not assume
that Q ∈ TN , not even that Q ∈ SN . Therefore we will use the expression of the approximate
energy

Iε(u1, . . . , uN ) =
1

2ε

N∑
i,j=1

αij〈ui, Lεuj〉. (7.1)

We set for all u, v ∈ H1(Ω)

〈u, v〉H1
ε

=

∫
Ω

(
ε2∇u · ∇v + uv

)
dx, (7.2)

and for all u, v ∈ H1(Ω,RN )

[u, v] =

N∑
i=1

〈ui, vi〉H1
ε
. (7.3)

We first state a small technical lemma.

Lemma 7.1. Let ξ ∈ H1(Ω,RN ) such that
∑N
i=1 ξi = 0. Then [Qξ, ξ] ≤ 0.

Proof. We have by definition

[Qξ, ξ] =

N∑
i=1

∫
Ω

(
ε2∇(Qξ)i · ∇ξi + (Qξ)iξi

)
dx,

which yields

[Qξ, ξ] =

∫
Ω

N∑
i,j=1

αij
(
ε2∇ξi · ∇ξj + ξiξj

)
dx

=

∫
Ω

[
d∑
k=1

ε2(Q∂kξ) · ∂kξ +Qξ · ξ

]
dx.

The fact that Q � 0 implies [Qξ, ξ] ≤ 0. �

With the help of the canonical embeddings H1(Ω) ↪→ L2(Ω) ↪→ H1(Ω)′, where H1(Ω)′ is the
continuous dual space of H1(Ω), we consider the extended operator Lε : H1(Ω)′ → H1(Ω), defined
by Lεu = uε such that ∫

Ω

(ε2∇uε.∇ϕ+ uεϕ)dx = 〈u, ϕ〉 ∀ϕ ∈ H1(Ω). (7.4)

Here the notation 〈·, ·〉 is used for the duality pairing between H1(Ω)′ and H1(Ω). Clearly this
defines a linear and continuous operator. If u, v ∈ H1(Ω)′, then choosing ϕ = vε := Lεv in (7.4)
yields

〈u, Lεv〉 =

∫
Ω

(ε2∇uε.∇vε + uεvε)dx. (7.5)

This shows that Lε is self-adjoint. In addition, 〈u, Lεu〉 ≥ 0 and Lε1 = 1, from (7.4).
The operator Iε defined in (7.1) canonically extends to a continuous functional on [H1(Ω)′]N .

A direct calculation yields for all u, v ∈ [H1(Ω)′]N , λ ∈ [0, 1]

Iε(λu+ (1− λ)v)− λIε(u)− (1− λ)Iε(v) =
(λ− 1)λ

2ε

N∑
i,j=1

αij〈uj − vj , Lε(ui − vi)〉.
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Using (7.5), denoting qki = ε∂kLε(ui − vi), ri = Lε(ui − vi), we obtain

Iε(λu+ (1− λ)v)− λIε(u)− (1− λ)Iε(v) =
(λ− 1)λ

2ε

∫
Ω

 N∑
i,j=1

αij(

d∑
k=1

qki q
k
j + rirj)

 dx.

We define the affine space

V =

{
u ∈ [H1(Ω)′]N :

N∑
i=1

ui = 1

}
.

If u, v ∈ V then
∑
i q
k
i =

∑
i ri = 0. Since Q is conditionnally negative semidefinite, we infer that

Iε is concave on V .
Let δV : [H1(Ω)′]N → {0,+∞} be the indicator function of V . We have that δV −Iε is a proper,

closed, convex function on [H1(Ω)′]N . Hence the Fenchel-Moreau biconjugation theorem tells us
that (δV − Iε)∗∗ = δV − Iε. This leads to the following theorem.

Theorem 7.2. Let Q � 0, u ∈ V . We have

Iε(u) =
1

ε
inf

v∈[H1(Ω)]N∑N
i=1 vi=1

N∑
i,j=1

αij

(
〈ui, vj〉 −

ε2

2
〈∇vi,∇vj〉 −

1

2
〈vi, vj〉

)
.

Proof. Let w ∈ H1(Ω)N . The Legendre-Fenchel transform of δV − Iε is defined as

(δV − Iε)∗(w) = sup
u∈[H1(Ω)′]N

{
N∑
i=1

〈ui, wi〉 − δV (u) + Iε(u)

}
,

which can be rewritten as

(δV − Iε)∗(w) = sup
u∈V


N∑
i=1

〈ui, wi〉+
1

2ε

N∑
i,j=1

αij 〈ui, Lεuj〉

 . (7.6)

By definition of Lε and the fact that it is an isomorphism from H1(Ω)′ into H1(Ω), we obtain with
the change of variables ûi = Lεui

(δV − Iε)∗(w) = sup
û∈[H1(Ω)]N∑N

i=1 ûi=1

{ N∑
i=1

∫
Ω

(
ε2∇ûi · ∇wi + ûiwi

)
dx

+
1

2ε

N∑
i,j=1

αij

∫
Ω

(
ε2∇ûi · ∇ûj + ûiûj

)
dx

}
.

With the notation (7.2) this reads

(δV − Iε)∗(w) = sup
û∈[H1(Ω)]N∑N

i=1 ûi=1


N∑
i=1

〈wi, ûi〉H1
ε

+
1

2ε

N∑
i,j=1

αij〈ûi, ûj〉H1
ε

 ,

which we rewrite as

(δV − Iε)∗(w) = sup
ψ∈[H1(Ω)]N∑N

i=1 ψi=1


N∑
i=1

〈wi, ψi〉H1
ε

+
1

2ε

N∑
j=1

〈(Qψ)j , ψj〉H1
ε

 .

From (7.3), we obtain

(δV − Iε)∗(w) = sup
ψ∈[H1(Ω)]N∑N

i=1 ψi=1

{
[w,ψ] +

1

2ε
[Qψ,ψ]

}
. (7.7)
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Observe that, for any λ ∈ H1(Ω),

(δV − Iε)∗(w + λ1) =

∫
Ω

λdx+ (δV − Iε)∗(w). (7.8)

Call

H =

{
(ξ1, ..., ξN ) ∈ RN :

N∑
i=1

ξi = 0

}
,

and PH the orthogonal projection of RN onto H, i.e.,

PHξ = ξ − 1

N
(1 · ξ)1 = ξ −

(
1

N

N∑
i=1

ξi

)
1.

Let R = PH ◦Q ◦ PH and denote

w̄(x) = PH

(
(w +

1

ε
Q

1

N
1)(x)

)
.

We distinguish between two cases.

• Case 1: We assume here that

w̄(x) ∈ ImR for a.e. x ∈ Ω.

Hence there exists v ∈ [H1(Ω)]N such that w̄(x) = Rv(x) for a.e. x ∈ Ω. We can write

w +
1

ε
Q

1

N
1 = w̄ + µ1 = Rv + µ1 = PH(Qv̄) + µ1 = Qv̄ + λ1,

with v̄ = PHv, µ, λ ∈ H1(Ω). Setting

v̂ = v̄ − 1

εN
1 = PHv −

1

εN
1,

we arrive at w = Qv̂ + λ1. Plugging this into (7.7)-(7.8) yields

(δV − Iε)∗(w) =

∫
Ω

λdx− ε

2
[Qv̂, v̂] +

1

2ε
sup

ψ∈[H1(Ω)]N∑N
i=1 ψi=1

[Q(ψ + εv̂), ψ + εv̂] . (7.9)

Observing that

ε

N∑
i=1

v̂i = −1 (7.10)

and using Lemma 7.1, we conclude that

(δV − Iε)∗(w) =

∫
Ω

λdx− ε

2
[Qv̂, v̂]. (7.11)

Note that conversely, if w = Qv̂ + λ1 with v̂ satisfying (7.10), then

w̄(x) = PH

(
w(x) +

1

ε
Q

1

N
1

)
= PH ◦Q

(
v̂(x) +

1

εN
1)

)
∈ ImR. (7.12)

• Case 2: There exists W ⊂ Ω, |W| > 0 such that

∀x ∈ W, w̄(x) /∈ ImR = (kerR)⊥,

since R is self-adjoint. Let p(x) be the orthogonal projection of w̄(x) onto kerR. By
assumption we have p(x) 6= 0 ∀x ∈ W. Defining

ψt =
1

N
1+ tPHp, (7.13)

we will show that

[w,ψt] +
1

2ε
[Qψt, ψt]→ +∞, (7.14)
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when t→ +∞. To see this we proceed by

[w,ψt] +
1

2ε
[Qψt, ψt] = [w +

1

2εN
Q1,

1

N
1] + t[w +

1

εN
Q1, PHp] +

t2

2ε
[QPHp, PHp].

Observing that QPHp(x) ∈ H⊥, since p(x) ∈ kerR, and PHp(x) ∈ H, we infer that
QPHp(x) ·PHp(x) = 0. In addition, writing QPHp(x) = λ(x)1, we have ∂k(λ1) · ∂kPHp =
∂kλ∂k(1 · PHp) = 0. This entails

[QPHp, PHp] = 0.

Now, noting that ∂k(PHp) = PH(∂kp), we have

[w +
1

εN
Q1, PHp] = [PH(w +

1

εN
Q1), p] = [w̄, p] = [p, p] > 0.

Hence, when t→ +∞, it holds

[w,ψt] +
1

2ε
[Qψt, ψt]→ +∞. (7.15)

We infer from (7.7) that

(δV − Iε)∗(w) = +∞. (7.16)

The biconjugate of δV − Iε is defined by

(δV − Iε)∗∗(u) = sup
w∈[H1(Ω)]N

N∑
i=1

〈ui, wi〉 − (δV − Iε)∗(w).

In view of (7.16) it is equal to

(δV − Iε)∗∗(u) = sup
w∈[H1(Ω)]N

w̄∈ImR

N∑
i=1

〈ui, wi〉 − (δV − Iε)∗(w).

We now assume that u ∈ V , which permits to write

Iε(u) = −(δV − Iε)(u) = −(δV − Iε)∗∗(u).

By (7.11) and (7.12), we infer

Iε(u) = inf
v̂∈[H1(Ω)]N , λ∈H1(Ω)

ε
∑N
i=1 v̂i=−1

{
−

N∑
i=1

〈ui, (Qv̂)i + λ〉+

∫
Ω

λdx− ε

2
[Qv̂, v̂]

}
(7.17)

= inf
v̂∈[H1(Ω)]N

ε
∑N
i=1 v̂i=−1

{
−

N∑
i=1

〈ui, (Qv̂)i〉 −
ε

2
[Qv̂, v̂]

}
. (7.18)

A change of variables yields

Iε(u) =
1

ε
inf

v∈[H1(Ω)]N∑N
i=1 vi=1

{
N∑
i=1

〈ui, (Qv)i〉 −
1

2
[Qv, v]

}
, (7.19)

which completes the proof. �

Remark 7.1. For N = 2 the variational formulation amounts to (2.1) and has been used within
alternating minimization schemes in [8] in a context of structural optimization. The multiphase
case with uniform surface tensions has been considered in [7].
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7.2. Case Q � 0.

Theorem 7.3. Given (u1, . . . , uN ) ∈ L∞(Ω, [0, 1])N with
∑
i ui = 1 consider the approximate

interface energy (7.1) with Q = (αij) symmetric conditionally positive semi-definite. We have the
expression

Iε(u1, ..., uN ) =
1

2ε
inf

τ∈[Hdiv
0 (Ω)]N∑N
i=1 τi=0

N∑
i,j=1

αij

∫
Ω

τi · τjdx+

N∑
i,j=1

αij

∫
Ω

(ui − εdiv τi)(uj − εdiv τj)dx.

(7.20)

Proof. We compute a dual formulation with respect to an auxiliary perturbation variable, in order
to place ourselves in an appropriate convexity framework. Therefore u is considered as fixed, as
well as ε, and we set

I = 2Iε(u1, ..., uN ) =
1

ε
〈Qu, v〉 =

1

2ε
(〈Qu, v〉+ 〈Qv, u〉) =

1

2ε

N∑
i,j=1

αij

∫
Ω

(uivj + ujvi)dx

with vi = Lεui. We define for all τ = (τi, . . . , τN ) ∈ L2(Ω,Rd)N

F (τ) =
N∑

i,j=1

αij

∫
Ω

(
ε2(∇vτi − τi) · (∇vτj − τj) + vτi v

τ
j − uivτj − ujvτi

)
dx

where vτi ∈ H1(Ω) is the solution of∫
Ω

(
ε2(∇vτi − τi) · ∇ϕ+ vτi ϕ

)
dx =

∫
Ω

uiϕdx ∀ϕ ∈ H1(Ω).

We have immediately F (0) = −εI.
There exists Λ ∈ L(L2(Ω,Rd), H1(Ω)) such that vτi = v0

i + Λτi. Elementary differential calculus
leads to

D2F (τ)(τ̂ , τ̂) = 2

N∑
i,j=1

αij

∫
Ω

(
ε2(∇Λτ̂i − τ̂i) · (∇Λτ̂j − τ̂j) + (Λτ̂i)(Λτ̂j)

)
dx.

Hence F is convex over the Hilbert space

H =

{
τ ∈ L2(Ω,Rd)N :

N∑
i=1

τi = 0

}
.

Let us compute the Legendre-Fenchel transform of F over H, given for any τ∗ ∈ H by

F ∗(τ∗) = sup
τ∈H

N∑
i=1

∫
Ω

τ∗i · τi − F (τ).

This rewrites as

F ∗(τ∗) = sup
τ∈H

v∈[H1(Ω)]N

N∑
i=1

∫
Ω

τ∗i · τi −
N∑

i,j=1

αij

∫
Ω

(
ε2(∇vi − τi) · (∇vj − τj) + vivj − uivj − ujvi

)
dx

(7.21)
subject to∫

Ω

(
ε2(∇vi − τi) · ∇ϕ+ viϕ

)
dx =

∫
Ω

uiϕdx ∀ϕ ∈ H1(Ω), ∀i = 1, ..., N. (7.22)

Assume that F ∗(τ∗) < +∞. Since the functional to maximize is made of quadratic and linear
terms, the supremum is attained. Call (τ, v) a maximizer. There exists Lagrange multipliers
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(w1, · · · , wN ) ∈ H1(Ω)N such that

N∑
i=1

∫
Ω

τ∗i · τ̂i

−
N∑

i,j=1

αij

∫
Ω

(
ε2(∇vi − τi) · (∇v̂j − τ̂j) + ε2(∇v̂i − τ̂i) · (∇vj − τj) + viv̂j + v̂ivj − uiv̂j − uj v̂i

)
dx

+

N∑
i=1

∫
Ω

(
ε2(∇v̂i − τ̂i) · ∇wi + v̂iwi

)
dx = 0 ∀(τ̂ , v̂) ∈ H ×H1(Ω)N . (7.23)

Choosing τ̂ = 0 yields

−
N∑

i,j=1

αij

∫
Ω

(
ε2(∇vi − τi) · ∇v̂j + ε2∇v̂i · (∇vj − τj) + viv̂j + v̂ivj − uiv̂j − uj v̂i

)
dx

+

N∑
i=1

∫
Ω

(
ε2∇v̂i · ∇wi + v̂iwi

)
dx = 0 ∀v̂ ∈ H1(Ω)N .

Due to the constraint (7.22) the first line vanishes. This entails wi = 0. Choosing now v̂ = 0 yields

N∑
i=1

∫
Ω

τ∗i · τ̂i −
N∑

i,j=1

αij

∫
Ω

(
ε2(∇vi − τi) · (−τ̂j) + ε2(−τ̂i) · (∇vj − τj)

)
dx = 0 ∀τ̂ ∈ H.

It follows that τ∗i + 2ε2
N∑
j=1

αij(∇vj − τj)


1≤i≤N

∈ H⊥,

i.e., there exists λ∗ ∈ L2(Ω,Rd) such that

τ∗i + 2ε2
N∑
j=1

αij(∇vj − τj) = λ∗ ∀i = 1, ..., N. (7.24)

Setting

η∗j = −2ε2(∇vj − τj) ∈ Hdiv
0 (Ω), (7.25)

by (7.22), we write (7.24) as τ∗ = Qη∗ + λ∗. Since τ ∈ H and
∑N
i=1 ui = 1, the constraint (7.22)

implies
∑N
i=1 vi = 1, whereby ∇v ∈ H and η∗ ∈ H. From (7.22) and (7.24) we obtain{

−div (τ∗i − λ∗) = 2
∑N
j=1 αij(vj − uj) in Ω

(τ∗i − λ∗) · n = 0 on ∂Ω.
(7.26)

Choosing v̂ = v, τ̂ = τ in (7.23) and recalling that w = 0, we obtain

N∑
i=1

∫
Ω

τ∗i · τi −
N∑

i,j=1

αij

∫
Ω

(
2ε2(∇vi − τi) · (∇vj − τj) + 2vivj − uivj − ujvi

)
dx = 0.

Plugging this in (7.21) entails

F ∗(τ∗) =

N∑
i,j=1

αij

∫
Ω

(
ε2(∇vi − τi) · (∇vj − τj) + vivj

)
dx.

This rewrites as

F ∗(τ∗) =

N∑
i=1

∫
Ω

ε2(∇vi − τi) ·
N∑
j=1

αij(∇vj − τj)

 dx+

N∑
i=1

∫
Ω

vi

 N∑
j=1

αijvj

 dx.
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Taking into account (7.24) and (7.26) we arrive at

F ∗(τ∗) = −1

2

N∑
i=1

∫
Ω

(∇vi − τi) · (τ∗i − λ∗)dx+

N∑
i=1

∫
Ω

vi

 N∑
j=1

αijuj −
1

2
div (τ∗i − λ∗)

 dx.

This can be rearranged as

F ∗(τ∗) = −1

2

N∑
i=1

∫
Ω

(∇vi−τi) ·(τ∗i −λ∗)dx+

N∑
j=1

∫
Ω

uj

(
N∑
i=1

αijvi

)
dx− 1

2

N∑
i=1

∫
Ω

vi div (τ∗i −λ∗)dx.

Using again (7.26) we obtain

F ∗(τ∗) = −1

2

N∑
i=1

∫
Ω

(∇vi−τi)·(τ∗i −λ∗)dx+

N∑
j=1

∫
Ω

uj

(
N∑
i=1

αijui −
1

2
div (τ∗j − λ∗)

)
dx−1

2

N∑
i=1

∫
Ω

vi div (τ∗i −λ∗)dx.

With (7.24) and the notation (7.25) this leads to

F ∗(τ∗) = −1

2

N∑
i,j=1

αij

∫
Ω

(∇vi − τi) · η∗j dx+

N∑
i,j=1

αij

∫
Ω

uiujdx

− 1

2

N∑
i,j=1

αij

∫
Ω

uj div η∗i dx−
1

2

N∑
i,j=1

αij

∫
Ω

vi div η∗j dx.

Using (7.24) and (7.26) yields

F ∗(τ∗) =
1

4ε2

N∑
j=1

∫
Ω

(τ∗j − λ∗) · η∗j dx+

N∑
i,j=1

αij

∫
Ω

uiujdx−
1

2

N∑
i,j=1

αij

∫
Ω

uj div η∗i dx

− 1

2

N∑
j=1

∫
Ω

(
N∑
i=1

αijui −
1

2
div (τ∗j − λ∗)

)
div η∗j dx.

Expressing τ∗ in terms of η∗ leads to

F ∗(τ∗) =
1

4ε2

N∑
i,j=1

αij

∫
Ω

η∗i · η∗j dx+

N∑
i,j=1

αij

∫
Ω

uiujdx−
1

2

N∑
i,j=1

αij

∫
Ω

uj div η∗i dx

− 1

2

N∑
i,j=1

αij

∫
Ω

ui div η∗j dx+
1

4

N∑
i,j=1

αij

∫
Ω

div η∗i div η∗j dx.

Rearranging entails

F ∗(τ∗) =
1

4ε2

N∑
i,j=1

αij

∫
Ω

η∗i · η∗j dx+

N∑
i,j=1

αij

∫
Ω

(ui−
1

2
div η∗i )(uj −

1

2
div η∗j )dx =: Φ(η∗). (7.27)

To recapitulate, we have shown so far that

F ∗(τ∗) < +∞⇒ ∃(λ∗, η∗) ∈ L2(Ω,Rd)× (H ∩Hdiv
0 (Ω)N ) s.t.

{
τ∗ = Qη∗ + λ∗

F ∗(τ∗) = Φ(η∗).

Suppose now that F ∗(τ∗) < +∞ and τ∗ = Qη + λ ∈ H for some (λ, η) ∈ L2(Ω,Rd) × (H ∩
Hdiv

0 (Ω)N ). Writing F ∗(τ∗) = Φ(η∗) with τ∗ = Qη∗+λ∗ and observing, from inspection of (7.27),
that Q(η − η∗) = λ∗ − λ⇒ Φ(η) = Φ(η∗), we infer that F (Qη + λ) = Φ(η).

We are now in position to obtain the dual formulation of F , given for any τ ∈ H by

F (τ) = F ∗∗(τ) = sup
τ∗∈H

N∑
i=1

∫
Ω

τi · τ∗i dx− F ∗(τ∗).



26 VARIATIONAL APPROXIMATION OF INTERFACE ENERGIES AND APPLICATIONS

We infer from the preceding findings that

F (τ) = sup
η∗ ∈ H ∩ [Hdiv

0 (Ω)]N

λ∗ ∈ L2(Ω,Rd)
Qη∗ + λ∗ ∈ H

N∑
i=1

∫
Ω

τi · (
N∑
j=1

αijη
∗
j + λ∗)dx− 1

4ε2

N∑
i,j=1

αij

∫
Ω

η∗i · η∗j dx

−
N∑

i,j=1

αij

∫
Ω

(ui −
1

2
div η∗i )(uj −

1

2
div η∗j )dx.

Since τ ∈ H this simplifies as

F (τ) = sup
η∗∈H∩[Hdiv

0 (Ω)]N

N∑
i,j=1

αij

∫
Ω

τi · η∗j dx−
1

4ε2

N∑
i,j=1

αij

∫
Ω

η∗i · η∗j dx

−
N∑

i,j=1

αij

∫
Ω

(ui −
1

2
div η∗i )(uj −

1

2
div η∗j )dx.

Recalling that I = − 1
εF (0) we arrive at

I =
1

ε
inf

η∗∈H∩[Hdiv
0 (Ω)]N

1

4ε2

N∑
i,j=1

αij

∫
Ω

η∗i · η∗j dx+

N∑
i,j=1

αij

∫
Ω

(ui −
1

2
div η∗i )(uj −

1

2
div η∗j )dx.

A change of variable yields (7.20). �

7.3. General case. Consider an arbitrary Q ∈ TN . We see it as the matrix representation of a
quadratic form q on RN . Then q can be decomposed as q = q−+q+, where q− and q+ are negative
semi-definite and positive semi-definite, respectively, on the linear subspace {ξ ∈ RN :

∑
i ξi = 0}.

This leads to the decomposition Q = Q− + Q+, where Q− and Q+ are conditionally negative
semi-definite and conditionally positive semi-definite, respectively. The linearity of the interface
energy with respect to Q allows to combine the two variational formulations. Let us recall that
when N ≤ 4 we have Q � 0, hence it is natural to assume that Q+ = 0.

8. Applications

8.1. Algorithm. We consider the approximate minimal partition problem

min
(u1,...,uN )∈ẼN


N∑
i=1

〈gi, ui〉+
1

ε

∑
1≤i<j≤N

αij〈Lεui, uj〉

 . (8.1)

Consider the decomposition αij = α−ij + α+
ij , with (α−ij) � 0 and (α+

ij) � 0. Plugging the adequate

variational formulation of each component of the approximate interface energy, (8.1) rewrites as

min
(u1,...,uN )∈ẼN

inf
(v1,··· ,vN )∈H1(Ω)N∑N

i=1 vi=1

inf
(τ1,··· ,τN )∈[Hdiv

0 (Ω)]N∑N
i=1 τi=0

{ N∑
i=1

〈gi, ui〉

+
1

ε

N∑
i,j=1

α−ij

(
〈ui, vj〉 −

ε2

2
〈∇vi,∇vj〉 −

1

2
〈vi, vj〉

)

+
1

2ε

N∑
i,j=1

α+
ij (〈τi, τj〉+ 〈ui − εdiv τi, uj − εdiv τj〉)

}
.

We propose an alternating minimization algorithm with respect to the three N -tuples of variables
(u1, . . . , uN ), (v1, . . . , vN ) and (τ1, . . . τN ).



VARIATIONAL APPROXIMATION OF INTERFACE ENERGIES AND APPLICATIONS 27

Figure 3. Partition with 4 phases: data Ei (left), obtained result for case (a)
(middle), obtained result for case (b) (right)

(1) Minimizing with respect to (v1, . . . , vN ) simply amounts to setting vj = Lεuj for each j.
(2) From inspection of the Euler-Lagrange equations, minimizing with respect to (τ1, . . . , τN )

is achieved with τj = −ε∇vj .
(3) Minimizing with respect to (u1, . . . , uN ) is a quadratic problem with linear constraints,

spatially uncoupled. If Q+ = 0, then the problem is linear. It is straightforwardly solved
by

ui(x) =

{
1 if i = k(x),

0 otherwise,

where

ζi = gi +
1

ε

∑
j

αijvj , ζk(x) = min {ζ1(x), . . . , ζN (x)} .

If Q+ 6= 0, then the problem becomes more complicated. In fact, it can be simplified
by performing the decomposition Q = Q+ + Q− in such a way that Q+ satisfies special
properties. For instance, one can always choose Q+ of the form Q+ = γIN , with γ > 0
large enough. Then the minimization with respect to u amounts to performing at each
point an orthogonal projection onto the simplex of RN . Note that in this case u is no
longer binary-valued during the iterations, and that large values of γ tend to enhance this
property.

The main computational tasks within each iteration is the numerical solution of Lε. In the
subsequent experiments we use the standard finite difference scheme with 5 points stencil combined
with the Fast Fourier Transform, since the discrete system writes in terms of convolutions. In the
examples under consideration the matrix Q is always chosen conditionally negative semi-definite,
hence we choose Q− = Q, Q+ = 0.

8.2. Examples. Let E0, E1, . . . , EN be a given partition of Ω. We define gi, i = 1, . . . , N , by

gi =
∑

0≤j≤N
j 6=i

χEj = 1− χEi .

This means that, in the set Ei , i ≥ 1, the label i is favored, whereas in the set E0 there is no
preference, or, said otherwise, no information on which label to choose.

Figure 3 shows an example with four phases with two different sets of surface tensions. The
domain is discretized by 512 × 512 pixels. We use εmax = 512 and εmin = 1, with the mesh size
fixed to 1. For the initialization each ui uniformly equals 1/4. In case (a) we fix αij = 1 for all
i, j. We obtain a classical picture with two Fermat points. In case (b) we prescribe αij = 1 if Ei
and Ej share a common boundary and αij = 2 otherwise.
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8.3. Comments. The present algorithm shares some common features with the generalized ver-
sion of the threshold dynamics presented in [19], see [24] for the seminal paper. Let us briefly point
out some similarities and differences. We recall that the approximate interface energy used in [19]
is based on convolutions with the heat kernel, whereas we consider instead of this latter its implicit
semi-discrete counterpart. In addition, rather than convolutions, we work with the related bound-
ary value problem which we believe more versatile regarding the geometry of the computational
domain, even if both formulations are equivalent in the cases addressed here as examples. More
fundamentally, our elliptic framework appears to be well-suited to develop optimization strategies,
while in contrast the parabolic framework is exploited in [19] to simulate time evolutions.

9. Volume constraints

In this section we extend the previous algorithm to the minimal partition problem with con-

straints on the measure of each phase. Given m1, . . . ,mN ∈ R+ such that
∑N
i=1mi = |Ω|, we

define the set

EN =

{
(u1, . . . , uN ) ∈ ẼN :

∫
Ω

uidx = mi ∀i
}
.

The approximate minimal partition problem with volume constraints and gi = 0 is

min
(u1,...,uN )∈EN

1

ε

∑
1≤i<j≤N

αij〈Lεui, uj〉

 . (9.1)

Theorem 7.2 yields the formulation

min∑N
i=1 ui=1

ui≥0,
∫
Ω
uidx=mi

inf
vi∈H1(Ω)∑N
i=1 vi=1

1

ε

∑
ij

αij

(
〈ui, vj〉 −

ε2

2
〈∇vi,∇vj〉 −

1

2
〈vi, vj〉

)
.

We implement the same type of alternating minimization algorithm as previously. The only dif-
ference is that the minimization with respect to u is no longer explicit due to spatial coupling. It
requires solving a linear programming subproblem. Standard routines may be used, however we
present a specific algorithm to take advantage of the fact that the number of volume constraints is
usually very small in comparison with the number of pixels. In order to highlight this aspect we
will analyze the algorithm in the continuous spatial setting.

9.1. Linear programming subproblem. Let ζ = (ζ1, . . . , ζN ) ∈ L2(Ω)N andm = (m1, . . . ,mN ) ∈
RN+ be given such that

∑N
i=1mi = |Ω|. For u = (u1, . . . , uN ) ∈ L2(Ω)N consider the primal criterion

Λ(u) =

N∑
i=1

∫
Ω

ζiuidx.

Our goal is to solve the minimization problem

min∑N
i=1 ui=1

ui≥0,
∫
Ω
uidx=mi

Λ(u). (9.2)

In the discrete case, this kind of problem is sometimes called a semi-assignment problem, see
for example [22]. As already seen, removing the volume constraints makes this problem trivial.
Therefore we limit the duality treatment to those constraints. For λ = (λ1, . . . , λN ) ∈ RN we
define the Lagrangian

L(u, λ) = Λ(u) +

N∑
i=1

λi

(∫
Ω

uidx−mi

)
.
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By standard duality results (see e.g. [13] Theorem 3.9 and Theorem 3.4, note that Robinson’s
qualification holds for such linear constraints), if u is a minimizer of (9.2) then there exists λ ∈ RN

such that
L(u, λ) = min∑N

i=1 vi=1

vi≥0

L(v, λ). (9.3)

Moreover, such λ are maximizers over RN of the dual criterion

D(λ) = inf∑N
i=1 vi=1

vi≥0

L(v, λ).

Let us compute this dual criterion. A rearrangement yields

L(v, λ) =

N∑
i=1

∫
Ω

(ζi + λi)vidx−
N∑
i=1

λimi. (9.4)

It follows immediately that

D(λ) =

∫
Ω

min{(ζi + λi)
N
i=1} −

N∑
i=1

λimi.

Note that D(λ+ c1) = D(λ) for any c ∈ R, therefore the dual problem can be set over the quotient
space RN/R. We suggest alternating maximizations with respect to each multiplier. Since the
function D is not smooth some care must be taken as regards to the relevance of such a procedure.
It is supported by the following equivalence.

Proposition 9.1. The N -tuple (λ1, . . . , λN ) is a maximizer of D if and only if each λi is a

maximizer of the partial function λ̃i 7→ D(λ1, . . . , λi−1, λ̃i, λi+1, . . . , λN ). This is also equivalent to
satisfying for each i = 1, . . . , N

|{ζi + λi < min
j 6=i

(ζj + λj)}| ≤ mi ≤ |{ζi + λi ≤ min
j 6=i

(ζj + λj)}|. (9.5)

Proof. Using Lemma 11.1 we obtain on the one hand the superdifferential of D as

∂∗D(λ1, . . . , λN ) =

{
(s1 −m1, . . . , sN −mN ) ∈ RN :

|{ζi + λi < min
j 6=i

(ζj + λj)}| ≤ si ≤ |{ζi + λi ≤ min
j 6=i

(ζj + λj)}| ∀i,
N∑
i=1

si = |Ω|
}
.

Since
∑
imi = |Ω| it follows

∂∗D(λ1, . . . , λN ) =

{
(τ1, . . . , τN ) ∈ RN :

|{ζi + λi < min
j 6=i

(ζj + λj)}| ≤ mi + τi ≤ |{ζi + λi ≤ min
j 6=i

(ζj + λj)}| ∀i,
N∑
i=1

τi = 0

}
.

We derive the optimality condition

0 ∈ ∂∗D(λ1, . . . , λN )⇐⇒ |{ζi+λi < min
j 6=i

(ζj+λj)}| ≤ mi ≤ |{ζi+λi ≤ min
j 6=i

(ζj+λj)}| ∀i = 1, . . . , N.

On the other hand the partial maximization with respect to λi provides in a similar (simpler) way
the optimality condition

0 ∈ ∂∗i D(λ1, . . . , λN )⇐⇒ |{ζi + λi < min
j 6=i

(ζj + λj)}| ≤ mi ≤ |{ζi + λi ≤ min
j 6=i

(ζj + λj)}|.

This means that

0 ∈ ∂∗D(λ1, . . . , λN )⇐⇒ 0 ∈ ∂∗i D(λ1, . . . , λN ) ∀i = 1, . . . , N,

completing the proof. �
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Figure 4. Partition with 5 phases and volume constraint: initialization (top left),
obtained result in case (a) (top middle), obtained result in case (b) (top right),
obtained result in case (c) (bottom left), obtained result in case (d) (bottom right).

Each iteration of the alternating procedure consists in solving (9.5), i.e., finding λi such that

|{λi < min
j 6=i

(ζj + λj)− ζi}| ≤ mi ≤ |{λi ≤ min
j 6=i

(ζj + λj)− ζi}|.

In the discrete framework this only requires sorting the values of minj 6=i(ζj +λj)− ζi and selecting
the mi-th largest value. Once the multipliers (λ1, . . . , λN ) have been fixed, the primal solution
(u1, . . . , uN ) is searched among the minimizers of (9.3). In view of (9.4) this minimization is
straightforward, as in the unconstrained case. Note that in case of multiple solutions one that
satisfies the volume constraints has to be chosen, however this situation is unlikely in practice due
to numerical errors.

9.2. Examples. In figure 4 we consider 5 phases: 4 interior phases and the remaining set, called
exterior phase (in white). We use the indices I to represent an arbitrary interior phase and E for
the exterior phase. The computational grid is made of 512× 512 pixels and we choose εmax = 64,
εmin = 1. The volume constraints are given by the initialization. In case (a) we fix αII = αIE = 1.
In case (b) we set αII = 1 and αIE = 0.5. In case (c) we choose αII = 1 and αIE = 2. Case (d) is
the same as case (c) except that εmax = 512.

We now illustrate Herring’s law at triple junction points between phases i, j, k, namely

sin θi
αjk

=
sin θj
αik

=
sin θk
αij

,

where θi, θj , θk are the opening angles of phases i, j, k, respectively. To do so we consider a four
phase problem similar to the previous one, see figure 5. In case (a), the surface tensions are taken
uniformly equal to 1, leading to the classical Fermat point. In the other cases we only modify a
surface tension between two interior phases, chosen equal to

√
2 in case (b) and 0.01 in case (c).

This gives rise to a right angle and a nearly flat angle, respectively.
In figure 6, we again consider 5 phases, but one of them is not subject to optimization. We

use the indices L to represent the 3 first phases (liquid), S to represent the fixed phase (solid, in
black), and V for the remaining set (vapor, in white). The grid contains 600× 400 pixels and we
use εmax = 16, εmin = 1. The surface tensions are chosen as αLL = αLS = αLV = αSV = 1 in case
(a), αLL = αLS = 1, αLV = αSV = 2 in case (b), αLL = 0.5, αLS = 1, αLV = αSV = 2 in case (c).
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Figure 5. Illustration of Herring’s law. Initialisation (top left), obtained result
in case (a) (top right), obtained result in case (b) (bottom left), obtained result in
case (c) (bottom right). The theoretical angles at the junction point are displayed
in dashed line.

Finally we illustrate the lack of lower semicontinuity when the triangle inequality fails to hold
in figure 7. We consider 3 phases and surface tensions given by (6.3). Phase 1 is the background
medium, phases 2 and 3 are initially two half-disks. We incorporate forcing terms by functions gi
as in (8.1), while maintaining the initial volumes. These functions are chosen as gi = −10−2uini

i ,
in order to enforce ui to stay close to its initial configuration uini

i , since for characteristic functions
satisfying the constraint −2〈ui, uini

i 〉 is equal to ‖ui − uini
i ‖2L2(Ω) up to an additive constant. The

band of phase 1 appearing between phases 2 and 3, which can be theoretically arbitrarily thin,
shows the lack of lower semicontinuity of the optimization problem, resulting in the absence of
solution.

10. Conclusion

In this paper we have introduced and analyzed a Γ-convergence approximation of a class of
interface energies for minimal partition problems. We have derived variational formulations of
this functional that permit the implementation of alternating minimization algorithms. Our main
numerical application has been the computation of equilibrium shapes of incompressible phases
with surface tensions. The extension of this approach to other types of interface energies and to
dynamical problems could be subjects of future research.

11. Appendix

Lemma 11.1. Let f1, . . . , fN ∈ L1(Ω) and define the function Φ : RN → R by

Φ(t1, . . . , tN ) =

∫
Ω

max
1≤i≤N

(fi(x) + ti)dx.
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Figure 6. Partition with 5 phases and volume constraint: initialization (top left),
obtained result in case (a) (top right), obtained result in case (b) (bottom left),
obtained result in case (c) (bottom right).

Figure 7. Illustration of the lack of lower semicontinuity when the triangle in-
equality does not hold. Initialisation (left) and obtained result (right).

Then Φ is convex and its subdifferential is

∂Φ(t1, . . . , tN ) =

{
(s1, . . . , sN ) ∈ RN :

|{fi + ti > max
j 6=i

(fj + tj)}| ≤ si ≤ |{fi + ti ≥ max
j 6=i

(fj + tj)}| ∀i,
N∑
i=1

si = |Ω|
}
.

Proof. It is obvious that Φ is convex, since the integrand is itself convex as supremum of convex
functions. Let us compute the subdifferential at 0. Then the subdifferential at (t̄1, . . . , t̄N ) will be
inferred with the help of the change of functions f̄i = fi + t̄i. We must show that

∂Φ(0, . . . , 0) =

{
(s1, . . . , sN ) ∈ RN : |{fi > max

j 6=i
fj}| ≤ si ≤ |{fi ≥ max

j 6=i
fj}| ∀i,

N∑
i=1

si = |Ω|

}
.



VARIATIONAL APPROXIMATION OF INTERFACE ENERGIES AND APPLICATIONS 33

Assume that (s1, . . . , sN ) ∈ ∂Φ(0, . . . , 0). By definition we have

Φ(t1, . . . , tN )− Φ(0, . . . , 0) ≥
N∑
i=1

siti ∀(t1, . . . , tN ) ∈ RN ,

that is, ∫
Ω

max
1≤i≤N

(fi(x) + ti)dx−
∫

Ω

max
1≤i≤N

fi(x)dx ≥
N∑
i=1

siti ∀(t1, . . . , tN ) ∈ RN .

Choosing ti = 1 for all i, then ti = −1 for all i, yields already

N∑
i=1

si =

∫
Ω

dx = |Ω|.

Fix k and take tk = −t, t > 0, ti = 0 if i 6= k. We have

skt ≥
∫

Ω

(
max

1≤i≤N
fi(x)− max

1≤i≤N
(fi(x) + ti)

)
dx.

The integrand vanishes whenever fk(x) ≤ maxi 6=k fi(x). Thus

skt ≥
∫
{fk>maxi6=k fi}

(
fk(x)− max

1≤i≤N
(fi(x) + ti)

)
dx.

This can be rewritten as

skt ≥
∫
{fk>maxi6=k fi}

min
1≤i≤N

(fk(x)− fi(x)− ti)dx,

that is,

skt ≥
∫
{fk>maxi6=k fi}

min

(
t,min
i 6=k

(fk(x)− fi(x))

)
dx.

Adding and substracting t yields

skt ≥ t|{fk > max
i6=k

fi}|+
∫
{fk>maxi6=k fi}

min

(
0,min

i 6=k
(fk(x)− fi(x))− t

)
dx.

Dividing by t entails

sk ≥ |{fk > max
i 6=k

fi}|+
∫
{fk>maxi6=k fi}

min

(
0,

mini 6=k(fk(x)− fi(x))

t
− 1

)
dx.

Letting t→ 0+ yields by monotone convergence

sk ≥ |{fk > max
i 6=k

fi}|.

Now fix k and take tk = t, t > 0, ti = 0 if i 6= k. We have

skt ≤
∫

Ω

(
max

1≤i≤N
(fi(x) + ti)− max

1≤i≤N
fi(x)

)
dx.

This entails

skt ≤ t|{fk ≥ max
i 6=k

fi}|+
∫
{fk<maxi6=k fi}

(
max

1≤i≤N
(fi(x) + ti)− max

1≤i≤N
fi(x)

)
dx.

Rearranging yields

skt ≤ t|{fk ≥ max
i 6=k

fi}|+
∫
{fk<maxi6=k fi}

max(0, fk(x) + t−max
i 6=k

fi(x))dx.

Hence

sk ≤ |{fk ≥ max
i 6=k

fi}|+
∫
{fk<maxi6=k fi}

max(0,
fk(x)−maxi 6=k fi(x)

t
+ 1)dx.
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Letting t→ 0+ yields by monotone convergence

sk ≤ |{fk ≥ max
i 6=k

fi}|.

Assume now that

|{fi > max
j 6=i

fj}| ≤ si ≤ |{fi ≥ max
j 6=i

fj}| ∀i,
N∑
i=1

si = |Ω|.

Thus, there exists a partition Ω = ∪Ni=1Ai such that

{fi > max
j 6=i

fj} ⊂ Ai ⊂ {fi ≥ max
j 6=i

fj} ∀i, |Ai| = si ∀i.

Indeed, such a construction is immediate for N = 2, then one proceeds by induction setting
g = max1≤i≤N−1 fi. In each Ak it holds

max
1≤i≤N

(fi(x) + ti)− max
1≤i≤N

fi(x) ≥ tk.

It follows∫
Ω

max
1≤i≤N

(fi(x) + ti)dx−
∫

Ω

max
1≤i≤N

fi(x)dx ≥
N∑
k=1

∫
Ak

tkdx =

N∑
k=1

tk|Ak| =
N∑
k=1

tksk.

This completes the proof. �
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[10] B. Bogosel. Optimisation de formes et problèmes spectraux. PhD thesis, Grenoble Alpes, 2015.
[11] B. Bogosel, D. Bucur, and I. Fragala. Phase field approach to optimal packing problems and related cheeger

clusters. Applied Math Optim, To appear.
[12] B. Bogosel and E. Oudet. Partitions of minimal length on manifolds. Exp. Math., 26(4):496–508, 2017.
[13] J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer Series in Operations

Research. Springer-Verlag, New York, 2000.
[14] A. Braides. A handbook of γ-convergence. Handbook of Differential Equations: stationary partial differential

equations, 3:101–213, 2006.

[15] E. Bretin and S. Masnou. A new phase field model for inhomogeneous minimal partitions, and applications to
droplets dynamics. Interfaces Free Bound., 19(2):141–182, 2017.

[16] D. G. Caraballo. The triangle inequalities and lower semi-continuity of surface energy of partitions. Proc. Roy.

Soc. Edinburgh Sect. A, 139(3):449–457, 2009.
[17] A. Chambolle, D. Cremers, and T. Pock. A convex approach to minimal partitions. SIAM J. Imaging Sci.,

5(4):1113–1158, 2012.

[18] M. M. Deza and M. Laurent. Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics.
Springer-Verlag, Berlin, 1997.



VARIATIONAL APPROXIMATION OF INTERFACE ENERGIES AND APPLICATIONS 35

[19] S. Esedoglu and F. Otto. Threshold dynamics for networks with arbitrary surface tensions. Comm. Pure Appl.
Math., 68(5):808–864, 2015.

[20] E. Gagliardo. Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili.

Rend. Sem. Mat. Univ. Padova, 27:284–305, 1957.
[21] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics.

Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[22] J. Kennington and Z. Wang. A shortest augmenting path algorithm for the semi-assignment problem. Oper.
Res., 40(1):178–187, 1992.

[23] F. Maggi. Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2012. An introduction to geometric measure

theory.

[24] B. Merriman, J. Bence, and S. Osher. Diffusion generated motion by mean curvature. In J. Taylor, editor,
Proceedings of the Computational Crystal Growers, pages 73–83. American Mathematical Society, Providence,

R.I., 1992.

[25] M. Miranda, Jr., D. Pallara, F. Paronetto, and M. Preunkert. Short-time heat flow and functions of bounded
variation in RN . Ann. Fac. Sci. Toulouse Math. (6), 16(1):125–145, 2007.

[26] L. Modica and S. Mortola. Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B (5), 14(1):285–299, 1977.

[27] E. Oudet. Approximation of partitions of least perimeter by Γ-convergence: around Kelvin’s conjecture. Exp.
Math., 20(3):260–270, 2011.

[28] M. Zabiba. Variational approximation of interface energies and applications. PhD thesis, University of Avignon,

2017.


