V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, and N. Markovic,

M. , Energy and Fuels from Electrochemical Interfaces, Nat Mater, vol.16, pp.57-69, 2017.

M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour et al., Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights, J. Phys. Chem. Lett, vol.6, pp.4653-4672, 2015.

A. K. Chandiran, S. M. Zakeeruddin, R. Humphry-baker, M. K. Nazeeruddin, M. Gratzel et al., Investigation on the Interface Modification of TiO2 Surfaces by Functional Co-Adsorbents for High-Efficiency Dye-Sensitized Solar Cells, vol.18, pp.2724-2731, 2017.

J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-seró, Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method, J. Am. Chem. Soc, vol.126, pp.13550-13559, 2004.

B. O'regan, M. Grätzel, and . Low-cost,

, Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, vol.353, p.737, 1991.

A. J. Bard and M. A. Fox, Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen, Acc. Chem. Res, vol.28, pp.141-145, 1995.

N. S. Lewis and D. G. Nocera, Powering the Planet: Chemical Challenges in Solar Energy Utilization, vol.103, pp.15729-15735, 2006.

M. G. Walter, E. L. Warren, J. R. Mckone, and S. Boettcher,

W. Mi, Q. Santori, E. A. Lewis, and N. S. , Solar Water Splitting Cells, Chem. Rev, vol.110, pp.6446-6473, 2010.

M. R. Nellist, F. A. Laskowski, F. Lin, T. J. Mills, and S. W. Boettcher, Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting, Acc. Chem. Res, vol.49, pp.733-740, 2016.

E. L. Ratcliff, B. Zacher, and N. R. Armstrong, Selective Interlayers and Contacts in Organic Photovoltaic Cells, J. Phys. Chem. Lett, vol.2, pp.1337-1350, 2011.

K. Ou, R. Ehamparam, G. Macdonald, and T. Stubhan,

X. Wu, R. C. Shallcross, R. Richards, C. J. Brabec, S. S. Saavedra et al., Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance, ACS Appl. Mater. Interfaces, vol.8, pp.19787-19798, 2016.

L. Kavan, B. O'regan, A. Kay, and M. Grätzel, Preparation of TiO2 (anatase) Films on Electrodes by Anodic Oxidative Hydrolysis of TiCl3, J. Electroanal. Chem, vol.346, pp.291-307, 1993.

P. A. Kohl and A. J. Bard, Semiconductor Electrodes. 13. Characterization and Behavior of n-Type Zinc Oxide, Cadmium Sulfide, and Gallium Phosphide Electrodes in Acetonitrile Solutions, J. Am. Chem. Soc, vol.99, pp.7531-7539, 1977.

S. N. Frank and A. Bard, J. Semiconductor Electrodes. II

, Electrochemistry at n-Type Titanium Dioxide Electrodes in Acetonitrile Solutions, J. Am. Chem. Soc, vol.97, pp.7427-7433, 1975.

K. E. Pomykal, A. M. Fajardo, and N. S. Lewis, Theoretical and Experimental Upper Bounds on Interfacial Charge-Transfer Rate Constants between Semiconducting Solids and Outer-Sphere Redox Couples, J. Phys. Chem, vol.100, pp.3652-3664, 1996.

A. M. Farjardo and N. S. Lewis, Rate Constants for Charge Transfer Across Semiconductor-Liquid Interfaces, Science, vol.274, pp.969-972, 1996.

N. S. Lewis, An Analysis of Charge Transfer Rate Constants for Semiconductor/Liquid Interfaces, Annu. Rev. Phys. Chem, vol.42, pp.543-580, 1991.

R. A. Marcus, Chemical and Electrochemical Electron-Transfer Theory, Adiabatic Theory of Outer Sphere Electron, vol.15, pp.155-196, 1964.

, Transfer Reactions in Solution, J. Chem. Soc. Faraday Trans, vol.57, pp.557-580, 1961.

H. Gerischer, Charge Transfer Processes at Semiconductor-Electrolyte Interfaces in Connection with Problems of Catalysis, Surf. Sci, vol.18, pp.97-122, 1969.

H. I. Gerischer, R. Photoelectrochemistry-;-memming, . Semiconductor, and . Electrochemistry, Photocatalysis and Photoreactors: Fundamentals and Developments, p.2, 1985.

R. I. Memming, . Photoelectrochemistry, W. P. Gomes, and F. Cardon, Photocatalysis and Photoreactors: Fundamentals and Developments, Electron Energy Levels in, issue.24, pp.107-153, 1985.

C. A. Koval and J. N. Howard, Electron Transfer at Semiconductor Electrode-Liquid Electrolyte Interfaces, Semiconductor Electrochemistry, vol.12, pp.411-433, 1982.

R. Beranek, Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials, Adv. Phys. Chem, 1920.

R. Krishnan and R. H. Wilson, Encyclopedia of Electrochemistry, 2007.

. Semiconductor-electrolyte-interface, Crit. Rev. Solid State Mater. Sci, vol.10, pp.1-41, 1980.

S. R. Morrison, The Chemical Physics of Surfaces

U. S. Springer, , 1977.

R. A. Fredlein and A. J. Bard, Semiconductor Electrodes: XXI . The Characterization and Behavior of n-Type Electrodes in Acetonitrile Solutions, J. Electrochem. Soc, vol.126, pp.1892-1898, 1979.

R. Memming and G. Schwandt, Electrochemical Properties of

, Gallium Phosphide in Aqueous Solutions, Electrochimica Acta, vol.13, pp.1299-1310, 1968.

S. Hilliard, G. Baldinozzi, D. Friedrich, and S. Kressman,

H. Strub, V. Artero, and C. Laberty-robert, Mesoporous Thin Film WO3 Photoanode for Photoelectrochemical Water Splitting: a Sol-Gel Dip Coating Approach, Sus. Ener. Fuels, vol.1, pp.145-153, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01436567

M. Grätzel, . Cells, L. Li, C. Cui, Y. Ding et al., 34) Tan, Nature, vol.414, p.338, 2001.

Y. Li, Solution-Processed Tungsten Oxide as an Effective Anode Buffer Layer for High-Performance Polymer Solar Cells, J. Phys. Chem. C, vol.116, pp.18626-18632, 2012.

F. Guillain, D. Tsikritzis, G. Skoulatakis, S. Kennou, G. Wantz et al., Annealing-Free Solution-Processed Tungsten Oxide for Inverted Organic Solar Cells, Sol. Energy Mater. Sol. Cells, vol.122, pp.251-256, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987490

M. Vasilopoulou, A. Soultati, P. Argitis, T. Stergiopoulos, and D. Davazoglou, Fast Recovery of the High Work Function of Tungsten and Molybdenum Oxides via Microwave Exposure for Efficient Organic Photovoltaics, J. Phys. Chem. Lett, vol.5, pp.1871-1879, 2014.

C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, and G. C. Bazan, Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications, Adv. Mater, vol.23, pp.2367-2371, 2011.

C. A. Koval, R. L. Austermann, J. A. Turner, and . Parkinson,

B. A. , The Effects of Surface Energetics and Surface Oxide Layers on the Cyclic Voltammetry of Metallocenes at Nonilluminated p - InP Electrodes, J. Electrochem. Soc, vol.132, pp.613-623, 1985.

S. R. Morrison, The chemical physics of surfaces, 2013.

Z. Xie, L. Gao, B. Liang, X. Wang, G. Chen et al.,

J. Chao, D. Chen, and G. Shen, Fast Fabrication of a WO3.H2O Thin Film with Improved Electrochromic Properties, J. Mater. Chem, vol.22, 2012.

J. Zhao, E. Olide, F. E. Osterloh, N. E. Mendieta-reyes, A. K. Díaz-garcía et al., Enhancing Majority Carrier Transport in WO3 Water Oxidation Photoanode via Electrochemical Doping, J. Electrochem. Soc, vol.162, issue.42, pp.65-71, 2015.

, Simultaneous Electrocatalytic CO2 Reduction and Enhanced Electrochromic Effect at WO3 Nanostructured Electrodes in Acetonitrile, ACS Catalysis, pp.1903-1912, 2018.

C. G. Granqvist, Electrochromic Tungsten Oxide Films: Review of Progress 1993-1998, Sol. Energy Mater. Sol. Cells, vol.60, pp.201-262, 2000.

S. K. Deb, Opportunities and Challenges in Science and Technology of WO3 for Electrochromic and Related Applications, Sol. Energy Mater. Sol. Cells, vol.92, pp.245-258, 2008.

A. Gupta, P. Ifeacho, C. Schulz, and H. Wiggers, Synthesis of Tailored WO3 and WOx (2.9<x<3) Nanoparticles by Adjusting the Combustion Conditions in a H2/O2/Ar Premixed Flame Reactor, Proc. Combust. Inst, vol.33, pp.1883-1890, 2011.

G. Wang, Y. Ling, and Y. Li, Oxygen-Deficient Metal Oxide Nanostructures for Photoelectrochemical Water Oxidation and Other Applications, Nanoscale, vol.4, pp.6682-6691, 2012.

G. Wang, Y. Yang, D. Han, and Y. Li, Oxygen Defective Metal Oxides for Energy Conversion and Storage, Nano Today, vol.13, pp.23-39, 2017.

G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang et al., Hydrogen-Treated WO3 Nanoflakes Show Enhanced Photostability, Energy Environ. Sci, vol.5, issue.49, pp.6180-6187, 2012.

R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Lett, vol.11, pp.3026-3033, 2011.

V. A. Nikitina, S. A. Kislenko, and R. R. Nazmutdinov,

M. D. Bronshtein and G. A. Tsirlina, Ferrocene/Ferrocenium Redox Couple at Au(111)/Ionic Liquid and Au(111)/Acetonitrile Interfaces: A Molecular-Level View at the Elementary Act, J. Phys. Chem. C, vol.118, pp.6151-6164, 2014.