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Abstract

In constructing the reversal variable, we tend to ignore the strong

momentum in individual stock returns. A simple subtract the average of

past 12-month return from previous month return allows us to alleviate

the momentum return. Consequently, the reversals are significantly

stronger. We also find that states of market have significant impact on

reversal profit indirectly through momentum effect. In down market,

when momentum effect appears weak, the profit of reversal strategy

is significantly higher than in up market, when momentum effect is

strong.
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JEL classification: G12.

1Email adress: anh duy.NGUYEN@uca.fr ;CLeRMa - Université d’Auvergne-11
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1 Introduction

Financial literature proposes two investment strategies based on past returns.

Specifically, one is based on firm’s return of twelve months prior to the current

month, called momentum strategy (Jegadeesh and Titman (1993)). The other

is based on firm’s previous month return, called short-term reversal strategy

(Jegadeesh (1990)). For the momentum, it becomes conventional to construct

it by taking past stock return from t-13 (or t-12) to t-2 as the criteria to

classify the stock. The most recent month (t-1) is skipped in order to purge

the negative effect of return reversal. Now, considering a simple situation

that a stock, which is associated with both high prior month (t-1) and high

past 12-month return (t-13 to t-2), how do we do? knowing that this stock

will belong to the short side of reversal strategy, while belong to the long side

of momentum strategy. If we implement Jegadeesh (1990) reversal strategy

(put this stock in the short side), the profit of short-term reversal profit is

likely negatively affected by this stock, who exhibits a strong momentum.

In this paper, we begin by asking a simple question: does it exist a simple

way to alleviate the momentum in individual stock return to construct the

short-term reversal variable or forming the short-term reversal strategy.

In fact, it could be analytically shown by using the framework of Lo

and MacKinlay (1990) that Jegadeesh (1990) reversal strategy could be

decomposed into two components. The first is the difference between realized

of previous month return and the average of stock return from t-13 to t-2
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(hereafer R1−12). The second, which involves buying the stocks that have

outperformed the market portfolio and selling the stocks that have under-

performed the market portfolio, is equivalent to momentum strategy. This

decomposition not only implies that the profit of Jegadeesh (1990) reversal

strategy is negative affected by stock return momentum, but also suggests that

using R1−12 instead of previous month return (hereafter R1) to implement

the reversal strategy would give higher profit since this variable allows us to

isolate the short-term reversal from the momentum in stock return.

Consistent with this decomposition, we find that reversal strategy based on

R1−12 earns significantly higher risk-adjusted return than those of conventional

reversal strategy, which is based on previous raw return. On average, the

short-term reversal strategy based on R1−12 provides 25 bps improvement

from that of standard reversal strategy. This improvement is unaffected by

adjustment for common risk factors. The evidences obtained from the direct

comparison based on Fama and MacBeth (1973) cross-sectional regressions

corroborate with these findings.

Prior literature reports that states of market affect significantly the

profitability of momentum strategy (e.g. Grundy and Martin (2001) and

Cooper et al. (2004)). Recently, Hsu and Chen (2019) show that the variation

of momentum profit across market states exits under style investing 2. The

above decomposition also suggests that the time-varying effect of momentum

2In particular, they show that that the relation between momentum return and return
comovement driven by style investing is significantly stronger in ’optimist’ market state.
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profit could have impact on the profit of reversal strategy. In other words, the

states of market would have indirect impact on the profit of reversal strategy

via the influence it has on the momentum. Consistent with this assertion, we

find that Jegadeesh (1990) reversal profit generated following ‘up’ market is

about one third of the one realized following ‘down’ market. Similarly, we

find that the profit of R1−12 based reversal strategy following increase market

is significantly lower than following decline market. Importantly, we observe

that, following market decline, when momentum effect is weak or does not

exist, the profits of these strategies are not significantly different. However,

following market increase, when momentum effect is strong, R1−12 based

reversal strategy’s return is considerably higher than conventional reversal

strategy’s one. The finding suggests that R1−12 helps to reduce the strong

momentum effect of stock price during ’up’ market.

We check the robustness of our findings by conducting the out-of-sample

tests. In particular, we replicate these above results for European stock

market. In overall, the results obtained in E.U market corroborate with U.S

evidences.

We deem that our study contributes to the existing literature in the

following ways. First of all, we show that Jegadeesh (1990) reversal effect is

negatively affected by the momentum in stock return and propose a simple

way to alleviate this problem. The idea is simple but certainly has important

implication for the theoretical and practical purpose, given the number of

studies, which employ the previous month return to control the reversal effect,
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and significantly improved reversal profit it offers. Secondly, our results also

have important implications for several explanations that have been proposed

in the literature to explain the short-term reversal. We show that market

states also have a significant impact on short-term reversal profits, but in the

inverse direction to what occurs for momentum profit. In particular, we find

that the reversal profits are significantly higher in ‘down’ market than in ‘up’

market. The time-varying reversal profit across market states could be either

due to the negative effect to the time-varying momentum profit and liquidity

provision, which should be more pressing in the ‘down’ market. Our results

are therefore complementary to the findings in Da et al. (2014), Avramov

et al. (2006) and Hameed et al. (2010) and suggest that momentum could

have significant impact on the strength of reversal. These evidences provide

a different perspective of reversal profits, which could contribute further to

the understanding of short-term reversal - an important phenomenon in stock

price that is difficult to reconcile with risk-based model of expected return.

The rest of the paper is organized as follows. In Section 2, we decompose

the conventional reversal strategy to the strategy based on R1−12 and the

momentum strategy. In Section 3, we describe the data using in this paper.

Section 4 presents our main findings on the performances of alternative

reversal strategies. We verify the consistency of results by examining EU

equity markets. In this section, we also investigate the influence of market

states on reversal profits. We provide our concluding remarks in Section 5.
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2 Analytical analysis

We follow Lo and MacKinlay (1990) and consider Jegadeesh (1990) reversal

strategy that assigns a portfolio weight to stock ‘i’ at time ‘t’ of

Wi,t = − 1

N
(Ri,t−1)−RM,t−1 (1)

Where RM,t−1 =
∑N

i=1 Ri,t−1 and N is the number of securities in the

market.

The weight of Jegadeesh (1990)’s strategy implies buying the previous

month loser securities and selling short the previous month winner securities.

The profit for this strategy at time ’t’, Pt, is given by:

Pt =
N∑
i=1

Wi,tRi,t or Pt = − 1

N

N∑
i=1

(Ri,t−1 −RM,t−1)Ri,t (2)

To show the effect of momentum, we add and subtract E12i,t−1, which is

measured as 1/12
∑13

k=2 Rt−k, to equation (2)

Pt = − 1

N

N∑
i=1

(Ri,t−1 − E12i,t−1 −RM,t−1 + E12i,t−1)Ri,t (3)

or we can rewrite equation (3) as:

Pt = − 1

N

N∑
i=1

(Ri,t−1 − E12i,t−1)Ri,t −
1

N

N∑
i=1

(E12i,t−1 −RM,t−1)Ri,t(4)
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The decomposition from equation (4) tells that profit of conventional

reversal strategy Pt is likely negatively affected by the momentum return (the

second component) and using the difference between previous month return

and its 12-month average return (R1−12) to create the reversal strategy would

probably provide higher profit than the one generated from strategy based on

previous return.3. In Graph 1, we plot the returns on reversal and momentum

strategies. As could be seen in the Graph, the correlation between them is

negative. In other words, reversal return tend to be higher in the period of

momentum crash.

3 Data

The data includes NYSE, AMEX, and NASDAQ common stock monthly

returns from July 1963 to December 2016. We exclude stocks belonging

to 5 percent smallest market capitalization to alleviate the potential micro-

structure problem associated to these small stocks4.The market return is the

value-weighted index of all listed firms in CRSP and the risk-free rate is the

one-month Treasury bill rate, both obtained from Ken French’s data library5.

3The analysis is similar to that of Hameed and Mian (2014). However, they employ
this for motivation of the intra-industry reversal. The main idea is that neutralizing the
momentum effect will enhance the short-term reversal profit.

4Note that none of paper’s result is affected by whether we exclude these stocks.
5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary. html
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4 Results

4.1 Reversal strategies

We begin our analysis by computing the principle variable, R1−12, as suggested

by equation 4, which, is measured as the difference of previous return and the

average of 12-month return from t-2 to t-13. However, we change a little bit

to adapt for the empirical regularities. In fact, Novy-Marx (2012) shows that

momentum return based on firm’s performance twelve to seven months prior

to the current month are stronger than the one based on firm’s performance

six to two months prior. To put more weight on the firm’s performance twelve

to seven months we compute R1−12 as
∑13

k=2
k
12

(Rt−1- E12t−1)
6

In Panel A of the Table 1, we report the equal-weighted raw and risk-

adjusted monthly returns for the recent loser, recent winner and the conventional

reversal strategy. Consistent with Jegadeesh (1990)’s findings, we find a

significant profit of 1.26% (t-statistic = 6.96) per month. The risk-adjusted

profits are still large7. The CAPM and three-factor alphas are 1.12% (t-

statistic = 6.46) and 1.05% (t-statistic = 5.72) per month respectively. The

6Our main results remained unchanged when we compute R1−12 as suggested by equation
(4), which is computed as R1−12 =

∑13
k=2

1
12 (Rt−1 - E12t−k). Note that Goyal and Wahal

(2015), in their investigation of 37 other major stock markets, points out that there is no
such ’echo’ in return and that Novy-Marx (2012)’s findings are likely driven by the effect
of short-term reversals from month t-2, indeed. Though their studies entertain different
hypothesis, but this weighting scheme is consistent with both.

7The risk-adjusted profits are measured by regressing the monthly reversal profits on
alternatively excess return of the market portfolio Sharpe (1964) and Fama and French
(1993) three factors, which add the size factor (SMB) and the value factor (HML) to the
excess return of the market portfolio.
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R1−12 based reversal profits are reported in the Panel B. The profit is 1.51%

(t-value = 9.15) per month, which is higher than that generated by the

standard reversal strategy. The CAPM and three-factor alphas are 1.38% (t

= 7.98) and 1.43% (t = 7.56) respectively. The additional profit of 0.25% per

month is highly significant (t-statistic = 3.53) and is unaffected by adjustment

for common risk factors.

*** Insert Table 1 about here ***

We also employ the Fama and MacBeth (1973) style cross-sectional

regression to compare these strategies simultaneously 8. From Table 2, we see

that the return from the R1−12 based reversal strategy is 1.12% (t-statistic =

7.30) per month versus the conventional strategy’s 0.45% (t-statistic = 1.92)

per month. Dominance of R1−12 based reversal strategy becomes appearance

when we look at the Fama and French risk-adjusted return. The risk-adjusted

return for R1−12 based reversal strategy is 1.20% (t-statistic = 8.76), while

those for Jegadeesh’s one become insignificant 0.18% (t-statistic = 0.73).

Overall, the results provide supports to our arguments that using R1−12,

8In particular, we estimate the following cross-sectional regressions,

Rt = a0 + jl,tRL1,t−1 + jh,tRH1,t−1 + ltRL1−12,t−1 + htRH1−12,t−1 + εt (5)

Where Rt is month ’t’ stock return. The independent variables are dummies that
indicate whether the stock is held, either long or short in month ’t’ as part of one of the
two strategies. In particular, RL1,t−1 equals one if stock’s previous month performance is
in the bottom 20% and is zeros otherwise. RW1,t−1 equals one if stock’s previous month
performance is in the top 20% and is zeros otherwise. RL1−12,t−1 and RH1−12,t−1 are
defined similarly but stocks are ranked by R1−12 measure.
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which allows us to purge the strong momentum of individual stock return

from the reversal, will improve the reversal profit.

*** Insert Table 2 about here ***

4.2 Market states and reversals

To test the relation between market state and short-term reversal, we employ

Cooper et al. (2004)’s approach. In particular, we first define the market state

as ’up’ (’down’), if the cumulative return of CRSP value weighted return,

including dividends, over the formation period of momentum strategy (in our

case is 12 months) is positive (negative). We also consider the alternative

definition of market state. In particular, we define the market state as a ’up’

(’down’) if the cumulative CRSP value-weighted return in the past 24 months

is positive (negative) (e.g Daniel and Moskowitz (2016). To test whether

reversal profits in each market state are equal to zero, we regress the time

series of average monthly reversal profits on two dummy variables for ’up’ and

’down’ market, with no intercept. To test if mean profit in ’down’ (or low state)

market are different from profits in ’up’ (or high state) market, we regress

average monthly reversal profits on ’down’ market dummy, with a constant.

This approach helps to preserve the full-time series of returns and allow us

to estimate t-statistic that robust to auto-correlation and heteroscedasticity

using Newey and West (1987) standard errors.

Since the results obtained from both definitions of market state are similar,
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we are focus only on the results for market states that are defined based on

the cumulative return of 12 previous months. As can be seen in Panel A of

Table 3 of the Table, from 1964 to 2016.12, following ’down’ market, the raw,

the CAPM and FF3 risk-adjusted reversal profits are 2.34% (t-statistic =

5.61), 2.28% (t-statistic = 5.49) and 2.34% (t-statistic = 5.61) respectively9.

However, the reversal profits in the ’up’ market are much lower. They are

approximately one third of the ones realized in the ’down’ market. Following

the period of market increase, the raw, CAPM and Fama and French risk-

adjusted profits are 0.86% (t-statistic = 5.15), 0.61% (t-statistic = 3.73), and

0.66% (t-statistic = 3.92) per month respectively. The t-statistic for testing

the equality of the profits across ’up’ and ’down’ market are reported in the

last row of Panel A. These t-statistics suggest that the reversal (adjusted)

profits are statistically distinguish between two states.

We also examine if the R1−12 based reversal strategy return varies with

market states. The results are also reported in Table 3 (the left column). We

see that following ’down’ market, the raw profit, CAPM and Fama and French

risk-adjusted profits are 2.30% (t-statistic = 5.86), 2.28% (t-statistic = 5.93),

and 2.40% (t-statistic = 5.72). Compare to the conventional reversal profit in

the ’down’ market, they are approximately the same. This result should not

be surprise because the objective of R1−12 is to reduce the effect of momentum.

9To form the CAPM and Fama-French risk-adjusted profits, we first regress the time-
series of raw reversal profits on the correspondent factors and a constant in order to obtain
the estimated factor loadings. Then, the risk-adjusted returns are measured as the reversal
return net of what is attributable to exposure to the market factor and Fama and French
three factors.
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In the ’down’ market, when the momentum effect appears weak, the profit

generated from R1−12 should be not (or less) significantly different to the one

generated from raw return. Following ’up’ market, the R1−12 based reversal

strategy’s (adjusted) returns are still statistically significant. Following ’up’

market, compare to the conventional reversal profits, the R1−12 based reversal

strategy’s profit are higher. We see that the additional profits (for both

raw and adjusted ones) are consistent with those reported in Table 1 and

Table 2, about 30bps per month. However, R1−12 based reversal strategies

profits obtained in the ’down’ market is significantly higher than those in ’up’

market. The results could be explained by liquidity provision. Because, in

the ’down’ market, it is also the period of liquidity dry-up, explaining higher

reversal returns (see Campbell et al. (1993), Avramov et al. (2006)). However,

this result could also be consistent with investor’s overeaction. For example,

Heyman et al. (2019) argue that the investor tend to overreact in the ’down’

market, leading to recent ’winner’ stocks are more likely to revert 10. They

show that besides liquidity, overreaction is an important factor that drives

price reversals, especially during times of high volatility.

*** Insert Table 3 about here ***

10They measure the investor’s overreaction by Google Search Volume Index
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4.3 Robustness checks

4.3.1 E.U stock markets

We also investigate the implication of R1−12 on expected return in the EU

data. This non-US examination delivers a useful out-of-sample test on the

implication of R1−12 on expected returns. The obtained results confirm

that the higher performance of R1−12 based strategy relative to conventional

reversal strategy presents not only in U.S. equity market but also in other

equity markets in European areas11. Also, we see that R1−12 based reversal

strategy profits are significantly different conditioning on market states. The

t-statistic for testing the equality of reversal profit across market states are

highly significant.

4.3.2 Intra-industry reversals and Residual return reversals

Hameed and Mian (2014) find that compare to conventional reversal strategy,

intra-industry reversals are stronger in magnitude and robust to market micro-

structure biases. We find that R1−12 performance goes beyond the industry

control.

We also compare the R1−12 based reversal strategy to residual return

reversals strategy proposed by Blitz et al. (2013) and find that R1−12 strategy

generates higher return than the residual return based strategy. In addition,

one problem with residual return is that it does not cover the whole sample of

11The results are reported in Appendix A
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population of stocks, much of small stocks are set to missing in the process of

residual return estimation. Consequently, when controlling for residual return

in the cross-sectional regressions, the coefficient of lag return remains highly

significant. This imply that lag one month return owns the information that

does not belong to lagged residual return. In contrast, the coefficient of lag

return become small and insignificant after controlling for R1−12
12.

5 Conclusion

It becomes conventional to implement the momentum strategy by taking the

past return from ’t-12’ (or 13) to ’t-2’, skipping ’t-1’ as the criteria to classify

the stock in order to purge the negative effect of return reversal. However, in

implementing the reversal strategy, we tend to ignore the strong momentum

in individual stock return. A simple subtract the past 12-month average

return from the recent return allows us to alleviate the return momentum.

Consequently, the reversals are significantly stronger. The additional profit

of implementing the reversal strategy based on R1−12 is statistically and

economically significant. For example, on average the short-term reversal

strategy based on R1−12 yields returns that are higher than those of a

conventional short-term reversal strategy about 25 bps per month. This

improvement is unaffected by adjustment for common risk factors. The

additional profit will be more impressive, about 45 bps per month, if we

12These results is reported in Appendix B
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implement this strategy within industry.

Our results also contribute to the study of reversal anomaly by showing

that market states have significantly impact on the profit of reversal strategy

through momentum effect. We find that conditioning on the states of market

has a significant impact on the profit of reversal strategies. In particular,

following the ’down’ market, when momentum effect appears weak, the profit

of reversal strategy is significantly higher than following ’up’ market, when

momentum effect is strong.
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Table 1: Portfolio returns

Raw returns Risk-adjusted Returns
CAMP FF3

Panel A: Conventional reversal strategy
Loser 1.871 0.786 0.564

(5.70) (4.19) (4.20)
Winner 0.609 -0.332 -0.485

(2.13) (-2.11) (-4.62)
Loser -Winner 1.262 1.118 1.050

(6.96) (6.46) (5.72)
Panel B: R1−12 based reversal strategy
Low 1.984 0.912 0.691

(6.32) (5.12) (6.01)
High 0.476 -0.463 -0.660

(1.68) (-2.98) (-6.55)
Low - High 1.508 1.376 1.351

(9.94) (9.15) (8.96)
Diff 0.246 0.257 0.301

(3.53) (4.04) (4.47)

Note: Stocks are sorted alternatively by previous month return and by R1−12. Loser
(winner) are the equally-weighted return of 20% of stocks with lowest (highest) previous
month return. Low (High), are the equally weighted return of 20% of stocks that have

lowest (highest) R1−12, where R1−12 =
∑13

k=2
k
12 (Rt−1 - E12t−k). ‘Loser – Winner’ is

the spread between loser and winner portfolio’s return, while ‘Low – High’ is the spread
between low and high R1−12 portfolio’s return. Diff is the difference between ‘Low- High’
and ‘Loser – Winner’ portfolio returns. Risk-adjusted returns are estimated by the capital
asset pricing model (CAPM) and Fama and French (1993) three-factor model (FF3). These
factors are available at French’s website. The reported t-statistic (in parentheses) are
Newest West (1987) corrected. The sample period is from 1964.07 to 2016.12.
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Table 2: Pairwise comparison

Raw returns Risk-adjusted Returns
CAPM FF3

RL1−12 0.442 0.383 0.380
(5.35) (4.75) (4.91)

RH1−12 -0.679 -0.702 -0.818
(-6.47) (-7.24) (-9.03)

RL1−12-RH1−12 1.121 1.086 1.198
(7.31) (7.63) (8.76)

RL1 0.134 -0.023 -0.050
(0.95) (-0.18) (-0.38)

RW1 -0.314 -0.349 -0.217
(-2.25) (-2.69) (-1.72)

RL1- RW1 0.448 0.326 0.167
(1.92) (1.53) (0.73)

Note: Each month between 1964.07 to 2016.12, a cross-sectional regression of the following
form is estimated
Rt = a0 + jl,tRL1,t−1+ jh,tRH1,t−1 + ltRL1−12,t−1 + htRH1−12,t−1+ εt
Where RL1 (RL1−12) equals one if stock i’s previous month return (R1−12) is in the bottom
20% and is zeros otherwise. RH1 (RH1−12) equals one if stock i’s previous month return
(R1−12) is in the top 20% and is zeros otherwise. The raw returns in the table are the
time series average of these coefficients. Risk-adjusted return are the estimated intercepts
from the time-series regressions of these averages on the contemporaneous market factor
(CAPM) and Fama-French three factors (FF3). The reported t-statistic (in parentheses)
are Newest West (1987) corrected.
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Table 3: Market states and reversal profits

R1−12 based reversal strategy Conventional reversal strategy
Panel A: Market states are defined based on 12-month cumulative market return

nobs raw CAPM FF3 raw CAPM FF3
Down 172 2.338 2.282 2.347 2.332 2.226 2.342

(5.87) (5.94) (5.61) (5.02) (5.03) (5.21)
Up 457 1.195 1.000 1.009 0.859 0.606 0.657

(8.63) (7.27) (7.54) (5.15) (3.73) (3.92)
Down 6= Up (2.67) (3.15) (2.91) (2.94) (3.51) (3.39)
Panel B: Market states are defined based on 24-month cumulative market return
Down 144 2.291 2.025 2.121 2.335 2.014 2.151

(5.42) (5.27) (4.89) (4.83) (4.81) (4.64)
Up 474 1.268 1.144 1.146 0.932 0.751 0.799

(8.34) (7.05) (7.38) (5.09) (3.86) (4.26)
Down 6= Up (2.24) (2.22) (1.91) (2.66) (2.77) (2.49)

Note: The table present the conventional and R1−12 based reversal returns in ’up’ and
’down’ market. We also reported the risk-adjusted returns across market states, where
CAPM and Fama and French adjusted returns are defined as the return net of what is
attributable to exposure to the market factor and Fama and French (1993) three factors
respectively. Down 6= Up is the t-statistic of the test whether momentum profits in each
state respectively equal to zeros. Panel A (Panel B) reports the results where market
states are defined based on the cumulative return of the value weighted market index
including dividends 12 (24) months priors to beginning of the holding period. The sample
period is from 1964.07 to 2016.12.
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Figure 1: Time-series of returns from momentum and reversal strategy. This plot shows the returns on
reversal and momentum strategies for the period from 1964.07 to 2012.06
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A E.U stock markets

In this Appendix, we verify the robustness of our findings by conducting

the out-of-sample tests. In particular, we replicate these above results

for European stock market. In particular, we examine: (i) whether the

reversal strategy based on R1−12 is significantly higher than that generated by

conventional reversal strategy in European stock market; (ii) whether market

states have significantly impact on European reversal strategy’s profits. In

Table 9, we presents summary statistic for the European countries included

in our sample. Table 10 presents the results of the profit of reversal strategy

formed following Fama and MacBeth (1973) style for E.U stock markets.

Table 11, we examine our results about the relation between reversal profits

and market states in EU stock market.
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Table A.1: Summary statistics for E.U sample

Country Firms Weight
Austria 83 1,55
Belgium 132 4,78
Finland 91 2,64
France 658 29,36
Germany 639 28,52
Greece 188 1,29
Ireland 47 1,35
Italy 211 11,15
Netherlands 136 9,01
Portugal 72 1,10
Spain 129 9,24

Note: This table reports the average number of firms, average market equity (Size) and
country’s average percentage in term of total market equity for the countries included in
the European sample. The data is from DataStream. The sample period is from 1990.01
to 2016.12.
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Table A.2: Reversal profits: E.U evidences

EU GER FR ITALY OTHERS
raw adj raw adj raw adj raw adj raw adj

a0 0.944 0.584 0.843 0.578 1.186 0.678 0.522 0.235 0.904 0.448
(3.53) (12.23) (3.19) (8.40) (4.26) (10.56) (1.32) (3.03) (3.10) (6.54)

RL1−12 0.385 0.497 0.381 0.333 0.255 0.418 0.549 0.644 0.346 0.527
(2.93) (3.32) (2.39) (2.02) (1.62) (2.85) (2.82) (2.96) (1.61) (2.59)

RH1−12 -1.161 -1.535 -1.383 -1.831 -1.153 -1.520 -0.711 -0.871 -1.158 -1.500
(-7.11) (-9.59) (-5.65) (-7.43) (-5.28) (-7.02) (-3.15) (-3.64) (-5.88) (-8.58)

RL1 0.198 -0.132 0.051 -0.184 0.861 0.486 -0.325 -0.520 0.106 -0.281
(1.04) (-0.81) (0.20) (-0.76) (3.70) (2.26) (-1.25) (-1.92) (0.47) (-1.30)

RW1 0.687 1.131 0.643 1.088 0.072 0.571 0.429 0.596 1.071 1.408
(2.58) (3.72) (2.32) (4.06) (0.24) (1.59) (1.46) (1.94) (2.79) (3.62)

RL1−12- RH1−12 1.546 2.032 1.764 2.165 1.408 1.938 1.259 1.515 1.504 2.027
(6.56) (9.42) (6.04) (7.40) (5.00) (7.49) (3.60) (3.91) (4.15) (6.23)

RL1- RW1 -0.489 -1.263 -0.592 -1.271 0.789 -0.085 -0.754 -1.117 -0.965 -1.689
(-1.36) (-3.44) (-1.62) (-3.41) (1.94) (-0.18) (-1.58) (-2.18) (-1.81) (-3.16)

Note: Each month between January 1990 to December 2016, a cross-sectional regression of the following form is estimated
separately for European sample, Germany (GER), France (FR), ITALY, and Others which are group the remaining countries
Rt = a0 + jl,tRL1,t−1+ jh,tRH1,t−1 + ltRL1−12,t−1 + htRH1−12,t−1+ εt
Where RL1 (RL1−12) equals one if stock i’s previous month (R1−12) return is in the bottom 20% and is zeros otherwise. RH1

(RH1−12) equals one if stock i’s previous month (R1−12) return is in the top 20% and is zeros otherwise. The raw returns in the
table are the time series average of these coefficients. Risk-adjusted return are the intercepts from the time-series regressions of
these averages on the contemporaneous market factor (CAPM) and Fama-French three factors (FF3). The reported t-statistic
(in parentheses) are Newest West (1987) corrected.
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Table A.3: Market state and reversal profits: E.U evidences

R1−12 based reversal strategy Conventional reversal strategy
Panel A: Market states are defined based on 12-month cumulative market return

nobs raw CAPM FF3 raw CAPM FF3
Down 119 1.765 1.640 1.810 1.485 0.933 1.556

(5.71) (5.06) (5.66) (3.67) (2.35) (4.05)
Up 205 0.856 0.711 0.764 0.111 -0.215 -0.033

(3.97) (3.29) (3.49) (0.35) (-0.68) (-0.10)
Down 6= Up (2.31) (2.60) (2.30) (2.74) (3.28) (2.31)
Panel B: Market states are defined based on 24-month cumulative market return
Down 107 1.682 1.507 1.664 1.581 0.981 1.552

(5.44) (4.43) (5.09) (4.22) (2.61) (4.31)
Up 217 0.947 0.828 0.894 0.140 -0.175 0.057

(4.52) (3.96) (4.10) (0.41) (-0.53) (0.16)
Down 6= Up (1.96) (1.95) (1.70) (2.82) (2.93) (2.29)

Note: The table present the conventional and R1−12 based reversal returns in ’up’ and
’down’ market for EU stock markets. We also reported the risk-adjusted returns across
market states, where CAPM and Fama and French adjusted returns are defined as the return
net of what is attributable to exposure to the market factor and Fama and French (1993)
three factors respectively. Down 6= Up is the t-statistic of the test whether momentum
profits in each state respectively equal to zeros. Panel A (Panel B) reports the results
where market states are defined based on the cumulative return of the value weighted
market index including dividends 12 (24) months priors to beginning of the holding period.
The sample period is from 1990.01 to 2016.12
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B Intra-industry reversals and Residual return

reversals

Hameed and Mian (2014) argue that implement the reversal strategy within

industry will isolate the short-term reversal from an across-industry momentum

(Moskowitz and Grinblatt (1999)). They find that compare to the conventional

reversal, the intra-industry reversal is stronger in magnitude and robust to

market micro-structure biases. We show that R1−12 effect goes beyond the

industry control. The R1−12 based reversal strategy within-industry provides

significantly higher return than the one generated by Hameed and Mian (2014)

within-industry reversal strategy (see Table B.1)

Recently, Blitz et al. (2013) reports that reversal strategy based on residual

return, which is obtained from Fama and French (1993) three-factor regression,

provides higher profit compare to the conventional strategy does. They argue

that the conventional reversal strategy is negatively affected by the Fama

and French (1993) three factors, making the profit lower. Therefore, forming

the reversal strategy based on the return, which nets of Fama and French

three-factor exposures, will improve the profit. In fact, the method proposed

by Blitz et al. (2013) is also related to the idea of neutralizing the momentum

effect. In particular, we find that applying Blitz et al. (2013)’s method for

R1−12 does not improve significantly the R1−12 based reversal return (see

Table B.2). Moreover, we find that R1−12 strategy generates higher return

than the residual return based strategy (Table B.3). An additional problem
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Table B.1: Intra-industry reversals

returns Risk-adjusted Returns
CAMP FF3

Intra-industry reversal return 1.591 1.470 1.396
(9.86) (9.45) (8.72)

Intra-industry R1−12 based reversal return 1.709 1.600 1.568
(12.09) (11.49) (11.31)

Intra-industry vs conventional reversal return 0.328 0.352 0.347
(5.04) (5.48) (4.91)

Intra-industry R1−12 based reversal return vs
conventional reversal return

0.447
(4.68)

0.482
(5.39)

0.519
(5.28)

Intra-industry R1−12 based reversal return vs
Intra-industry reversal return

0.118
(2.02)

0.130
(2.41)

0.172
(3.14)

Note: To form the (R1−12 based) reversal strategy within industries, we first sort stocks
into industry groups based on Fama-French 10 industry classification and then rank stocks
based on previous month returns (R1−12) to form the equally-weighted lowest 20% and
highest 20% portfolios within each industry. The lowest minus highest portfolio return
in each industry is average across all industries to obtain intra-industry (R1−12 based)
reversal return. The Table reports the conventional reversal, intra-industry reversal return
and intra-industry R1−12 based reversal returns. Risk-adjusted returns are estimated by
CAPM and Fama and French three-factor models. The reported t-statistic (in parentheses)
are Newest West (1987) corrected. The sample period is from 1964.07 to 2016.12.

with residual return is that it does not cover the whole sample of population

of stocks, much of small stocks are set to missing in the process of residual

return estimation. Consequently, when controlling for residual return in

the cross-sectional regressions, the coefficient of lag return remains highly

significant. This imply that lag one month return owns the information that

does not belong to lagged residual return. In contrast, the coefficient of lag

return become small and insignificant after controlling for R1−12 (Table B.4).
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Table B.2: Residual return reversal strategies

Raw returns Risk-adjusted Returns
CAMP FF3

R1−12 based reversal return 1.508 1.376 1.351
(9.94) (9.15) (8.96)

Residual reversal return using R1−12 1.655 1.617 1.573
(14.62) (14.22) (14.19)

Diff 0.151 0.243 0.218
(1.65) (2.70) (2.31)

Note: Stocks are sorted by residual terms obtained from the regression of R1−12 on Fama
and French three factors. Lower (higher) are the equally-weighted return of 20% of stocks
with lowest (highest) previous month residual. The profit of residual reversal strategy
using R1−12 is the spread between the 1st and 5th quintile portfolio return. The Table
reports the profit of R1−12 based reversal strategy and the (Blitz et al., 2013) reversal
strategy using R1−12. The reported t-statistic (in parentheses) are Newest West (1987)
corrected. The sample period is from 1964.07 to 2016.12.
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Table B.3: Pairwise comparisons

Raw returns Risk-adjusted Returns
CAPM FF3

RL1−12 0.396 0.219 0.211
(3.13) (1.88) (1.94)

RH1−12 -0.715 -0.777 -0.777
(-5.61) (-6.70) (-7.23)

RL1−12 -RH1−12 1.111 0.996 0.989
(7.02) (6.32) (6.32)

RRL 0.427 0.480 0.414
(4.56) (5.52) (5.21)

RRH -0.383 -0.321 -0.349
(-3.89) (-3.58) (-4.51)

RRL - RRH 0.810 0.801 0.763
(7.32) (7.34) (6.92)

Note: Table reports the estimated coefficients of the following regression
Rt = a0 + bl,tRRLt−1+ bh,tRRHt−1 + ltRL1−12,t−1 + htRH1−12,t−1+εt
Where RRL equals one if stock i’s previous month residual return, which is residual term
obtained from the Fama and French three-factor regression scaled by the standard deviation
of return over the estimated period, is in the bottom 20% and is zeros otherwise. RRH
equals one if stock i’s previous month residual is in the top 20% and is zeros otherwise.
RL1−12 ) and RH1−12 indicate the bottom 20% and the top 20% stocks based on R1−12

respectively. The results reported for the raw returns in the table are the time series average
of these coefficients. Risk-adjusted return are the intercepts from the time-series regressions
of these averages on the contemporaneous market factor (CAPM) and Fama-French three
factors (FF3). The reported t-statistic (in parentheses) are Newest West (1987) corrected.
The sample period is from 1964.07 to 2016.12.
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Table B.4: Cross-sectional regressions

LRet RR R1−12 Beta ME BM
1. -0.052 0.000 -0.090 0.218

(-11.84) (0.11) (-2.35) (4.25)
2. -0.038 -0.002 0.045 -0.091 0.224

(-5.89) (-3.87) (0.301) (-2.44) (4.45)
3. -0.002 -0.007 -0.040 -0.093 0.208

(-0.11) (-3.28) (-0.28) (-2.51) (4.07)

Note: Each month ’t’ we regress the cross-section of stock return on several explanatory
variables. The Table reports the time-series average of these coefficients along with their
Newey and West (1987) adjusted t-statistic in parentheses. The control variables are
residual return (RR), which is the residual term from the Fama and French three-factor
regression scaled by the standard deviation of return over the estimated period; lagged
one-month return (LRet); the log of market capitalization (ME); book-to-market ratio

(BM). R1−12 is measured as
∑13

k=2
k
12 (Rt−1 - E12t−k). The sample period is from 1964.07

to 2016.12.
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