J. Suntivich, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, 485 Science, vol.334, pp.1383-1385, 2011.

A. Grimaud, W. T. Hong, Y. Shao-horn, and J. M. Tarascon, Anionic redox processes for electrochemical devices

. Mater, , vol.15, p.121, 2016.

W. T. Hong, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis

, Energy Environ. Sci, vol.8, pp.1404-1427, 2015.

Y. Lee, Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid, p.491

, Alkaline Solutions, J. Phys. Chem. Lett, vol.3, pp.399-404, 2012.

W. Chao, Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels, p.24

C. Hsu, Valence-and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and evolution, Nat. Commun, vol.6, p.8625, 2015.

H. Wang, Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel 503

. Co3o4, J. Am. Chem. Soc, vol.138, pp.36-39, 2016.

R. D. Smith, Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt 505 oxides, Nat. Commun, vol.8, p.2022, 2017.

K. J. May, Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide 507

, Catalysts. J. Phys. Chem. Lett, vol.3, pp.3264-3270, 2012.

Y. Tan, Insight the effect of surface Co cations on the electrocatalytic oxygen evolution properties of cobaltite 509 spinels, Electrochim. Acta, vol.121, pp.183-187, 2014.

J. T. Mefford, Water electrolysis on La1?xSrxCoO3?? perovskite electrocatalysts, Nat. Commun, vol.7, p.511, 2016.

A. Grimaud, Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution 513 reaction, Nat. Energy, vol.2, p.16189, 2016.

D. González-flores, Heterogeneous Water Oxidation: Surface Activity versus Amorphization Activation in 515

, Cobalt Phosphate Catalysts, Angew. Chem. Int. Ed, vol.54, pp.2472-2476, 2015.

A. Indra, Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat 517

, Crystalline Cobalt Iron Oxides, J. Am. Chem. Soc, vol.136, pp.17530-17536, 2014.

W. Liu, Amorphous Cobalt-Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and 519 Photo-Electrochemical Oxygen Evolution, Adv. Funct. Mater, vol.27, p.1603904, 2017.

M. Bajdich, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water

, J. Am. Chem. Soc, vol.135, pp.13521-13530, 2013.

J. Chivot, New insight in the behaviour of Co-H2O system at 25-150°C, based on revised Pourbaix diagrams

, Corros. Sci, vol.50, pp.62-69, 2008.

B. J. Trze?niewski, Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen 525

, Evolution Catalysts: The Effect of pH on Electrochemical Activity, J. Am. Chem. Soc, vol.137, pp.15112-15121, 2015.

C. Yang, O. Fontaine, J. M. Tarascon, and A. Grimaud, Chemical Recognition of Active Oxygen Species on the 527 Surface of Oxygen Evolution Reaction Electrocatalysts, Angew. Chem. Int. Ed, vol.56, pp.8652-8656, 2017.

M. A. Abreu-sepulveda, The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen 529

, Evolution Reaction in Alkaline Media, J. Electrochem. Soc, vol.163, pp.1124-1132, 2016.

Y. Duan, Tailoring the Co 3d-O 2p Covalency in LaCoO3 by Fe Substitution To Promote Oxygen Evolution 531 Reaction, Chem. Mater, vol.29, pp.10534-10541, 2017.

Y. Zhu, A High-Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo0. 8Fe0. 2O2, Adv. Mater, vol.533, pp.7150-7155, 2015.

Y. G. Zhu, Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a 535 Bifunctional Redox Mediator, J. Am. Chem. Soc, vol.139, pp.6286-6289, 2017.

A. Walsh, Y. Yan, M. M. Al-jassim, and S. Wei, , p.25

H. Dau, P. Liebisch, and M. Haumann, X-ray absorption spectroscopy to analyze nuclear geometry and electronic

K. A. Stoerzinger, L. Qiao, M. D. Biegalski, and Y. Shao-horn, Orientation-Dependent Oxygen Evolution Activities of 546

, Rutile IrO2 and RuO2, J. Phys. Chem. Lett, vol.5, pp.1636-1641, 2014.

B. S. Yeo and A. T. Bell, Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of 548 Oxygen, J. Am. Chem. Soc, vol.133, pp.5587-5593, 2011.

M. W. Kanan, Structure and Valency of a Cobalt?Phosphate Water Oxidation Catalyst Determined by in Situ 550 X-ray Spectroscopy, J. Am. Chem. Soc, vol.132, pp.13692-13701, 2010.

P. Nkeng, Characterization of Spinel-Type Cobalt and Nickel Oxide Thin Films by X-Ray Near Grazing 552

, Transmission and Reflectance Spectroscopies, and Cyclic Voltammetry, J. Electrochem. Soc, vol.142, p.553, 1995.

J. G. Mcalpin, EPR Evidence for Co(IV) Species Produced During Water Oxidation at Neutral pH, J. Am

, Chem. Soc, vol.132, pp.6882-6883, 2010.

M. Görlin, Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution 557

, Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH, J. Am. Chem. Soc, vol.139, pp.2070-2082, 2017.

C. Costentin, T. R. Porter, and J. M. Saveant, How Do Pseudocapacitors Store Energy? Theoretical Analysis and 559 Experimental Illustration, ACS Appl. Mater. Interfaces, vol.9, pp.8649-8658, 2017.

H. Tan, J. Verbeeck, A. Abakumov, and G. Van-tendeloo, Oxidation state and chemical shift investigation in transition 561 metal oxides by EELS, Ultramicroscopy, vol.116, pp.24-33, 2012.

Z. L. Wang, J. Bentley, and N. D. Evans, Valence state mapping of cobalt and manganese using near-edge fine 563 structures, Micron, vol.31, pp.355-362, 2000.

M. Zhang, M. De-respinis, and H. Frei, Time-resolved observations of water oxidation intermediates on a cobalt oxide 565 nanoparticle catalyst, Nat. Chem, vol.6, p.362, 2014.

A. Grimaud, Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution, Nat. Chem, vol.567, issue.9, pp.457-465, 2017.

Y. Lee, Prediction of solid oxide fuel cell cathode activity with first-principles descriptors

. Sci, , vol.4, pp.3966-3970, 2011.

X. Cheng, Oxygen Evolution Reaction on La1-xSrxCoO3 Perovskites: A Combined Experimental and 571

, Theoretical Study of Their Structural, Electronic, and Electrochemical Properties, vol.27, pp.7662-7672, 2015.

A. Grimaud, Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution

, Nat. Commun, vol.4, p.2439, 2013.

Y. Zhou, Superexchange Effects on Oxygen Reduction Activity of Edge-Sharing [Cox Mn1-x O6 ] Octahedra 575 in Spinel Oxide, Adv. Mater, p.1705407, 2018.

W. T. Hong, Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides

, Energy Environ. Sci, vol.10, pp.2190-2200, 2017.

X. Rong, J. Parolin, and A. M. Kolpak, A Fundamental Relationship between Reaction Mechanism and Stability in 579

, Metal Oxide Catalysts for Oxygen Evolution, ACS Catal, vol.6, pp.1153-1158, 2016.

J. B. Goodenough, Perspective on engineering transition-metal oxides, Chem. Mater, vol.26, pp.820-829, 2013.

G. Kresse, J. Hafner, and . Ab-initio, Physical Review B, vol.49, pp.14251-14269, 1994.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.590, pp.1758-1775, 1999.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

T. W. , S. S. , and J. , , vol.597

, Tier 2 Grant (MOE2017-T2-1-009) and the Singapore National Research Foundation under its Campus for Research 598

, Excellence and Technological Enterprise (CREATE) programme. Authors appreciate the Facility for Analysis, p.599

, Testing and Simulation (FACTS) in Nanyang Technological University for materials characterizations 600 and appreciate the XAFCA beamline of the Singapore Synchrotron Light Source for XAFS characterization

T. W. , S. S. , and Z. , prepared the materials and 604 performed electrochemical and XRD measurements. S.S. help designed the set-up for in-situ XAS measurement. S.X. 605 and T.W. carried out the XAS measurement. Y.D. and T.W. processed and analyzed the XAS data. J.S. worked on the 606 DFT calculations and analysis