N. M. Markovic, Electrocatalysis: Interfacing Electrochemistry, Nat. Mater, vol.12, issue.2, pp.101-102, 2013.

J. Tarascon and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, vol.414, issue.6861, pp.359-367, 2001.

M. Armand and J. Tarascon, Building Better Batteries, Nature, p.652, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00258391

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc, vol.144, issue.4, pp.1188-1194, 1997.

J. Han, Y. Huang, and J. B. Goodenough, New Anode Framework for Rechargeable Lithium Batteries, Chem. Mater, vol.23, issue.8, pp.2027-2029, 2011.

K. Park, B. Yu, J. Jung, Y. Li, W. Zhou et al., Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12, Chem. Mater, vol.28, issue.21, pp.8051-8059, 2016.

C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-horn et al., Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels, vol.2017, p.1606800

W. T. Hong, R. E. Welsch, and Y. Shao-horn, Descriptors of Oxygen-Evolution Activity for Oxides: A Statistical Evaluation, J. Phys. Chem. C, issue.1, pp.78-86, 2016.

J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-horn, A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science (80-. ), vol.334, pp.1383-1385, 2011.

S. Trasatti, Work Function, Electronegativity, and Electrochemical Behaviour of Metals, J. Electroanal. Chem. Interfacial Electrochem, vol.39, issue.1, pp.163-184, 1972.

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen et al., Trends in the Exchange Current for Hydrogen Evolution, J. Electrochem. Soc, vol.152, issue.3, p.23, 2005.

W. Sheng, M. Myint, J. G. Chen, and Y. Yan, Correlating the Hydrogen Evolution Reaction Activity in Alkaline Electrolytes with the Hydrogen Binding Energy on Monometallic Surfaces, Energy Environ. Sci, vol.2013, issue.5, pp.1509-1512

M. G. Evans and M. Polanyi, Further Considerations on the Thermodynamics of Chemical Equilibria and Reaction Rates, Trans. Faraday Soc, vol.32, issue.0, pp.1333-1360, 1936.

I. C. Man, H. Su, F. Calle-vallejo, H. A. Hansen, J. I. Martínez et al., Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, ChemCatChem, vol.2011, issue.7, pp.1159-1165

H. B. Beer, The Invention and Industrial Development of Metal Anodes, J. Electrochem. Soc, vol.127, issue.8, pp.303-307, 1980.

S. Trasatti, Electrocatalysis by Oxides-attempt at a Unifying Approach, J. Electroanal. Chem. Interfacial Electrochem, vol.111, issue.1, pp.125-131, 1980.

S. H. Chang, N. Danilovic, K. Chang, R. Subbaraman, A. P. Paulikas et al., Functional Links between Stability and Reactivity of Strontium Ruthenate Single Crystals during Oxygen Evolution, Nat. Commun, vol.5, p.4191, 2014.

M. Risch, A. Grimaud, K. J. May, K. A. Stoerzinger, T. J. Chen et al., Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS, J. Phys. Chem. C, vol.2013, issue.17, pp.8628-8635

J. Rossmeisl, A. Logadottir, and J. K. Nørskov, Electrolysis of Water on (Oxidized) Metal Surfaces, Chem. Phys, vol.319, issue.1, pp.178-184, 2005.

W. Hong, K. A. Stoerzinger, Y. Lee, L. Giordano, A. J. Grimaud et al., Charge-Transfer-Energy-Dependent Oxygen Evolution Reaction Mechanisms for Perovskite Oxides, Energy Environ. Sci, vol.2017, issue.10, pp.2190-2200

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, and S. Horch, Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science (80-. ), pp.100-102, 2007.

X. Chen, I. T. Mccrum, K. A. Schwarz, M. J. Janik, and M. T. Koper, Co-Adsorption of Cations as the Cause of the Apparent PH Dependence of Hydrogen Adsorption on a Stepped Platinum Single-Crystal Electrode, vol.129, pp.15221-15225, 2017.

I. Ledezma-yanez, W. D. Wallace, P. Sebastián-pascual, V. Climent, J. M. Feliu et al., Interfacial Water Reorganization as a PH-Dependent Descriptor of the Hydrogen Evolution Rate on Platinum Electrodes, Nat. Energy, vol.2017, issue.4, p.17031

S. H. Chang, J. G. Connell, N. Danilovic, R. Subbaraman, K. Chang et al., Activitystability Relationship in the Surface Electrochemistry of the Oxygen Evolution Reaction, Faraday Discuss, vol.176, pp.125-133, 2015.

K. J. May, C. E. Carlton, K. A. Stoerzinger, M. Risch, J. Suntivich et al., Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts, J. Phys. Chem. Lett, vol.2012, issue.22, pp.3264-3270

D. Kuo, H. Paik, J. Kloppenburg, B. Faeth, K. M. Shen et al., Measurements of Oxygen Electroadsorption Energies and Oxygen Evolution Reaction on RuO2 (110): A Discussion of the Sabatier Principle and Its Role in Electrocatalysis, J. Am. Chem. Soc, vol.140, issue.50, pp.17597-17605, 2018.

Y. Kim, P. P. Lopes, S. Park, A. Lee, J. Lim et al., Balancing Activity, Stability and Conductivity of Nanoporous Core-Shell Iridium/Iridium Oxide Oxygen Evolution Catalysts, Nat. Commun, vol.2017, issue.1, p.1449

A. A. El-moneim, N. Kumagai, K. Asami, and K. Hashimoto, Nanocrystalline Manganese-Molybdenum-Tungsten Oxide Anodes for Oxygen Evolution in Acidic Seawater Electrolysis, Mater. Trans, vol.46, issue.2, pp.309-316, 2005.

X. Yang, H. Li, A. Lu, S. Min, Z. Idriss et al., Highly Acid-Durable Carbon Coated Co3O4 Nanoarrays as Efficient Oxygen Evolution Electrocatalysts, Nano Energy, vol.25, pp.42-50, 2016.

C. Costentin and D. G. Nocera, Self-Healing Catalysis in Water, Proc. Natl. Acad. Sci, vol.114, pp.13380-13384, 2017.

Y. Surendranath, M. W. Kanan, and D. G. Nocera, Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral PH, J. Am. Chem. Soc, issue.46, pp.16501-16509, 2010.

R. Frydendal, E. A. Paoli, I. Chorkendorff, J. Rossmeisl, and I. E. Stephens, Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2, Adv. Energy Mater, vol.2015, issue.22, p.1500991

L. Zhou, A. Shinde, J. H. Montoya, A. Singh, S. Gul et al., Rutile Alloys in the Mn-Sb-O System Stabilize Mn 3+ To Enable Oxygen Evolution in Strong Acid, ACS Catal, vol.8, issue.12, pp.10938-10948, 2018.

E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B. J. Kim et al., Dynamic Surface Self-Reconstruction Is the Key of Highly Active Perovskite Nano-Electrocatalysts for Water Splitting, Nat. Mater, vol.2017, issue.9, pp.925-931

Y. Duan, S. Sun, Y. Sun, S. Xi, X. Chi et al., Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation, Adv. Mater, issue.12, p.1807898, 2019.

C. C. Mccrory, S. Jung, J. C. Peters, and T. F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, J. Am. Chem. Soc, vol.135, issue.45, pp.16977-16987, 2013.

F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance, J. Am. Chem. Soc, vol.140, issue.25, pp.7748-7759, 2018.

B. Han, K. A. Stoerzinger, V. Tileli, A. D. Gamalski, E. A. Stach et al., Nanoscale Structural Oscillations in Perovskite Oxides Induced by Oxygen Evolution, Nat. Mater, vol.2017, issue.1, p.121

Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Design of Electrocatalysts for Oxygen-and Hydrogen-Involving Energy Conversion Reactions, Chem. Soc. Rev, vol.44, issue.8, pp.2060-2086, 2015.

F. Dionigi and P. Strasser, NiFe-Based (Oxy) Hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes, Adv. Energy Mater, vol.6, issue.23, p.1600621, 2016.

Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-horn, Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions, J. Phys. Chem. Lett, vol.2012, issue.3, pp.399-404

S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers et al., The Stability Number as a Metric for Electrocatalyst Stability Benchmarking, vol.1, pp.508-515, 2018.

H. G. Sanchezcasalongue, M. L. Ng, S. Kaya, D. Friebel, H. Ogasawara et al., InSitu Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction, Angew. Chemie -Int. Ed, vol.53, issue.28, pp.7169-7172, 2014.

A. Grimaud, A. Demortière, M. Saubanère, W. Dachraoui, M. Duchamp et al., Activation of Surface Oxygen Sites on an Iridium-Based Model Catalyst for the Oxygen Evolution Reaction, Nat. Energy, vol.2, p.16189, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471366

H. N. Nong, T. Reier, H. Oh, M. Gliech, P. Paciok et al., A Unique Oxygen Ligand Environment Facilitates Water Oxidation in Hole-Doped IrNiOx Core-shell Electrocatalysts, Nat. Catal, vol.1, issue.11, pp.841-851, 2018.

V. A. Saveleva, L. Wang, D. Teschner, T. Jones, A. S. Gago et al., Operando Evidence for a Universal Oxygen Evolution Mechanism on Thermal and Electrochemical Iridium Oxides, J. Phys. Chem. Lett, vol.2018, issue.11, pp.3154-3160
URL : https://hal.archives-ouvertes.fr/hal-02360209

A. Grimaud, K. J. May, C. E. Carlton, Y. Lee, M. Risch et al., Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution, Nat. Commun, 2013.

S. Liu, H. Luo, Y. Li, Q. Liu, and J. L. Luo, Structure-Engineered Electrocatalyst Enables Highly Active and Stable Oxygen Evolution Reaction over Layered Perovskite LaSr3Co1.5Fe1.5O10-?, Nano Energy, vol.40, pp.115-121, 2017.

W. Xia, Q. Zhou, H. Xu, L. Chen, and J. He, Magnetic and Transport Properties of the Double Perovskite Sr2FeRuO6, Phys. B Condens. Matter, vol.403, pp.2189-2192, 2008.

R. P. Forslund, W. G. Hardin, X. Rong, A. M. Abakumov, D. Filimonov et al., Exceptional Electrocatalytic Oxygen Evolution via Tunable Charge Transfer Interactions in La0.5Sr1.5Ni1?xFexO4±? Ruddlesden-Popper Oxides, Nat. Commun, vol.2018, issue.1, p.3150

Y. Chen, H. Li, J. Wang, Y. Du, S. Xi et al., Exceptionally Active Iridium Evolved from a Pseudo-Cubic Perovskite for Oxygen Evolution in Acid, Nat. Commun, vol.10, issue.1, p.572, 2019.

D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli et al., Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction, Chem. Mater, vol.2017, issue.12, pp.5182-5191

Y. Yoon, B. Yan, and Y. Surendranath, Suppressing Ion Transfer Enables Versatile Measurements of Electrochemical Surface Area for Intrinsic Activity Comparisons, J. Am. Chem. Soc, vol.140, issue.7, pp.2397-2400, 2018.

C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao et al., Approaches for Measuring the Surface Areas of Metal Oxide Electrocatalysts for Determining Their Intrinsic Electrocatalytic Activity, Chem. Soc. Rev, vol.48, issue.9, pp.2518-2534, 2019.

S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami et al., Covalency-Reinforced Oxygen Evolution Reaction Catalyst, Nat. Commun, vol.6, p.8249, 2015.

D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal et al., Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS, Chem. Mater, vol.28, issue.18, pp.6591-6604, 2016.

J. Gao, C. Xu, S. Hung, W. Liu, W. Cai et al., Breaking Long-Range Order in Iridium Oxide by Alkali Ion For, J. Am. Chem. Soc, vol.141, pp.3014-3023, 2019.

F. Godínez-salomón, L. Albiter, S. M. Alia, B. S. Pivovar, L. E. Camacho-forero et al., Self-Supported Hydrous Iridium-Nickel Oxide Two-Dimensional Nanoframes for High Activity Oxygen Evolution Electrocatalysts, ACS Catal, vol.8, issue.11, pp.10498-10520, 2018.

R. Zhang, N. Dubouis, M. Osman, W. Ben;-yin, M. T. Sougrati et al., A Dissolution / Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media Communications Angewandte, Angew. Chemie -Int. Ed, vol.2019, pp.1-6

J. D. Blakemore, N. D. Schley, G. W. Olack, C. D. Incarvito, G. W. Brudvig et al., Anodic Deposition of a Robust Iridium-Based Water-Oxidation Catalyst from Organometallic Precursors, Chem. Sci, vol.2011, issue.1, pp.94-98

P. Pearce, C. Yang, A. Iadecola, J. Rodriguez-carvajal, G. Rousse et al., Revealing the Reactivity of the Iridium Trioxide Intermediate for the Oxygen Evolution Reaction in Acidic Media, Chem. Mater, issue.15, pp.5845-5855, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02270767

A. J. Perez, R. Beer, Z. Lin, E. Salager, P. Taberna et al., Proton Ion Exchange Reaction in Li3IrO4 : A Way to New H3+xIrO4 Phases Electrochemically Active in Both Aqueous and Nonaqueous Electrolytes, Adv. Energy Mater, vol.8, issue.13, p.1702855, 2018.

O. Kasian, J. P. Grote, S. Geiger, S. Cherevko, and K. J. Mayrhofer, The Common Intermediates of Oxygen Evolution and Dissolution Reactions during Water Electrolysis on Iridium

, Angew. Chemie -Int. Ed, vol.57, issue.9, pp.2488-2491, 2018.

R. Berthelot, D. Carlier, and C. Delmas, Electrochemical Investigation of the P2-NaxCoO2 Phase Diagram, Nat. Mater, p.74, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00551676

S. Mariyappan, A. Abakumov, D. Foix, G. Rousse, K. Ramesha et al., Origin of Voltage Decay in High-Capacity Layered Oxide Electrodes, Nat. Mater, vol.14, p.230, 2015.

W. Sheng, H. A. Gasteiger, and Y. Shao-horn, Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes, J. Electrochem. Soc, issue.11, p.1529, 2010.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K. Chang, M. Uchimura et al., Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li + -Ni(OH)2-Pt Interfaces, Science, vol.334, issue.6060, pp.1256-1260, 2011.

D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic et al., Improving the Hydrogen Oxidation Reaction Rate by Promotion of Hydroxyl Adsorption, Nat. Chem, vol.2013, issue.4, pp.300-306

E. Gileadi, Physical Electrochemistry, 2011.

T. Shinagawa, A. T. Garcia-esparza, and K. Takanabe, Aqueous Electrocatalysis for Energy Conversion. Sci. Rep, vol.5, p.13801, 2015.

Y. Zheng, Y. Jiao, A. Vasileff, and S. Qiao, The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts, Angew. Chemie Int. Ed, vol.57, issue.26, pp.7568-7579, 2018.

A. R. Zeradjanin, A. Vimalanandan, G. Polymeros, A. A. Topalov, K. J. Mayrhofer et al., Balanced Work Function as a Driver for Facile Hydrogen Evolution Reaction -Comprehension and Experimental Assessment of Interfacial Catalytic Descriptor, Phys. Chem. Chem. Phys, vol.19, issue.26, pp.17019-17027, 2017.

J. Rossmeisl, K. Chan, E. Skúlason, M. E. Björketun, and V. Tripkovic, On the PH Dependence of Electrochemical Proton Transfer Barriers, Catal. Today, vol.262, pp.36-40, 2016.

A. Grimaud, A. Demortière, M. Saubanere, W. Dachraoui, M. Duchamp et al., Activation of Surface Oxygen Sites on an Iridium-Based Model Catalyst for the Oxygen Evolution Reaction, Nat. Energy, vol.2017, issue.1, p.16189
URL : https://hal.archives-ouvertes.fr/hal-01471366

A. Grimaud, O. Diaz-morales, B. Han, W. T. Hong, Y. Lee et al., Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution, Nat. Chem, vol.2017, issue.5, p.457

J. O. Bockris and T. Otagawa, Mechanism of Oxygen Evolution on Perovskites, J. Phys. Chem, vol.87, issue.15, pp.2960-2971, 2002.

B. Huang, S. Muy, S. Feng, Y. Katayama, Y. Lu et al., Non-Covalent Interactions in Electrochemical Reactions and Implications in Clean Energy Applications, Phys. Chem. Chem. Phys, vol.20, issue.23, pp.15680-15686, 2018.

A. B. Anderson, J. Roques, S. Mukerjee, V. S. Murthi, and N. Markovic, Stamenkovic, V. Activation Energies for Oxygen Reduction on Platinum Alloys: Theory and Experiment

, J. Phys. Chem. B, vol.109, issue.3, pp.1198-1203, 2005.

A. R. Zeradjanin, Is a Major Breakthrough in the Oxygen Electrocatalysis Possible?, Curr. Opin. Electrochem, vol.9, pp.214-223, 2018.

T. Shinagawa and K. Takanabe, New Insight into the Hydrogen Evolution Reaction under Buffered Near-Neutral PH Conditions: Enthalpy and Entropy of Activation, J. Phys. Chem. C, issue.42, pp.24187-24196, 2016.

T. Bligaard, J. K. Nørskov, S. Dahl, and J. Matthiesen,

C. H. Christensen and J. Sehested, The Brønsted-Evans-Polanyi Relation and the Volcano Curve in Heterogeneous Catalysis, J. Catal, vol.224, issue.1, pp.206-217, 2004.

M. T. Koper, Thermodynamic Theory of Multi-Electron Transfer Reactions: Implications for Electrocatalysis, J. Electroanal. Chem, vol.660, issue.2, pp.254-260, 2011.

J. O. Bockris and T. Otagawa, Mechanism of Oxygen Evolution on Perovskites, J. Phys. Chem, vol.87, issue.15, pp.2960-2971, 1983.

C. Yang, M. Batuk, Q. Jacquet, G. Rousse, W. Yin et al., Revealing PH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction, ACS Energy Lett, vol.3, issue.12, pp.2884-2890, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01958610

P. L. Geissler, Autoionization in Liquid Water, Science, issue.5511, pp.2121-2124, 2001.

D. Muñoz-santiburcio and D. Marx, Nanoconfinement in Slit Pores Enhances Water Self-Dissociation, Phys. Rev. Lett, vol.2017, issue.5, p.56002

M. Moqadam, A. Lervik, E. Riccardi, V. Venkatraman, B. Ka et al., Local Initiation Conditions for Water Autoionization, Proc. Natl. Acad. Sci, vol.115, pp.4569-4576, 2018.

D. Kuo, J. K. Kawasaki, J. N. Nelson, J. Kloppenburg, G. Hautier et al., Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO2 (110), J. Am. Chem. Soc, vol.2017, issue.9, pp.3473-3479

C. Yang, O. Fontaine, J. Tarascon, and A. Grimaud, Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts, vol.129, pp.8778-8782, 2017.

A. C. Garcia, T. Touzalin, C. Nieuwland, N. Perini, and M. T. Koper, Enhancement of Oxygen Evolution Activity of NiOOH by Electrolyte Alkali Cations, Angew. Chemie Int. Ed, 2019.

C. Yang, C. Laberty-robert, D. Batuk, G. Cibin, A. Chadwick et al., Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction, J. Phys. Chem. Lett, vol.2017, issue.15, pp.3466-3472
URL : https://hal.archives-ouvertes.fr/hal-02129160

N. Dubouis, A. Serva, E. Salager, M. Deschamps, M. Salanne et al., The Fate of Water at the Electrochemical Interfaces: Electrochemical Behavior of Free Water Versus Coordinating Water, J. Phys. Chem. Lett, vol.2018, issue.23, pp.6683-6688
URL : https://hal.archives-ouvertes.fr/hal-01955801

G. Chen, Y. Zhu, H. M. Chen, Z. Hu, S. Hung et al., An Amorphous Nickel-Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction, Adv. Mater, issue.28, p.31, 2019.

G. Chen, Z. Hu, Y. Zhu, B. Gu, Y. Zhong et al., A Universal Strategy to Design Superior Water-Splitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors, Adv. Mater, vol.30, issue.43, p.1804333, 2018.

Y. Zhu, W. Zhou, J. Sunarso, Y. Zhong, and Z. Shao, Phosphorus-Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution, Adv. Funct. Mater, vol.26, issue.32, pp.5862-5872, 2016.

K. E. Gutowski, G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski et al., Controlling the Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations, vol.125, pp.6632-6633, 2003.

N. J. Bridges, K. E. Gutowski, and R. D. Rogers, Investigation of Aqueous Biphasic Systems Formed from Solutions of Chaotropic Salts with Kosmotropic Salts (Salt-salt ABS), Green Chem, vol.9, issue.2, pp.177-183, 2007.

Y. Marcus, Effect of Ions on the Structure of Water: Structure Making and Breaking, vol.109, pp.1346-1370, 2009.

N. Dubouis, C. Park, M. Deschamps, S. Abdelghani-idrissi, M. Kandu? et al., Chasing Aqueous Biphasic Systems from Simple Salts by Exploring the LiTFSI/LiCl/H2O Phase Diagram, ACS Cent. Sci, vol.2019, issue.4, pp.640-643
URL : https://hal.archives-ouvertes.fr/hal-02322412

, ToC Ronghuan Zhang is currently a postdoctoral researcher in the Solid-State Chemistry and Energy lab under Prof. Jean-Marie Tarascon and Dr. Alexis Grimaud. She received her Ph.D. degree in inorganic chemistry from the University of Oxford under the supervision of Prof, Her recent research focuses on the exploration of novel Ir-based catalysts for water splitting

E. Paul, His work is dedicated to the study of the charge compensation mechanism by lattice oxygen during the insertion of alkali ions and protons in iridates for battery and water splitting applications by means of diffraction and spectroscopic techniques both ex situ and operando

, She is currently a joint Ph.D. candidate in materials engineering at Nanyang Technologivcal University and Collège de France under the supervision of Assoc, Prof. Zhichuan J. Xu and Dr. Alexis Grimaud

, He is currently a Ph.D. candidate in physical chemistry at Collège de France and Sorbonne Université, working in the Solid-State Chemistry and Energy laboratory under Prof. Jean-Marie Tarascon and Dr, Nicolas Dubouis holds an MSc. degree in Chemistry from the École normale supérieure (Paris)

, He is currently a Ph.D. student at the Collège de France under the supervision of Professor Jean-Marie Tarascon. His work deals with the design of new materials for energy applications, Thomas Marchandier received his MSc. degree from the Ecole normale Supérieur Paris-Saclay

, His research efforts are paid toward the understanding of electrochemical interfaces that are relevant to energy storage and conversion devices with a special emphasis on transition metal oxides electronic properties and aqueous electrolytes solvation structure