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Lubrication forces depend to a high degree on elasticity, texture, charge, chemistry, and temper-
ature of the interacting surfaces. Therefore, by appropriately designing surface properties, we may
tailor lubrication forces to reduce friction, adhesion and wear between sliding surfaces or control
assembly, repulsion, and collision of interacting particles. Here, we show that variations of slippage
on one of the contacting surfaces induce a normal (lift) force. We demonstrate the consequences of
this force on the mobility of a cylinder traveling near a wall and show the emergence of active-like
particle trajectories, such as oscillation, migration, and propulsion. Our study has implications
for understanding how inhomogeneous biological interfaces interact with their environment; it also
reveals a new method of patterning surfaces for controlling the motion of nearby particles.

In many physical processes, the flow of small particles
such as cells, colloids, bubbles, grains, and fibers occurs
near soft, porous and rough walls. The induced lubri-
cation forces [1] on these particles depend on the elas-
ticity, texture, and chemistry of the nearby wall. These
hydrodynamic forces may very well dominate over both
bulk (e.g. Stokes drag) and surface (e.g. van der Waals
and electrostatic) forces, and therefore determine single-
particle motion and collective behavior.

The simplest configuration to characterize hydrody-
namic particle-wall forces is that of an infinitely long cir-
cular cylinder traveling parallel to a rigid flat wall. At
low Reynolds numbers, the cylinder will experience zero
wall-normal (lift) force and therefore move at a constant
distance from the wall [2]. This is due to the time-reversal
symmetry of the Stokes equations. However, when the
rigid wall is replaced with a soft surface, the moving par-
ticle is repelled from the wall [3] as a result of the broken
symmetry of the fluid pressure in the thin gap [4, 5].
This elastohydrodynamic lift mechanism increases the
gap thickness and thus reduces wear and friction between
the siding surfaces [6]. It underlies exotic particle trajec-
tories such as oscillations, Magnus-like effect, stick-slip
motion, and spinning [7, 8]. Soft lubrication also under-
pins the principle of surface rheology [9, 10] that is used
to characterize the viscoelasticity of complex surfaces.

Besides softness, another ubiquitous feature of surfaces
in biological and technological applications is surface in-
homogeneities. For example, the surface of a Janus par-
ticle is divided into two halves with different chemistry
(hydrophobic/hydrophilic) or texture (rough/smooth).
This provides the particle with unique capabilities in-
cluding self-assembly into complex structures [11] and
self-propulsion [12]. More generally, interfaces in living
tissues (cell walls, blood vessels, cartilage, epithelia, etc.)
vary in chemical and mechanical composition due to in-
homogenous distribution of cells and proteins. In techno-
logical applications, inhomogenous surfaces arise as con-

∗ corresponding author: shervin@mech.kth.se

sequence of manufacturing imperfections and wear, but
also from surface patterning to control liquid transport
[13] or heat transfer [14]. Despite this ubiquity, there has
been no investigation of the full set of lubrication forces
arising from particle-wall interaction when the properties
of one of the contacting surfaces vary.

In this Letter, we study lubrication forces when slip-
page [15] properties change along the contacting surfaces.
We consider a minimal model of spatially varying slip
length ` at either the surface of a flat wall or at the
surface of a cylinder (Fig. 1a,b). Here, ` is defined as an
effective material property of an interface at some coarse-
grained level. The slip length can therefore be considered
as a mesoscopic model emerging from small-scale features
such as surface charges [16], wall roughness [17], super-
hydrophobicity [18], liquid infusion [19], and temperature
or solute concentration gradients [20].

Using analytical and numerical treatments, we demon-
strate that surface inhomogeneities give rise to particle
trajectories such as oscillations, migration and propul-
sion. Underlying these phenomena is the generation of
a normal lift force that arises from spatial variations in
surface slippage. To illustrate this, consider the two con-
figurations shown in Fig. 1(c,d). Both cases involve a
cylinder of radius r located a distance δ0 from a flat wall
and immersed in a fluid with viscosity η and density ρ.
We assume small Reynolds number, Re = ρV r/η � 1,
where V is the characteristic velocity of the cylinder.

Figure 1(e) (blue line) shows the trajectory of the cylin-
der falling freely under gravity next to a wall that has a
single slip transition. The trajectory is obtained from nu-
merical simulations of Stokes equations coupled to New-
ton’s equation of motion for the cylinder (see SI). As the
cylinder passes the transition line, it migrates away from
the wall a distance ∆, that is comparable to δ0. In con-
trast, a wall with homogeneous slippage produces zero
wall-normal lift force (and consequently no wall-normal
motion) on a cylinder [21]. Therefore, the lift arises here
from the sudden change in slip length at the wall. By car-
rying out an expansion in the dimensionless slip length
L = `/δ0, we will show below that the lift force per
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FIG. 1. The two lubrication models considered. (a) 2D
solid cylinder moving near a flat wall with a transition from
a slip (blue) to a no slip (grey). (b) 2D cylinder half-coated
with a slip region and moving near a wall. (c),(d) Sketches of
cylinder trajectories for the two systems placed in a gravity
field with initial gap size δ0 = 0.05r, slip length ` = 1.79δ0
and cylinder density ρc = 10ρ. (e) Normalized gap thickness
versus the transverse displacement of the cylinder. The latter
is normalized by the length of the contact zone lc =

√
2δ0r,

where lubrication forces are important. Inset shows the tra-
jectory of the Janus cylinder over a large spatial extent.

unit length of the cylinder scales at the lowest order as
Fz ∼ ηV ‖ε−1L at the transition line, and that ∆ ∼ `,
where ε = δ0/r � 1 is the initial lubrication parame-
ter. Importantly, this new lift force can be comparable in
magnitude to other lubrication forces. For example, for a
red blood cell traveling near glycocalyx [22], variations of
the slip length as small as a few nanometers induce a lift
force comparable to the elastohydrodynamic one (∼ 0.1
pN) caused by glycocalyx deformation [23].

Figure 1(e) (red line) shows the trajectory (obtained
from numerical simulations) of a Janus cylinder falling
freely under gravity near a flat wall (Fig. 1d). In con-
trast to the previous model system, we observe a persis-
tent normal drift along the trajectory, since the transition
from slip to no-slip is now located on the traveling cylin-
der itself thus constantly inducing a wall-normal force.
Scaling estimates, that will be obtained below at lowest
order in L, indicate that ∆ ∼ xc`/lc, where lc =

√
2δ0r

is the lubrication contact length and xc is the transverse
displacement. As ∆ becomes comparable to and larger
than r, one expects eventually a saturation of normal mi-
gration, since lubrication forces become negligible in the
bulk. Nevertheless, as shown in the inset of Fig. 1(e), the
effect holds even for δ substantially larger than r.
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FIG. 2. Cylinder trajectories induced by variation of slip-
page. (a) Cylinder falling under gravity near a wall that
alternates between slip (blue) and no slip (grey). (b) Neu-
trally buoyant cylinder rotating at fixed angular speed and
initially centered above a single slip-to-no-slip transition on
the wall. (c) Neutrally buoyant Janus cylinder rotating at
fixed angular speed next to a wall. Right column (ii) shows
the evolution of the normalized gap thickness as a function of
the normalized transverse displacement of the cylinder. For
all configurations, δ0/r = 0.05 and L = 1.79.

The intimate coupling of rigid-body motion to slip-
page inhomogeneities can result in unexpected particle
dynamics. Examples are shown in Fig. 2, and include os-
cillatory motion of a cylinder translating near a wall that
alternates between slip and no slip (Fig. 2a); drift and
translation of a rotating cylinder above a single slip to
no-slip transition (Fig. 2b); and spiralling propulsive mo-
tion of a rotating Janus cylinder next to a wall (Fig. 2c).
In the remainder of this Letter, we will study in detail
these motions using lubrication theory and scaling laws.
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FIG. 3. Left frame shows analytic solutions of resistance co-
efficients in (1) for both model systems. The coefficients cor-
respond to the configurations shown in the right frame. The
gray dashed arrow indicates the imposed motion. Results are
for ε = 0.05, which corresponds to the value used in the nu-
merical solutions.

At low Reynolds numbers, the hydrodynamic force per
unit length, F = (Fx, Fz), and torque per unit length, T ,
acting on the cylinder are linearly related to the velocity
V = (V ‖, V ⊥) and the angular speed Ω of the cylinder.
This is expressed by the symmetric resistance matrix [24],



Fx

Fz

T


 = −η



f
‖
x −f⊥x rfωx
−f‖z f⊥z −rfωz
rt‖ −rt⊥ r2tω






V ‖

V ⊥

Ω


 , (1)

where f⊥x = f
‖
z , t‖ = fωx and t⊥ = fωz . Assuming a small

gap between the surfaces, ε = δ0/r � 1, we here explain
the procedure to determine the elements of the resistance
matrix for the cylinder translating parallel to the wall
with a sudden slip-to-no-slip transition (Fig. 3a,ii). The
other matrix elements are obtained in an analogous way.

We non-dimensionalize the variables as,

x = lcX, z = δ0 Z, h = δ0H,

u = V ‖ U, w =
ε1/2V ‖√

2
W, p =

lcηV
‖

δ20
P,

where, u,w are, respectively, the transverse and normal
components of the fluid velocity, p is the fluid excess pres-
sure with respect to the atmospheric one. The cylinder
surface is approximated at one instant in time, shown in
Fig. 1(a), as h(x) = δ0 + x2/(2r). Inserting the dimen-
sionless variables into the continuity and Stokes equa-
tions and neglecting O(ε) terms, we obtain

∂XP = ∂ZZU, ∂ZP = 0, ∂XU + ∂ZW = 0. (2)

In the laboratory frame of reference, where the wall is
at rest, the boundary conditions are,

W |Z=0,H = 0, U |Z=H = 1, (3)

U |Z=0 = L∂ZU |Z=0 S. (4)

The third condition accounts for slippage and is modelled
through a Navier boundary condition. Moreover, S is a
step function that equals one for X < 0 and zero for
X > 0, where X = 0 is the location on the wall of the
transition from slip to no slip. The solution of (2) and
(4) is a combination of Couette and Poiseuille flows (see
SI). From that solution, the fluid stress is projected onto
the cylinder surface to obtain the elements in (1), i.e.

f‖x =
√

2ε−1/2
∫ ∞

−∞
(2XP + ∂ZU) dX, (5)

f‖z = 2ε−1
∫ ∞

−∞
PdX, (6)

t‖ =
√

2ε−1/2
∫ ∞

−∞
∂ZUdX. (7)

Figure 3(a,i) shows the elements (5-7) of the resistance
matrix as a function of dimensionless slip length. When

`/δ0 → 0, only the drag coefficient (f
‖
x) is non-zero, in

agreement with the results for no slip surfaces [2]. When
` ≈ δ0 and for larger `, we note the emergence of non-

zero elements related to lift force (f
‖
z ) (as reported nu-

merically in Fig. 1e) and torque t‖.
Figure 3(b,i) shows the elements (denoted by theˆsym-

bol) induced by a Janus cylinder that translates parallel
to a wall. We again observe the emergence of off-diagonal
terms of the resistance matrix for ` ≈ δ0; in particular

the lift force (f̂
‖
z ) that is responsible for the constant

normal migration shown in Fig. 1(e) (red). The com-
plete set of elements for both model systems is reported
in Fig. 3. Note that due to the Lorentz reciprocal theo-
rem [24] there is a deep symmetry between the two model
systems.

To understand in more detail the lift-inducing mecha-
nism of slip-to-no-slip transitions, we study the gap pres-
sure distributions for three different slip lengths. Figure
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FIG. 4. Lift generating lubrication pressure distributions for
three different slip lengths. Imposed slip lengths are L = 0
(red), L = 1 (blue) and L =∞ (black).

4(a) shows the pressure distribution for the scenario of a
moving cylinder over an inhomogeneous wall (trajectory
shown in Fig. 1c). The no-slip solution maintains an anti-
symmetric pressure distribution (red line). The introduc-
tion of a finite slip length breaks this symmetry (blue and
black lines), as the gap pressure necessary to accelerate
the flow through the gap (with varying thickness) is in-
creased over the slippery section (X < 0). Figure 4(b)
shows the gap pressure of the wall-parallel moving Janus
particle (trajectory in Fig. 1d). Here, the induced lu-
brication pressure needs to accommodate both varying
gap thickness and varying fluid shear in the gap, which
results in a pressure peak also over slippery sections of
the Janus cylinder. Note that due to the symmetry be-
tween the two configurations the pressure distributions
in (a) and (b) are the mirror of distributions (c) and (d),
respectively.

We now return to the examples reported in Fig. 2 to
explain their trajectories using the components of the
resistance matrix shown in Fig. 3. The oscillatory tra-
jectory in Fig. 2(a) can be explained as follows. A slip-to-
no-slip transition pushes the cylinder away from the wall
(Fig. 1c), whereas a no-slip-to-slip transition produces a
negative Fz, pulling the cylinder towards the wall. The
long-term net migration away from the wall (Fig. 2a,ii) is
partially because the push force is slightly larger than the
pull force for each period due to different gap thicknesses
during the pull and push events (see SI for an analysis).

The second example involves a rotating neutrally buoy-
ant cylinder (Fig. 2b). When the cylinder is released

TABLE I. Scaling laws for lift force (Fz) and wall-normal
displacement (∆) for ST Wall or Janus particle. The imposed
motion is either wall-parallel velocity or rotation. For the
latter, the displacement shown is for one revolution.

Motion Lift force Displacement

ST Wall V ‖ Fz ∼ ηV ‖ε−1L ∆ ∼ `
Janus V ‖ Fz ∼ ηV ‖ε−1L ∆ ∼ `xc/lc
ST Wall Ω Fz ∼ ηrΩε−1L ∆ ∼

√
r/δ`

Janus Ω Fz ∼ ηrΩε−1L ∆ ∼ `
√
r/δ − `

√
r/δ√

1+`r1/2δ−3/2

above a slippage transition on the neighbouring wall, we
observe a migration in both x− and z-directions (see
Fig. 2b,ii). The resistance coefficients in Fig. 3(b) and
(c) explain this behavior. The imposed rotation pro-
duces a wall-normal lift force (Fz ∼ ηrΩfωz > 0) and
a negative transverse thrust (Fx ∼ −ηrΩfωx < 0). How-
ever, as the cylinder migrates away from the wall, we
have V ⊥ > 0, which leads to a positive transverse thrust
(Fx ∼ ηV ⊥f⊥x > 0). The V ⊥-generated thrust domi-
nates over the Ω-generated thrust, such that the cylinder
moves in the positive x direction.

The final example involves a rotating neutrally buoyant
Janus cylinder (Fig. 2c). The cylinder undergoes a spi-
ralling motion that results in positive transverse propul-
sion and positive wall-normal migration. We may ex-
plain the spiral motion in the stages A-E depicted in
Fig. 2(c). In stage A, the cylinder migrates upward since

f̂ωz > 0. It simultaneously migrates to the left since, due
to the short exposure, V ⊥ is relatively small and we have
|V ⊥f̂⊥x | < |rΩf̂ωx |. In stage B, the Janus cylinder has ro-
tated sufficiently such that there is no more slippage in
the gap. Therefore, a lift force is no longer generated
and the wall-normal drag force f̂⊥z hinders further up-
ward migration. Stages C and D are the mirror of A and
B, respectively. Consequently, we observe a migration in
the negative z and positive x directions. As the cylinder
reaches stage E, it has experienced a net translation in
the positive x direction and a small net migration away
from the wall from its initial position A. This is due to
the difference in the magnitude of fluid stresses in the
gap when slip (B) and no slip (D) surfaces face the wall.

Finally, we turn to scaling analysis to estimate the in-
duced lift force and the associated normal displacement.
We focus on the instant where a cylinder is located right
above the transition from slip to no slip on the neighbour-
ing wall (Fig. 1a). Assuming no rotation and constant
transverse velocity V ‖, a force balance (per unit length)

in the wall-normal direction yields ηf
‖
z V ‖ = ηf⊥z V

⊥,
where the left and right-hand sides correspond to the
magnitude of the lift and drag components, respectively.

By carrying out an expansion in L� 1 of f
‖
z and f⊥z (see

SI), we can approximate the two components, at lowest
order in L, as

f‖z ' 4`r/δ20 and f⊥z ' −3
√

2π (δ0/r)
−3/2

. (8)
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By assuming that the lift force approximately acts over
the lubrication contact length lc, we have

V ‖ = lc/τ and V ⊥ = ∆/τ, (9)

where τ is the time it takes to traverse lc, and ∆ is the
displacement away from the wall. Inserting these esti-
mates in the wall-normal force balance yields ∆ ∼ `. This
is in agreement with numerical results shown Fig. 1(c),
where we observe ∆ ≈ δ0 for ` ≈ δ0. Note that this
leading order scaling estimate predicts no net displace-
ment for particle travelling over two consequent transi-
tions. To explain the net migration for the patterned
wall (Fig. 2a), we modify the length over which the lift
force acts (9) in an appropriate way (see SI). For a Janus
cylinder (Fig. 1b), there is no fixed time over which the
displacement occurs, because the transition point travels
along with the cylinder. Therefore, we expect a displace-
ment ∼ ` for each lc traversed. This yields the estimate,

∆ ∼ `xc/lc, (10)

where xc is the distance traversed along the wall. Table I,
summarizes the scaling estimates of the lift force and
normal displacement, induced by transverse motion or
rotation, for both systems in Fig. 1(a,b) (see SI).

To conclude, we have used a combination of numeri-
cal simulations, analytical results obtained from lubrica-
tion theory, and scaling arguments, to describe how fluid-
immersed objects approaching contact with spatially in-
homogenous slippage properties may trigger novel non-
trivial forces and torques. We have further shown how
striking and active-like particle trajectories can emerge
as a consequence. This opens up new interesting oppor-
tunities for the design of interfaces to control and influ-
ence nearby particle motion, as well as to reduce friction
and wear. It also provides a foundation to explore more
complex particles and interfaces in order to understand
fundamentally more realistic situations found in nature
and especially biology.
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