Electric-Field Control of Spin–Orbit Torques in WS2/Permalloy Bilayers
Weiming Lv, Zhiyan Jia, Bochong Wang, Yuan Lu, Xin Luo, Baoshun Zhang, Zhongming Zeng, Zhongyuan Liu

To cite this version:
Weiming Lv, Zhiyan Jia, Bochong Wang, Yuan Lu, Xin Luo, et al.. Electric-Field Control of Spin–Orbit Torques in WS2/Permalloy Bilayers. ACS Applied Materials & Interfaces, Washington, D.C.: American Chemical Society, 2018, 10, pp.2843. 10.1021/acsami.7b16919. hal-02388319

HAL Id: hal-02388319
https://hal.archives-ouvertes.fr/hal-02388319
Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Electric-field control of spin-orbit torques in WS$_2$/permalloy bilayers

Weiming Lv,† Zhiyan Jia,‡ Xin Luo,† Yuan Lu, Bochong Wang,‡ Zhongming Zeng,* † Zhongyuan Liu*,‡

† Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China
‡ State Key Laboratory of Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, BP 239, 54506 Vandœuvre, France

ABSTRACT: Transition metal dichalcogenides (TMDs) have drawn great attention owing to their potential for electronic, optoelectronic and spintronics applications. In TMDs/ferromagnetic bilayers, efficient spin current can be generated by the TMDs for the manipulation of magnetic moment in the ferromagnetic layer. In this work, we report on the electric-field modulated spin-orbit torques (SOT) in WS$_2$/NiFe (Py) bilayers by spin-torque ferromagnetic resonance technique (ST-FMR). It is found that the RF current can induce a spin accumulation at WS$_2$/Py interface due to the interfacial Rashba-Edelstein effect. More importantly, the SOT ratio between field-like torque and anti-damping-like torque can be effectively controlled by applying back-gate voltage in WS$_2$/ NiFe bilayers.
These results provide a strategy for controlling spin-orbit torque with field-effect by using semiconducting TMDs.

KEYWORDS: spintronics, spin-orbit torques, transition metal dichalcogenides, Rashba-Edelstein effect, electric-field

With the development of modern magnetic memory and logic devices, the exploration of efficient and low energy consumption mechanisms to change the magnetization states has become a key issue. An effective way is utilizing the strong spin–orbit interactions (SOIs) to induce spin current which can be used to exert spin-orbit torques (SOT) on adjacent magnetic layer for realizing the manipulation and switching of magnetization. Previous studies have confirmed the influence of SOIs in layered heavy metal/ferromagnet bilayers through the spin Hall effect in heavy metal, such as Pt, Ta, and W, and other interface spin-orbit effect in ferromagnet, such as Rashba-Edelstein effect, which can produce strong current-driven torques on the magnetic layer. Recent experiments in the material search for providing more efficient spin-orbit-induced torques have demonstrated that a large SOT can exist in topological insulators and two-dimensional (2D) materials. Transition metal dichalcogenides (TMDs) as one kind of 2D materials, such as MX$_2$ (M = Mo, W; X = S, Se, Te), have been extensively studied in the electronic and optoelectronic field due to their layered structure and unique band structure depending on thickness. Moreover, the strong SOC effect and the breaking of inversion symmetry for monolayer TMDs also promote the research works on their spintronic applications, especially for the generation of SOT. Current induced field-like and damping-like torques were observed in Py/MoS$_2$ bilayers and the strong SOT exhibited purely interfacial nature. A further study has experimentally shown that one can change the allowed
symmetries of SOT in spin-source/ferromagnet bilayer devices with low crystalline symmetry. An out-of-plane anti-damping torque was generated when the current was applied along a low-symmetry axis of WTe$_2$/Py bilayers which provided a new strategy to control SOT.31

Electric-field control of magnetization dynamics has been widely studied for realizing high-performance, low-power spintronic memory and logic devices. For example, the electric-field control of ferromagnetism in magnetic semiconductors through modulation of the carrier concentration,32 electric-field manipulation of magnetization reversal by using multiferroics,33 and voltage-controlled magnetic anisotropy in ultrathin ferromagnet/oxide junctions.34 The electric-field control of SOT has been reported in a Cr-doped topological insulator thin film using a top-gate field-effect transistor structure, in which the SOT strength can be modulated by a factor of four within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film.35 However, the related research of electric-field control of SOT in 2D materials is still inadequate. Monolayer WS$_2$ is a n-type semiconductor of 2D material which shows excellent electronic and optoelectronic properties with relatively high mobility up to \sim100 cm2Vs$^{-1}$ and on/off ratio up to \sim108.36,37 It is possible to change the carrier distribution in monolayer WS$_2$ by applying a back-gate voltage through the dielectric layer. And, the WS$_2$ monolayer has extremely strong SOIs: several hundreds of millivolts in the valence bands and several tens of millivolts in the conduction band.20 Therefore, it is much interesting to investigate the current induced spin transfer torque resonance phenomenon and the electric-field control of SOT effect in WS$_2$/Permalloy bilayer device.

In this work, high quality WS$_2$ monolayers were grown using CVD method and the WS$_2$/permalloy bilayer device was fabricated by electron beam evaporation and photolithography technique. The effect of SOT in WS$_2$/ NiFe (Py) bilayer was investigated by
the spin-torque ferromagnetic resonance (ST-FMR). Current induced field-like torque (τ_\perp) and anti-damping-like torque (τ_\parallel) were observed. Furthermore, the ratio of $\tau_\perp/\tau_\parallel$ in WS$_2$/Py bilayer could be modulated by applying back-gate voltage which can adjust the semiconducting nature of WS$_2$. Our work provided a strategy to electrically control SOT by utilizing the semiconducting TMDs.

RESULTS AND DISCUSSION

High-quality large-area monolayer WS$_2$ was grown on Si(p++)/SiO$_2$ substrate using CVD method. The structure and morphology were characterized by optical microscopy, atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopy. As shown in Figure 1a, the distinct contrast of the optical image indicates a triangular shape of as-grown WS$_2$ monolayers with size up to several tens and hundreds of μm.38,39 By AFM measurement (see Figure 1b) with a selected triangular WS$_2$ sample, a typical height of WS$_2$ is determined to be ~0.83 nm which is consistent with the theoretically and experimentally reported values of monolayer WS$_2$.40 Figure 1c shows the Raman spectrum of WS$_2$ with characteristic modes of E_{12g} and A_{1g} at 351 cm$^{-1}$ and 418 cm$^{-1}$, respectively. The peak frequency difference of 67 cm$^{-1}$ indicates a clear signature of monolayer WS$_2$.41 Figure 1d gives a PL spectrum of the as-grown WS$_2$, showing a single characteristic peak at 630 nm (1.97 eV), which also indicates the WS$_2$ is a monolayer.42

For the fabrication of WS$_2$/Py bilayer device, the Py (Ni$_{81}$Fe$_{19}$) was deposited directly on the surface of WS$_2$ with ~10 nm thickness to form pure interfacial contact. Photolithography and etching process were used to obtain the WS$_2$/Py bilayer stripe with a size of 45 μm in length and 8 μm in width. The ground-signal-ground (GSG) electrical contacts were patterned by
photolithography and Ni (10 nm)/Au (100 nm) metal electrode was deposited using electron beam evaporation. Moreover, pure Py device was fabricated on the same Si(p++)/SiO$_2$ substrate using the same technological process for comparison. This technological process can avoid the contact of WS$_2$ with photoresist and is different from the process used in the work of MoS$_2$/Py bilayer.30 Figure 2a shows the optical image of one representative WS$_2$/Py bilayer device including contact GSG pads and circuit of the ST-FMR measurement. The ST-FMR technique5,43 was used to measure the SOT produced by WS$_2$/Py bilayers at room temperature. Figure 2b illustrates the schematic device geometry and circuit of electrical-field control of the ST-FMR measurement. A RF current with fixed microwave frequency and in-plane magnetic field were applied through the bilayer at the ferromagnetic resonance condition. The oscillating current-induced torque causes the Py magnetization to precess, yielding resistance oscillations due to the anisotropic magnetoresistance (AMR) of Py layer. This change in resistance mixes with the alternating current to create a DC voltage, V_{dc}, across the stripe.

As shown in Figure 2b, two vector components of the current-induced torque, in the $\hat{m} \times (\hat{y} \times \hat{m})$ (∥, in-plane) and $(\hat{y} \times \hat{m})$ (⊥, perpendicular) directions, are respectively obtained from the amplitudes of the symmetric and anti-symmetric components of the resonance lineshape.18,30,31 We interpret the ST-FMR signals within a macrospin approximation for the magnetization direction using the Landau-Lifschitz-Gilbert-Slonczewski (LLGs) equation of motion.5 The magnetization equation of motion can be written as follows:

$$\frac{d\hat{m}}{dt} = -\gamma \hat{m} \times H + \alpha \hat{m} \times \frac{d\hat{m}}{dt} + \gamma \tau_\perp \hat{m} \times \hat{y} + \gamma \tau_\parallel \hat{m} \times (\hat{y} \times \hat{m})$$ \hspace{1cm} (1)

where γ is the gyromagnetic ratio, α is the Gilbert damping parameter and H is the applied magnetic field.30 The out-of-plane τ_\perp is the magnitude of the field applying field-like torque and
the in-plane τ_\parallel is the magnitude of the field applying anti-damping-like torque. The ST-FMR mixing voltage has the following form:

$$V_{dc} = V_S \frac{\Delta H^2}{4(H-H_0)^2+\Delta H^2} + V_A \frac{4\Delta H(H-H_0)}{4(H-H_0)^2+\Delta H^2}$$ \hspace{1cm} (2)$$

where H_0 is the applied magnetic field at ferromagnetic resonance, and ΔH is the linewidth.31,44

The symmetric and anti-symmetric amplitudes, V_S and V_A, can be obtained by fitting eq 2 to measured DC voltage as a function of applied magnetic field. The symmetric and anti-symmetric amplitudes, V_S and V_A, are related to the two components of torque as follows:31

$$V_S = -\frac{I_{RF}}{2} \left(\frac{dR}{d\phi} \right) \frac{1}{\alpha \gamma (2H_0 + \mu_0 M_{eff})} \tau_\parallel$$ \hspace{1cm} (3)$$

$$V_A = -\frac{I_{RF}}{2} \left(\frac{dR}{d\phi} \right) \frac{\sqrt{\gamma \mu_0 M_{eff}/H_0}}{\alpha \gamma (2H_0 + \mu_0 M_{eff})} \tau_\perp$$ \hspace{1cm} (4)$$

The torque ratio $\tau_\perp/\tau_\parallel$ can be obtained from eq 3 and eq 4 as follows:

$$\frac{\tau_\perp}{\tau_\parallel} = \frac{V_A}{V_S} \frac{1}{\sqrt{1 + \mu_0 M_{eff}/H_0}}$$ \hspace{1cm} (5)$$

where μ_0 is the permeability in vacuum, M_{eff} is the effective saturation magnetization of Py and can be obtained from the frequency dependent of H_0 using the Kittel formula.32,43

$$f = \frac{\gamma}{2\pi} \sqrt{\frac{H_0(\gamma + \mu_0 M_{eff})}{\gamma + \mu_0 M_{eff}}}$$ \hspace{1cm} (6)$$

Figure 3a shows the V_{dc} comparison for WS\textsubscript{2}/Py and pure Py device and the fitted symmetric and antisymmetric amplitude components of the line shape. The in-plane magnetic field was oriented at 45° relative to the length direction of the Py stripe and the applied microwave power and frequency is 10 dBm and 5 GHz, respectively. In comparison with the pure Py device, the amplitudes of the symmetric and antisymmetric components of WS\textsubscript{2}/Py both increase obviously, which is similar to that of MoS\textsubscript{2}/Py layer.30 For the pure Py device, normally we should observe no resonance signal at all. However, a very small and symmetric signal was
observed in the Py (10 nm) sample. The symmetric signal may arise from the relative phase of microwaves or an Oersted field due to nonuniform current flow at the electrode contacts which lead to a self-induced precession of the magnetization. Figure 3b shows the typical ST-FMR spectra for a WS₂/Py bilayer excited at different rf frequency from 4 to 10 GHz and fixed power of 15 dBm. The obtained f vs. resonant field curve is well fitted by Kittel formula eq 6 as shown in Figure 3c. From the fitting, we obtained $M_{\text{eff}} = 949.4 \pm 18.2$ KAm$^{-1}$ and $4\pi M_{\text{eff}} = 1.19$ T, which is comparable to commonly used Py (~1T). The microwave frequency dependence of the torque ratio $\tau_{\perp}/\tau_{\parallel}$ was calculated using eq 5 as shown in Figure 3e. The values of torque ratio $\tau_{\perp}/\tau_{\parallel}$ vary obviously from ~0.1 to ~0.5 with increasing frequency because the ratio $\tau_{\perp}/\tau_{\parallel}$ is directly proportional to the resonant field H_0. The strong spin-orbit coupling and broken vertical symmetry together with the intrinsic inversion symmetry breaking in the monolayer WS₂ could give rise to a large Rashba-type spin splitting in our WS₂/Py bilayer. Such type of spin-splitting can give rise to a field-like torque base on the theoretical calculation. In the measurement, large anti-symmetric voltages V_A indicate the existence of significant filed-like torques. And the potent SOT is obtained which supports the interfacial nature of the torque in WS₂/Py bilayer device. The ST-FMR measurements under different microwave power were also performed with a fixed frequency at 5 GHz. The amplitude of V_{dc} increase with applied microwave power, but the resonant fields have little change. The values of torque ratio $\tau_{\perp}/\tau_{\parallel}$ are around 0.19 with tiny fluctuation, seen in Figure S1.

Then, we performed comprehensive full angular (ϕ) dependence of the ST-FMR signal V_{dc}. The ST-FMR measurement was conducted at a series of angle ϕ from 0° to 360° at fixed frequency of 5 GHz and fixed power of 15 dBm. By fitting the ST-FMR spectra using eq 2, the symmetric ST-FMR resonance components V_S and antisymmetric components V_A as a function
of in-plane magnetic-field angle ϕ are obtained, shown in Figure 4a and b, respectively. Accordingly, in the heavy-metal/ferromagnet bilayer, the current induced torque amplitudes follow a $\cos \phi$ behavior due to the spin Hall effect, the Rashba-Edelstein effect, or the Oersted field.5, 18 The anisotropic magnetoresistance (AMR) in Permalloy follows an $\cos 2\phi$ angular dependence, which enters V_{dc} as $dR/d\phi \sim \sin 2\phi$. Two contributions yield a same angular dependence for the symmetric and anti-symmetric ST-FMR components. Therefore, V_S and V_A can be well fitted by the $\cos \phi \sin 2\phi$ behavior. The $\cos \phi \sin 2\phi$ angular dependence behavior confirms the FMR rectification is due to the interaction of the AMR mixed on the resonance with microwave.

Figure 5a shows the ST-FMR resonances signals V_{dc} at a series of back-gate voltage from -80 V to 80 V at fixed frequency 5 GHz and fixed power 15 dBm. When the external field is over 260 Oe, there is no obvious difference in the lineshape under different back-gate voltage; but below that, the curves shift downwards at back-gate from -80 V to 40 V and shift upwards from 40 V to 80 V. We also applied back-gate voltage on the Py/SiO$_2$/Si reference sample for the same measurement as shown in Figure S2. The lineshape remains unchanged which means influence of back-gate electric field on FMR measurement can be excluded. Taking the same analysis process, the ST-FMR measurement signals are fitted to obtain the symmetric and anti-symmetric ST-FMR components of V_S and V_A under different back-gate voltages, and the torque ratio $\tau_{\perp}/\tau_{\parallel}$ can be calculated sequentially. As shown in Figure 5b, the symmetric and antisymmetric components of V_S and V_A of WS$_2$/Py bilayers shows inverse variation tendency with applied back-gate voltage. The variation of V_A with back-gate voltage demonstrates similar variation tendency with the field-effect transistor transfer curves of monolayer WS$_2$ (as shown in Figure 5d). The torque ratio $\tau_{\perp}/\tau_{\parallel}$ was also calculated using eq 5. Figure 5c intuitively shows that
the torque ratio $\tau_\perp/\tau_\parallel$ increases with back-gate voltage from -80 V to 40 V and keep nearly unchanged from 40 V to 80 V. The variation of torque ratio implies that the SOT in WS$_2$/Py bilayer heterostructure can be effectively regulated and controlled by the electrical field. Interestingly, the variation of torque ratio with the back-gate voltage demonstrates similar tendency with the field-effect transistor transfer curves of the monolayer (ML) WS$_2$, as shown in Figure 5d. This phenomenon can be explained by the regulation of the carrier density in WS$_2$ and the interfacial characteristics between WS$_2$ and Py (including the contact properties and spin-mixing conductance) by electrical field. At positive electric-field, the carrier concentration in WS$_2$ increases resulting in an enhancement of spin current. The WS$_2$/Py bilayer shows a non-Ohmic character contact and the back-gate voltage may produce a strong Schottky barrier leading to a strong electric field. Relevant effect has been studied on spin valve structure using TMDs as spacer, such as NiFe/MoS$_2$/NiFe52 and NiFe/WSe$_2$/NiFe53 spin valves. This effect may further induce Rashaba-type spin splitting. Most importantly, the electric-field can regulate the interface transparency between WS$_2$ and Py. The back-gating allows the electrical field control of spin-relaxation rate of MoS$_2$-metallic stack (SiO$_2$/MoS$_2$/Al/Co/Al/Cu) on the spin to charge conversion in MoS$_2$ monolayer with spin pumping.54 By applying back-gate voltage, the interface transparency to spin current increase and the effective spin-mixing conductance gives rise to larger total spin-relaxation rate. All mention mechanism above indicates the electrical field can effectively regulate the interface properties between WS$_2$ and Py and confirm the interfacial origin of SOT in WS$_2$/Py bilayer.

CONCLUSION

In conclusion, we experimentally investigated SOT in WS$_2$/Py bilayers. Field-like and anti-damping-like torques were observed in WS$_2$/Py bilayer due to spin accumulation of WS$_2$ arising
from the interfacial Rashaba-Edelstein effect. More importantly, we demonstrated the effective electric-field control of SOT ratio $\tau_{\perp}/\tau_{\parallel}$ in WS$_2$/Py bilayer taking advantage of the semiconductor property of WS$_2$. The electric-field control of torque ratio effect demonstrated similar tendency with the field-effect transistor transfer curves of the monolayer WS$_2$. We ascribed this phenomenon to the regulation of the carrier density in WS$_2$ and the interfacial characteristics between WS$_2$ and Py. Our results provided a strategy for manipulating spin-orbit torque compatible with field-effect semiconductor devices based on two-dimensional materials TMDs and could be beneficial for the improvement of energy efficiency for spintronic devices in the future.

METHOIDS

Growth of WS$_2$ Monolayer. High quality WS$_2$ monolayers were grown on a Si/SiO$_2$ (300 nm) substrate (Silicon Quest International Inc., USA) using a CVD method in a quartz tube. During the process of growth, sulfur powder (1 g, 99.99% purity, Alfa Aesar) was put on the upstream of quartz tube, WO$_3$ powder (500 mg,99.8% purity, Alfa Aesar) was put on the downstream with an argon flow at 100 sccm at ~900°C for 50 min. The WS$_2$ monolayers in a triangular shape and size up to hundreds of μm were finally obtained.

Fabrication of WS$_2$/Py bilayer device. The permalloy (Py) was deposited directly on the surface of WS$_2$ at a thickness of ~10 nm using electron beam evaporation (EBE-09, China) with deposition rate of 1.5 Å/s. The Py stripe at a size of 45 μm in length and 8 μm in width was patterned using photolithography (MA6) and the outer part of the stripe was etched away (IBE-A-150). The ground-signal-ground (GSG) electrical contacts was patterned using
photolithography and Ni (10 nm)/Au (100 nm) metal electrode was deposited using electron beam evaporation.

Measurements. The monolayer WS\(_2\) was characterized by Raman and PL spectroscopy and AFM. Both Raman and PL spectroscopy were carried out using a Horiba Jobin Yvon LabRAM HR-Evolution Raman microscope with a laser radiation of 532 nm and power of 10 \(\mu\)W. The surface morphology images of sample were obtained with AFM (MultiMode8, Veeco Instruments Inc., USA). We determine the strength of current-induced torque by using a spin torque ferromagnetic resonance (ST-FMR) technique. Microwave signal produced by a generator was applied to the devices through a bias tee using an rf probe. The oscillating current-induced torques cause the Py magnetization to precess, yielding resistance oscillations. The rf current and oscillated resistance generated direct voltage \(V_{dc}\) was recorded by a nano-voltmeter. A voltage source meter (Keithley 2400) from -80 V to 80 V was applied on the gate to provide an electric field.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: .

ST-FMR measurement results at a series of power, the power dependence of torque ratio \(\tau_\perp/\tau_\parallel\), The back-gate dependence of ST-FMR signals \(V_{dc}\) for Py.

AUTHOR INFORMATION

Corresponding Author

* zmzeng2012@sinano.ac.cn.

* lzy0319@ysu.edu.cn.
Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The work was supported by the National Natural Science Foundation of China (Grant No. 请曾老师补充)

REFERENCES

(8) Liu, L. Q.; Pai, C. F.; Li, Y.; Tseng, H. W.; Ralph, D. C.; Buhrman, R. A. Spin-Torque

Graphic abstract
Figure 1. Characterization of WS$_2$ sample. (a) Optical image of CVD-grown WS$_2$ samples. The scale bar is 100 μm. (b) Height profile measured along the dash line in the insert figure. The insert is the AFM image of a selected triangular WS$_2$ sample region. (c) Raman spectrum and (d) Photoluminescence spectrum of WS$_2$ sample in (b).
Figure 2. WS$_2$/Py device geometry and ST-FMR measurement circuit. (a) Optical images of WS$_2$/Py (10 nm) bilayers device including contact pads and schematic illustration of the spin-torque FMR measurement circuit. The applied external magnetic field oriented at 45° relative to the current direction (the device long axis). The stripe size is 45 μm×8 μm. The scale bar is 50μm. (b) Schematic of the WS$_2$/Py bilayer device geometry. The back-gate voltage was applied through the SiO$_2$ dielectric layer.
Figure 3. ST-FMR measurement results of Py and WS$_2$/Py bilayers. (a) Comparison of ST-FMR resonances signals V_{dc} of WS$_2$/Py bilayers and pure Py at fixed frequency of 5 GHz and fixed power of 10 dBm. (b) ST-FMR spectra at a series of frequencies from 4 to 10 GHz with fixed power of 15 dBm. (c) Kittel fitting of frequency vs. resonance field. (d) The frequency dependence of torque ratio $\tau_\perp/\tau_\parallel$.
Figure 4. Angular dependence of ST-FMR measurement for WS$_2$/Py bilayer at a series of angle ϕ from 0° to 180° at fixed frequency 5 GHz and fixed power 15 dBm. (a) Symmetric ST-FMR resonance components V_S and (b) antisymmetric components V_A as a function of in-plane magnetic-field angle ϕ. The line represent the corresponding fitting by theoretical function of $\cos(\phi)\sin(2\phi)$.
Figure 5. Electrical-field control of ST-FMR measurement for WS$_2$/Py bilayer. (a) The back-gate dependence of ST-FMR signals V_{dc} at a series of back-gate voltage from -80 to 80 V at fixed frequency 5GHz and fixed power 15 dBm. (b) The fitted symmetric ST-FMR resonance components V_s and antisymmetric components V_A at back-gate voltage from -80V to 80V. (c) The torque ratio $\tau_\perp/\tau_\parallel$ dependence on back gate voltage V_g and electric field E for Py and WS$_2$/Py bilayer. (d) The transfer curve of a typical monolayer(ML) WS$_2$ field effect transistors device.