H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak et al., A continuous-wave raman silicon laser, Nature, vol.433, p.725, 2005.

E. A. Kittlaus, H. Shin, and P. T. Rakich, Large brillouin amplification in silicon, Nat. Photonics, vol.10, p.463, 2016.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson et al., Broad-band optical parametric gain on a silicon photonic chip, Nature, vol.441, p.960, 2006.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics, Nat. photonics, vol.7, p.597, 2013.

K. Narayanan and S. F. Preble, Optical nonlinearities in hydrogenated-amorphous silicon waveguides, Opt. Express, vol.18, pp.8998-9005, 2010.

S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen et al., Mid-infrared optical nonlinearities of chalcogenide glasses in ge-sb-se ternary system, Opt. express, vol.23, pp.1300-1307, 2015.

C. Thu, P. Ehrenreich, K. K. Wong, E. Zimmermann, J. Dorman et al., Role of the Metal-Oxide Work Function on Photocurrent Generation in Hybrid Solar Cells, Sci. Reports, vol.8, p.3559, 2018.

C. López-gándara, F. M. Ramos, and A. Cirera, YSZ-Based Oxygen Sensors and the Use of Nanomaterials: A Review from Classical Models to Current Trends, J. Sensors, 2009.

R. Ramesh and D. G. Schlom, Whither Oxide Electronics?, MRS Bull, vol.33, pp.1006-1014, 2008.

M. Bazzan and C. Sada, Optical waveguides in lithium niobate: Recent developments and applications, Appl. Phys. Rev, vol.2, p.40603, 2015.

L. Mechin, YBCO superconducting microbolometers fabricated by silicon micromachining, 1996.
URL : https://hal.archives-ouvertes.fr/tel-00138157

X. D. Wu, R. E. Muenchausen, N. S. Nogar, A. Pique, R. Edwards et al., Epitaxial yttria-stabilized zirconia on (1102) sapphire for YBa2Cu3O7-? thin films, Appl. Phys. Lett, vol.58, pp.304-306, 1991.

L. F. Chen, P. F. Chen, L. Li, S. L. Li, X. N. Jing et al., YBa 2 Cu 3 O 7 thin films grown on sapphire with epitaxial yttriaâ??stabilized zirconia buffer layers, Appl. Phys. Lett, vol.61, pp.2412-2413, 1992.

C. Jorel, H. Colder, A. Galdi, and L. Méchin, Epitaxial PZT thin films on YSZ-buffered Si (001) substrates for piezoelectric MEMS or NEMS applications, IOP Conf. Series: Mater. Sci. Eng, vol.41, p.12012, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00813970

T. Falcade, C. De-fraga, and . Malfatti, Fuel Cell: A Review and a New Approach About YSZ Solid Oxide Electrolyte Deposition Direct on LSM Porous Substrate by Spray Pyrolysis, Electrochemical Cells-New Advances in Fundamental Researches and Applications, 2012.

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition, Acta Materialia, vol.59, pp.2330-2340, 2011.

X. Song, Z. Liu, M. Kong, C. Lin, L. Huang et al., Thermal stability of yttria-stabilized zirconia (YSZ) and YSZ Al 2 O 3 coatings, Ceram. Int, vol.43, pp.14321-14325, 2017.

M. F. Manna, D. E. Grandstaff, G. C. Ulmer, and E. P. Vicenzi, The Chemical Durability of Yttria-Stabilized ZrO2 pH and O2 Geothermal Sensors, Proc. Tenth Int. Symp. on Water Rock Interact, pp.295-299, 2001.

S. K. Pandey, O. P. Thakur, R. Raman, A. Goyal, and A. Gupta, Structural and optical properties of YSZ thin films grown by PLD technique, Appl. Surf. Sci, vol.257, pp.6833-6836, 2011.

R. C. Buchanan and S. Pope, Optical and Electrical Properties of Yttria Stabilized Zirconia (YSZ) Crystals, J. The Electrochem. Soc, vol.130, pp.962-966, 1983.

N. Nicoloso, A. Löbert, and B. Leibold, Optical absorption studies of tetragonal and cubic thin-film yttria-stabilized zirconia, Sensors Actuators B: Chem, vol.8, pp.253-256, 1992.

G. Marcaud, S. Matzen, C. Alonso-ramos, X. L. Roux, M. Berciano et al., High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications, Phys. Rev. Mater, vol.2, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01801073

K. K. Gopalan, D. Rodrigo, B. Paulillo, K. K. Soni, and V. Pruneri, Ultrathin Yttria-Stabilized Zirconia as a Flexible and Stable Substrate for Infrared Nano-Optics, Adv. Opt. Mater, vol.7, p.966, 2019.

S. Serna and N. Dubreuil, Bi-directional top-hat D-Scan: single beam accurate characterization of nonlinear waveguides, Opt. Lett, vol.42, pp.3072-3075, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01575832

M. A. Parkes, K. Refson, M. Avezac, G. J. Offer, N. P. Brandon et al., Chemical Descriptors of Yttria-Stabilized Zirconia at Low Defect Concentration: An ab Initio Study, J. Phys. Chem. A, vol.119, pp.6412-6420, 2015.

M. A. Parkes, D. A. Tompsett, M. Avezac, G. J. Offer, N. P. Brandon et al., The atomistic structure of yttria stabilised zirconia at 6.7 mol%: an ab initio study, Phys. Chem. Chem. Phys, vol.18, pp.31277-31285, 2016.

D. M. Bishop, Molecular vibrational and rotational motion in static and dynamic electric fields, Rev. Mod. Phys, vol.62, pp.343-374, 1990.

P. Karamanis, R. Marchal, P. Carbonnière, and C. Pouchan, Doping-enhanced hyperpolarizabilities of silicon clusters: A global ab initio and density functional theory study of Si 10 (Li, Na, K) n (n = 1, 2) clusters, The J. Chem. Phys, vol.135, p.44511, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01598698

P. Karamanis, C. Pouchan, C. A. Weatherford, and G. L. Gutsev, Evolution of Properties in Prolate (GaAs) n Clusters, J. Phys. Chem. C, vol.115, pp.97-107, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01598695

P. Karamanis, The Importance of the DFT method on the computation of the second hyperpolarizability of semiconductor clusters of increasing size: A critical analysis on prolate aluminum phosphide clusters, Int. J. Quantum Chem, vol.112, pp.2115-2125, 2012.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys, vol.110, pp.6158-6170, 1999.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys, vol.98, pp.5648-5652, 1993.

C. Ricca, A. Ringuedé, M. Cassir, C. Adamo, and F. Labat, Revealing the properties of the cubic ZrO 2 (111) surface by periodic DFT calculations: reducibility and stabilization through doping with aliovalent Y 2 O 3, RSC Adv, vol.5, p.13941, 2015.

R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-wilson, B. Civalleri et al., Quantum-mechanical condensed matter simulations with crystal, WIREs Comput. Mol. Sci, vol.8, p.1360, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01722766

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

E. V. Stefanovich, A. L. Shluger, and C. R. Catlow, Theoretical study of the stabilization of cubic-phase ZrO 2 by impurities, Phys. Rev. B, vol.49, pp.11560-11571, 1994.

R. A. Ploc, The lattice parameter of cubic ZrO 2 formed on zirconium, J. Nucl. Mat, vol.99, pp.124-128, 1981.

E. Elizalde, J. M. Sanz, F. Yubero, and L. Galã?n, Determination of optical constants of ZrO2 and Zr by electron energy-loss spectroscopy, Surf. Interface Analysis, vol.16, pp.213-214, 1990.

D. W. Mccomb, Bonding and electronic structure in zirconia pseudopolymorphs investigated by electron energy-loss spectroscopy, Phys. Rev. B, vol.54, pp.7094-7102, 1996.

D. L. Wood and K. Nassau, Refractive index of cubic zirconia stabilized with yttria, Appl. Opt, vol.21, pp.2978-2981, 1982.

B. Orr and J. Ward, Perturbation theory of the non-linear optical polarization of an isolated system, Mol. Phys, vol.20, pp.513-526, 1971.

S. J. Van-gisbergen, P. R. Schipper, O. V. Gritsenko, E. J. Baerends, J. G. Snijders et al., Electric Field Dependence of the Exchange-Correlation Potential in Molecular Chains, Phys. Rev. Lett, vol.83, pp.694-697, 1999.

L. Zibordi-besse, Y. Seminovski, I. Rosalino, D. Guedes-sobrinho, J. L. Da et al., Physical and Chemical Properties of Unsupported (MO 2 ) n Clusters for M=Ti, Zr, or Ce and n=1-15: A Density Functional Theory Study Combined with the Tree-Growth Scheme and Euclidean Similarity Distance Algorithm, The J. Phys. Chem. C, vol.122, pp.27702-27712, 2018.

J. Zaanen, G. A. Sawatzky, and J. W. Allen, Band gaps and electronic structure of transition-metal compounds, Phys. Rev. Lett, vol.55, pp.418-421, 1985.

S. Serna, J. Oden, M. Hanna, C. Caer, X. L. Roux et al., Enhanced nonlinear interaction in a microcavity under coherent excitation, Opt. Express, vol.23, pp.29964-29977, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01306785

A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. Smith, Dispersion of the nonlinear refractive index in sapphire, Opt. letters, vol.29, pp.602-604, 2004.

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides, Opt. Express, vol.16, p.12987, 2008.

S. C. Pinault and M. Potasek, Frequency broadening by self-phase modulation in optical fibers, JOSA B, vol.2, pp.1318-1319, 1985.

B. Champagne, E. A. Perpète, J. André, and B. Kirtman, Analysis of the vibrational static and dynamic second hyperpolarizabilities of polyacetylene chains, Synth. Met, vol.85, pp.1047-1050, 1997.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-wilson et al., , 2017.

G. Hurst, M. Dupuis, and E. Clementi, Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: Applications to polyenes C 4 H 6 to C 22 H 24, J. Chem. Phys, vol.89, p.385, 1988.

M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, The calculation of static polarizabilities of periodic compounds. The implementation in the CRYSTAL code for 1D, 2D and 3D systems, J. Comp. Chem, vol.29, pp.1450-1459, 2008.

M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi, Coupled perturbed Hartree-Fock for periodic systems: The role of symmetry and related computational aspects, J. Chem. Phys, vol.128, p.14110, 2008.

R. Orlando, V. Lacivita, R. Bast, and K. Ruud, Calculation of the first static hyperpolarizability tensor of threedimensional periodic compounds with a local basis set: A comparison of LDA, PBE, PBE0, B3LYP, and HF results, J. Chem. Phys, vol.132, p.244106, 2010.

M. Ferrero, M. Rérat, B. Kirtman, and R. Dovesi, Calculation of first and second static hyperpolarizabilities of oneto three-dimensional periodic compounds. Implementation in the CRYSTAL code, J. Chem. Phys, vol.129, p.244110, 2008.

L. Valenzano, F. J. Torres, K. Doll, F. Pascale, C. M. Zicovich-wilson et al., Ab Initio Study of the Vibrational Spectrum and Related Properties of Crystalline Compounds; the Case of CaCO3 Calcite, Zeitschrift für Physikalische Chemie, vol.220, pp.893-912, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01891677

T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem, vol.33, pp.580-592, 2018.

K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi et al., Basis set exchange:â?? a community database for computational sciences, J. Chem. Inf. Model, vol.47, pp.1045-1052, 2007.