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Abstract. We present a model of material degradation relying upon alldamage law sup-
plemented by convex constraints. This results in a damageihnoth bounded variation that is
shown to share the same features of the so-called Thick Betelpproach. Unlike the original
model, in the present formulation the level set-based sgmtation is abandoned in favor of an
implicit description of damaged regions, whereby one asiat a non-local Generalized Stan-
dard Model with convex constraints. The solution of a omaatisional problem demonstrate
the capabilities of the proposed approach when simulatiitgation and growth of damage in
guasi-brittle materials.
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1 INTRODUCTION

Regularized damage formulations have become increaspaglylar in the last decades for
dealing with problems in Mechanics suffering from spuriouessh sensitivity induced by strain
softening[1]. In short, the idea underlying almost all saebdels is that of using regularized
constitutive equations in which some suitably defined leipgirameters bring to the macro level
information about material structure at the fine scale.

Classical regularizations are formulated via gradientvaraging operators. They provide
globally smoothed solutions by enforcing a greater regylarther on strains or internal vari-
ables that, as a consequence, are no longer defined at théeleda

The same concepts are implicitly present into the so-cdlledk Level SefTLS) approach
to quasi-brittle fracturel|2,13], whereby progressive dge#akes place in a region of finite
thickness whose size is an explicit model parameter. Withisframework one possible way
to follow the evolution of damage in the solid amounts to cwntusly tracking the position of
layers in a state of progressive damage. In the original ddation [2] this was achieved based
on distance functions and level sets, whose knowledgenesjto solve an eikonal equation.

In the TLS model one prescribes the shape of the damage dankwithin the moving layer
of thicknesd,. where the transition between the sound material and the ledehpdamaged one
occurs. In particular, progressive damage that takes jteitee transition zone is given as an
explicit function of the distance to the boundary’, of the undamaged portion of the domain
under consideration. The latter turns out to be partitioinéal three regions: the undamaged
part(,, the transition regiof2. where the damage variable ranges betw@and 1, and the
completely damaged zong, see e.g. Figurd 1.

Figure 1: Domain partition in the TLS approach.

The boundary of the transition zone is denaod¢l = I', U Ty, and pointsV/ belonging to it
have the following properties:

MeT, dM)=0, ¢M,t)=0; (1)
MeTy, dM)=1, ¢M,t)>L. )
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The zero-level set surface, i.e. the one implicitly defingeguationy(M, t) = 0, describes
the motion of the boundarly,, whereas damage is given as an explicit function of the wigta
¢ within the transition zone:

d(¢) =0, (M t)<0, MeQ,
d >0, 0< (M, t)<l, MeQ, (3)
d(¢) =1, d(M,t)>1,, Mey

The functiond(¢) is assumed to be continuously increasing with distapndéem the sound
material, whereby the inverse functigid) exists. Moreover, the damage derivative alang
bounded by a positive functiofi(d) and damage evolution is associated to the motion of the
interfacel’,. The above conditions can be summarized as follows:

d = d(¢)
IVell =1 (4)
d'(¢) < f(d)

The present contribution aims at studying an isotropidielmamageable model whose con-
stitutive law includes a scalar damage variable subjeattomternal constraints. The first one
is local and expresses the classical bounds for the ordamesder that describes the state of the
material within the transition zone:

0<d<1. (5)

The second condition is non-local and non-classical anduamsao bound the norm of the
spatial gradient of damage:
||Vd|| < f(d) (6)

that characterizes the present damage model with boundiediea.
It is worth emphasizing that the above inequality embodiesthree relationshipgl(4) pro-
vided that the functio can be characterized as a signed distance function.

2 THE LOCAL STATE

In the present model the local state of the solid is desciiystie infinitesimal deformation
measure, the damage parametéand its spatial gradient d; the latter enters only the internal
constraint equatior (6).

The state equations stem from a convex free energy deng&ityl); in particular, the thermo-
dynamic forces that are work-conjugate to the state vasahld are the Cauchy stress tensor
o and the damage energy release iate

ow ow

For an isotropic damage model the free energy density fomdtypically reads:
1
w(e,d) = 5g(d)Ee : e, (8)

whereE is the elastic moduli tensor andd) is the scalar degradation function that transforms
the sound material into a damaged one.
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2.1 The convex constraints

In the present model the damage variableas to comply with two internal constraints. By
its very definition it is subject to the conditiorns (5), whicéin in turn be expressed via a unique
convex functiony; embodying the two inequalities:

g1(d) =d(d—1) <0. 9)

The second constraint is provided by the condition (6). Wallstenoteg, the function
expressing the bound on the gradient of damage:

g2(d) = [[Vd|| = f(d) <0. (10)

The inequality[(1D) defines a convex set provided that thetfan g, is convex, i.e. iff(d)
is concave, which is equivalent te f(d) convex. We shall assume in the remainder that
f(0) > 0. For any concave functiof, if it exists a pointd, such thatf(d,) > 0, then the
setC = {(d,Vd)/g2(d) < 0} is nonempty and convex. The proof is straightforward. Let
(d,Vd), (d*, Vd*) be two elements af; their convex combination is by definition an element
of C and meets the condition:

10Vd+ (1 =0)Vd'[| < 0][Vd|[+ (1 =0)||[Vd"|| < 0f(d)+(1-0)f(d"), 06€][0,1] (11)
whereby for a concave functiofione has:
0f(d)+ (1 —0)f(d") < f(0d+ (1 —6)d") (12)

Q.E.D.
The constraintd {9) and_(110) are introduced in the formaitatiia two fields of Lagrange
multipliers~4, 72 and the relevant Karush-Kuhn-Tucker conditions:

vi = 0; g9i(d) < 0; 7igi(d) = 0. (13)

The above relationships put forward the non-dissipatiegatter of the constraints, whereby
a potential of the constraints themselves can be defined as:

w,(d, i) = 71191(d) + Y292(d) (14)
which turns out to be convex owing to the convexity of the tiots g, andgs,.

3 EQUILIBRIUM

We study the equilibrium problem of a solid whose boundaryagitioned into two parts,
that isoS2,,, where displacements = u? are prescribed, and(), where the surface tractions
are given. The problem variables are the displacementiiglide damage field and the fields
of Lagrange multipliers;.

The total potential energy of the system reads:

E(u,d,y;) = / w dQ2 —/ t.udS + / w,, d§2 (15)
Q 00 Q
The functional[(1b) is defined over the set of kinematicatlynéssible displacements:

K = {u*lu*(M) = (M), M € 09,} . (16)
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3.1 Variationwrt u

For a given damage field, an equilibrium stat€’ is a minimizer for the potential energy
overkC: 9¢
. ou = 0, You € {v|v(M)=0,M € 0Q,} . a7
The above condition is equivalent to differential equililbon and the relevant boundary condi-

tions:

o= g—f, dive =0, in Q,; on =t, onol;. (18)

3.2 Variationswrt ~;

Variations of the potential energy with respect to the Lageamultipliers define a partition
of the domain that reflects the state of the internal constraints:

9 5y, = / d(d—1)6v dQ =0, (19)

o Q

o€

son = [ (IVd] - f(@)rz a2 =0 (20)
Y2 Q

For a given damage statle the domain is decomposed into three p&ts: 2, U Q. U Qq,
that is:

e 0N, andQ)y, g; = 0 andy; > 0,
e 0N, and)y, v2 = 0 sincegy < 0,
e 0N, v; =0sinceg; <0
The domairt),. is in turn partitioned into two sub-domains:
e ()~ whereg, < 0 andvy, =0,
e Q2 whereg, = 0 andy, > 0.
3.3 Variationwrt d

Variation of the potential energy with respecttand use of the divergence theorem yields:

o€ ow Vvd

—0d = —0d dS2 2d — 1)6d dQ2 _
9d o d *L”( ) *L”me

Vd Vd
S Gadd9+/ 7—-n6dd5+/7— noédds  (21)
L o 2TV eyl

In the above equation one can recognize three contribytiensa volume integral, a surface
integral over the external boundary and an integral overinal discontinuity surfaces.
The volume integral defines the energy release@ate

- Véd — f/(d)sd) A

G=Y—MM—U+WH®%M<W%%) (22)

Whenevery; = 0 the thermodynamic forc€' is a local quantity. On the contrary, when+# 0
the G becomes non-local because of the divergence term origg&tm the constraint.(10).
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Concerning the possible discontinuity surfaces, if theyramn-dissipative one has:

Vvd
[[72@]]5 -n = 0. (23)

In particular, equatiori(23) has to be fulfilled over the aoefl”, whered = 0" and||Vd|| =
f(0") > 0, which in turn impliesy, = 0. Along a discontinuity surface for the gradientdf
damage is continuous amd = 0. In this particular case one has:

dt=d~,  ||Vd'|| - f(d") =[|[Vd"|| - f(d7) =0, (24)
which in turn imply:
0=n.Vd"+nVd, 0= (v Vdt — v, Vd ).n, 0 <1y, 0<7v,, (25)

wherebyy,” = v, = 0.

Boundary conditions A major difference of the present formulation compared tssical
gradient-enhanced models is that on the bound&yn 0<)_ the relationshipy, < 0 holds,
which in turn impliesy, = 0. The net result is that the boundary condition on the normal
derivative of damage is generally no longer homogeneousépresent model of damage with
bounded variation.

4 DISSIPATION

Since the constraintg](9) ¢t (10) are non-dissipative, tig contribution to the total dissi-
pation of the system stems from the local damage energyseeladeY’, that is:

—%d:/GddQ:/YddQZO (26)
Following [4] we assume that damage evolution emanates &@seudo-potential of dissipa-
tion, which is a convex and degree-one positively homogsmaction ofd. WheneverD is a
smooth function one arrives at a kinetic equationdor

D
G = 8_ (27)
od
which is equivalent to the classical Biot equatioh [5]:
o 0D
e I 28
20 Py 0 (28)

For the non-smooth case the dissipation pseudo-poteasdsr

D) = Y.d*, ifd*>0, (29)
]| +c0, otherwise

and damage evolution is governed by a normality rule expreas:

G-Y.<0, d>0, (G-Y.)d=0. (30)
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Analogous to Linear Elastic Fracture Mechanics [6] a dstsg energyj(d) can be defined
whenever the threshold. depends from a unique parameter

Gg(d) = /Och(a) da (31)
In this case the total energy of the system reads:
W(u,d, ;) = E(u,d, ;) + G(d) (32)
and normal damage evolution can be recast in the form of ati@mal inequality:
d >0, %—Zv(éd —d)>0, Véd>0. (33)

The normality law[(3D) amounts to a partial differential atjan that provides, on the region
2, wherey; = 0 sinceg; < 0. In particular, ford > 0 equation[(3D) yields:

vd
G=Y "(d) + di —— | =Y. 34
@ as () e
Over the domainf2? one hasj, = 0 whereby the above equation becomes
(Y = Yo) £(d) + div(12Vd) = 0. (35)

Now consider an iso-damage surface and define the fungfidnsuch that

Vd(¢) = f(d) Ve,  [[Ve]| =1 (36)

Evidently, the function is a signed distance from the surfate- 0, andd’(¢) = f(d). Let
M,(«, ) be a point of",; any point)M € Q2 has coordinate&y, 3, z) such that

M(avﬁaz) = Mo(aaﬂ) + ZV¢ Mo € 1—‘o (37)

Now consider the integral of (B5) over a truncated cone of & and delimited by surfaces
dS(z = 0) and dS(z =) = j(z) dS(z = 0). The termj(z) accounts for area change
due to geometric curvature when the surfaces are descrbadocal basis attached to point
M, € T',. The integral of the divergence terdiv(7,Vd) reduces to the only contributions
over surfaces (15(0), dS(1)) wherey, = 0. In this way one obtains the energy release rate
G that is associated to the motion of the transition layer ofdithicknessp(d) = [. originally
introduced in the TLS model [2]:

N z=l
G=/ Y £(d)j(6) do (38)

=0

whereby damage evolution takes place under the condition:

z=l
G:/?xuwwwﬁszo (39)
The above arguments show that the coupling of a local damagelwith the constraint equa-
tion (@) allows one to recover the features of the Thick L&&tl approach in its original form.
However, the present model of damage with bounded variatgmnbe implemented without
using level sets since equatidn35) that provides damagjeten is completely independent
from the notion of distance function.
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5 THE TRACTION BAR

We consider a one-dimensional bar of lengtBubject to an increasing elongation. In order
to study the influence of the constraint equations we chdesdallowing form for the free

energy density:
1

k
w=3(l—dEe +5||Vd|’, (40)
wherek > 0 is a regularization parameter with dimensions of a force.

The constraint functiog, is taken as:

0:d) = V| - 7 <0, (41)

which characterizes a linear damage distribution.

The study of the traction bar whose free energy density amta quadratic term ivVd
allows to determine the conditions that the paramketeas to comply with in order to obtain a
solution which is coherent with the one of the non-regukdiproblem.

We obtain two families of solutions. The first one is a homagears solution, whereas the
second one gives the initiation and growth of a defect. Warasghat such a defect nucleates
at pointz = 0. For the regularized model the solution depends on the \@ltiee parameter
k. Actually, the presence of the regularization term chanlgeslefinition of the energy release
rate (22) as follows

G*" =G+ kAd (42)

and also the boundary conditions turn out to be modified amdrequire
Vd-n=0 (43)

over the boundary df.. During damage growth two phases of evolution can be disisingd.
The first one during whichiVd|| < 1/I. ety, = 0, and a second one during which the constraint
is satisfied with the equality. One can show that the secoadeban take place only ifis
sufficiently small.
Actually, conditionG* = Y, with v, = 0 allows to obtain the damage distribution along the
bard(z) by integrating
¥2 k 9
72E(1 — —Y.d+ §(Vd) =C. (44)
The integration constaidt is provided by the boundary conditions
Vd(z=0)-e,=Vd(z=1L) e, =0; dlx=1L)=0. (45)
Now assumel(0) = d,,,. We infer thatC' = %2 /2F over[0, L] and obtain the load as:
Y2 =2EY,(1 —d,) =221 —d,,). (46)
Such a solution holds provided tha¥d|| < 1/I., which in turn occurs if

k
K = 1. 47

Tp — X

Under this last condition a regidn,, ;| appears for whicld = d, + . Over this segment

72 > 0, Yo(z4) = 12(xp) = 0, and the gradieri¥d - e, is continuous at such points.
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We then obtaink = d,d;, with

1 4K
da = §(dm+K)(1+\/l—m) (48)
1 4K

The response curves of the traction bar are shown in Figure 2.

1 1

o —Elas Y —
—approx Elas

exact approx  ©

08 | exact

0.75

06

0.5

: 04t

0.25 °
¢ 02

Figure 2: Response curvEs— ¢ for K = 0.01. L = 1 (left), andL = 5 (right).

A value K = 0.1 is not well-suited since the resulting damage distributbooadens too
much. For a giveri, the valued, for which the constraing, is fulfilled at a point is given by:

dy =2VK — K, (50)

which implies thatK’ must be lower thari. The smallerKk, the more localized is damage
around the positiom = 0 during the first phase.

It is worth emphasizing that the solution we presented leamiapproximation of the exact
solution. Actually, during the phase that precedes thdlfukint of the condition[(41) with the
equality, the damage evolution is characterized by a lgaddgion |0, z.] and an unloading
region|z., x,/| over the segment of lengt,,. The functionz.(d,,) is first decreasing and then
increasing beyond the valug,. This is apparent on the damage response depicted in Eigure 3
when the curved(z) do intersect each other.

The conditiond > 0 is fulfilled only when the region where the conditign = 0 is firmly
established. The smalléf, the more rapidly the conditiofy = 0 is satisfied during the loading
history. The value of{ must be small enough in order to obtain an abscigganuch smaller
thani. so that the linear part of the damage distribution is the datimg one.
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Figure 3: Damage profiled«) for K = 0.01 (left) and K = 0.1 (right).

6 CLOSURE

We presented a new model of damage with bounded variatidrfithan the Thick Level
Setapproach. However, in the present model the introductidewa sets with all consequent
difficulties can be abandoned, since the information necgds track the evolution of inter-
phases where progressive damage occurs is implicitly cwdan the Lagrange multipliers
fields associated to two constraint equations describedongex functions.
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