
HAL Id: hal-02388273
https://hal.science/hal-02388273

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Progressive damage and quasibrittle solids
Nunziante Valoroso, Claude Stolz

To cite this version:
Nunziante Valoroso, Claude Stolz. Progressive damage and quasibrittle solids. AIMETA XXIV
Congresso asosiazione italina de Meccanica Teoria e applicata, Sep 2019, ROME, Italy. pp.408,
�10.1007/978-3-030-41057-5�. �hal-02388273�

https://hal.science/hal-02388273
https://hal.archives-ouvertes.fr


AIMETA 2019
XXIV Conference

The Italian Association of Theoretical and Applied Mechanics
Rome, Italy, 15–19 September 2019

PROGRESSIVE DAMAGE IN QUASI-BRITTLE SOLIDS

Nunziante Valoroso1,2, Claude Stolz1,3
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7, Boulevard Gaspard Monge, 91120 Palaiseau, France

2 Dipartimento di Ingegneria, Università di Napoli Parthenope
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Abstract. We present a model of material degradation relying upon a local damage law sup-
plemented by convex constraints. This results in a damage model with bounded variation that is
shown to share the same features of the so-called Thick LevelSet approach. Unlike the original
model, in the present formulation the level set-based representation is abandoned in favor of an
implicit description of damaged regions, whereby one arrives at a non-local Generalized Stan-
dard Model with convex constraints. The solution of a one-dimensional problem demonstrate
the capabilities of the proposed approach when simulating initiation and growth of damage in
quasi-brittle materials.
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1 INTRODUCTION

Regularized damage formulations have become increasinglypopular in the last decades for
dealing with problems in Mechanics suffering from spuriousmesh sensitivity induced by strain
softening [1]. In short, the idea underlying almost all suchmodels is that of using regularized
constitutive equations in which some suitably defined length parameters bring to the macro level
information about material structure at the fine scale.

Classical regularizations are formulated via gradient or averaging operators. They provide
globally smoothed solutions by enforcing a greater regularity either on strains or internal vari-
ables that, as a consequence, are no longer defined at the local level.

The same concepts are implicitly present into the so-calledThick Level Set(TLS) approach
to quasi-brittle fracture [2, 3], whereby progressive damage takes place in a region of finite
thickness whose size is an explicit model parameter. Withinthis framework one possible way
to follow the evolution of damage in the solid amounts to continuously tracking the position of
layers in a state of progressive damage. In the original formulation [2] this was achieved based
on distance functions and level sets, whose knowledge requires to solve an eikonal equation.

In the TLS model one prescribes the shape of the damage functiond within the moving layer
of thicknesslc where the transition between the sound material and the completely damaged one
occurs. In particular, progressive damage that takes placein the transition zone is given as an
explicit function of the distanceφ to the boundaryΓo of the undamaged portion of the domain
under consideration. The latter turns out to be partitionedinto three regions: the undamaged
partΩo, the transition regionΩc where the damage variable ranges between0 and1, and the
completely damaged zoneΩ1, see e.g. Figure 1.

Ω
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Figure 1: Domain partition in the TLS approach.

The boundary of the transition zone is denoted∂Ωc = Γo ∪ Γ1, and pointsM belonging to it
have the following properties:

M ∈ Γo, d(M) = 0, φ(M, t) = 0; (1)

M ∈ Γ1, d(M) = 1, φ(M, t) ≥ lc. (2)
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The zero-level set surface, i.e. the one implicitly defined by equationφ(M, t) = 0, describes
the motion of the boundaryΓo, whereas damage is given as an explicit function of the distance
φ within the transition zone:

d(φ) = 0, φ(M, t) ≤ 0, M ∈ Ωo

ḋ > 0, 0 ≤ φ(M, t) ≤ lc, M ∈ Ωc

d(φ) = 1, φ(M, t) ≥ lc, M ∈ Ω1

(3)

The functiond(φ) is assumed to be continuously increasing with distanceφ from the sound
material, whereby the inverse functionφ(d) exists. Moreover, the damage derivative alongφ is
bounded by a positive functionf(d) and damage evolution is associated to the motion of the
interfaceΓo. The above conditions can be summarized as follows:

d = d(φ)

||∇φ|| = 1

d′(φ) ≤ f(d)

(4)

The present contribution aims at studying an isotropic elastic-damageable model whose con-
stitutive law includes a scalar damage variable subject to two internal constraints. The first one
is local and expresses the classical bounds for the order parameter that describes the state of the
material within the transition zone:

0 ≤ d ≤ 1. (5)

The second condition is non-local and non-classical and amounts to bound the norm of the
spatial gradient of damage:

||∇d|| ≤ f(d) (6)

that characterizes the present damage model with bounded variation.
It is worth emphasizing that the above inequality embodies the three relationships (4) pro-

vided that the functionφ can be characterized as a signed distance function.

2 THE LOCAL STATE

In the present model the local state of the solid is describedby the infinitesimal deformation
measureε, the damage parameterd and its spatial gradient∇d; the latter enters only the internal
constraint equation (6).

The state equations stem from a convex free energy densityw(ε, d); in particular, the thermo-
dynamic forces that are work-conjugate to the state variablesε, d are the Cauchy stress tensor
σ and the damage energy release rateY :

σ =
∂w

∂ε
, Y = −∂w

∂d
. (7)

For an isotropic damage model the free energy density function typically reads:

w(ε, d) =
1

2
g(d)Eε : ε, (8)

whereE is the elastic moduli tensor andg(d) is the scalar degradation function that transforms
the sound material into a damaged one.
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2.1 The convex constraints

In the present model the damage variabled has to comply with two internal constraints. By
its very definition it is subject to the conditions (5), whichcan in turn be expressed via a unique
convex functiong1 embodying the two inequalities:

g1(d) = d(d− 1) ≤ 0. (9)

The second constraint is provided by the condition (6). We shall denoteg2 the function
expressing the bound on the gradient of damage:

g2(d) = ||∇d|| − f(d) ≤ 0. (10)

The inequality (10) defines a convex set provided that the function g2 is convex, i.e. iff(d)
is concave, which is equivalent to−f(d) convex. We shall assume in the remainder that
f(0) > 0. For any concave functionf , if it exists a pointdo such thatf(do) > 0, then the
setC = {(d,∇d)/g2(d) ≤ 0} is nonempty and convex. The proof is straightforward. Let
(d,∇d), (d∗,∇d∗) be two elements ofC; their convex combination is by definition an element
of C and meets the condition:

||θ∇d+(1−θ)∇d∗|| ≤ θ||∇d||+(1−θ)||∇d∗|| ≤ θf(d)+(1−θ)f(d∗), θ ∈ [0, 1] (11)

whereby for a concave functionf one has:

θf(d) + (1− θ)f(d∗) ≤ f(θd+ (1− θ)d∗) (12)

Q.E.D.
The constraints (9) and (10) are introduced in the formulation via two fields of Lagrange

multipliersγ1, γ2 and the relevant Karush-Kuhn-Tucker conditions:

γi ≥ 0; gi(d) ≤ 0; γigi(d) = 0. (13)

The above relationships put forward the non-dissipative character of the constraints, whereby
a potential of the constraints themselves can be defined as:

wγ(d, γi) = γ1g1(d) + γ2g2(d) (14)

which turns out to be convex owing to the convexity of the functionsg1 andg2.

3 EQUILIBRIUM

We study the equilibrium problem of a solid whose boundary ispartitioned into two parts,
that is∂Ωu, where displacementsu = u

d are prescribed, and∂Ωt where the surface tractions
are given. The problem variables are the displacement fieldu, the damage fieldd and the fields
of Lagrange multipliersγi.

The total potential energy of the system reads:

E(u, d, γi) =
∫

Ω

w dΩ−
∫

∂Ωt

t.u dS +

∫

Ω

wγ dΩ (15)

The functional (15) is defined over the set of kinematically admissible displacementsK:

K =
{

u
∗|u∗(M) = u

d(M),M ∈ ∂Ωu

}

. (16)
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3.1 Variation wrt u

For a given damage field, an equilibrium stateu
sol is a minimizer for the potential energy

overK:
∂E
∂u

· δu = 0, ∀δu ∈ {v|v(M) = 0,M ∈ ∂Ωu} . (17)

The above condition is equivalent to differential equilibrium and the relevant boundary condi-
tions:

σ =
∂w

∂ε
, divσ = 0, in Ωo; σn = t, on∂Ωt. (18)

3.2 Variations wrt γi

Variations of the potential energy with respect to the Lagrange multipliers define a partition
of the domainΩ that reflects the state of the internal constraints:

∂E
∂γ1

δγ1 =

∫

Ω

d(d− 1)δγ1 dΩ = 0, (19)

∂E
∂γ2

δγ2 =

∫

Ω

(||∇d|| − f(d))δγ2 dΩ = 0. (20)

For a given damage stated, the domain is decomposed into three partsΩ = Ωo ∪ Ωc ∪ Ω1,
that is:

• onΩo andΩ1, g1 = 0 andγ1 > 0,

• onΩo andΩ1, γ2 = 0 sinceg2 ≤ 0,

• onΩc, γ1 = 0 sinceg1 < 0

The domainΩc is in turn partitioned into two sub-domains:

• Ω−

c whereg2 < 0 andγ2 = 0,

• Ωo
c whereg2 = 0 andγ2 ≥ 0.

3.3 Variation wrt d

Variation of the potential energy with respect tod and use of the divergence theorem yields:

∂E
∂d

δd =

∫

Ω

∂w

∂d
δd dΩ +

∫

Ω

γ1(2d− 1)δd dΩ +

∫

Ω

γ2(
∇d

||∇d|| · ∇δd− f ′(d)δd) dΩ

= −
∫

Ω

G δd dΩ +

∫

∂Ω

γ2
∇d

||∇d|| · n δd dS +

∫

S

[[γ2
∇d

||∇d|| ]]S .n δd dS (21)

In the above equation one can recognize three contributions, i.e. a volume integral, a surface
integral over the external boundary and an integral over internal discontinuity surfaces.

The volume integral defines the energy release rateG:

G = Y − γ1(2d− 1) + γ2f
′(d) + div

(

γ2
∇d

||∇d||

)

(22)

Wheneverγ2 = 0 the thermodynamic forceG is a local quantity. On the contrary, whenγ2 6= 0
theG becomes non-local because of the divergence term originating from the constraint (10).
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Concerning the possible discontinuity surfaces, if they are non-dissipative one has:

[[γ2
∇d

||∇d|| ]]S · n = 0. (23)

In particular, equation (23) has to be fulfilled over the surfaceΓo whered = 0+ and||∇d|| =
f(0+) > 0, which in turn impliesγ2 = 0. Along a discontinuity surface for the gradient ofd,
damage is continuous andg2 = 0. In this particular case one has:

d+ = d−, ||∇d+|| − f(d+) = ||∇d−|| − f(d−) = 0, (24)

which in turn imply:

0 = n.∇d+ + n.∇d−, 0 = (γ+
2 ∇d+ − γ−

2 ∇d−).n, 0 < γ+
2 , 0 < γ−

2 , (25)

wherebyγ+
2 = γ−

2 = 0.

Boundary conditions A major difference of the present formulation compared to classical
gradient-enhanced models is that on the boundary∂Ω ∩ ∂Ω−

c the relationshipg2 < 0 holds,
which in turn impliesγ2 = 0. The net result is that the boundary condition on the normal
derivative of damage is generally no longer homogeneous forthe present model of damage with
bounded variation.

4 DISSIPATION

Since the constraints (9) et (10) are non-dissipative, the only contribution to the total dissi-
pation of the system stems from the local damage energy release rateY , that is:

−∂E
∂d

ḋ =

∫

Ω

Gḋ dΩ =

∫

Ω

Y ḋ dΩ ≥ 0 (26)

Following [4] we assume that damage evolution emanates froma pseudo-potential of dissipa-
tion, which is a convex and degree-one positively homogenous function ofḋ. WheneverD is a
smooth function one arrives at a kinetic equation ford:

G =
∂D
∂ḋ

(27)

which is equivalent to the classical Biot equation [5]:

∂E
∂d

+
∂D
∂ḋ

= 0 (28)

For the non-smooth case the dissipation pseudo-potential reads:

D(d∗) =

{

Yc d
∗, if d∗ ≥ 0,

+∞, otherwise
(29)

and damage evolution is governed by a normality rule expressed as:

G− Yc ≤ 0, ḋ ≥ 0, (G− Yc)ḋ = 0. (30)
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Analogous to Linear Elastic Fracture Mechanics [6] a dissipated energyG(d) can be defined
whenever the thresholdYc depends from a unique parameter

G(d) =
∫ d

0

Yc(α) dα (31)

In this case the total energy of the system reads:

W(u, d, γi) = E(u, d, γi) + G(d) (32)

and normal damage evolution can be recast in the form of a variational inequality:

ḋ ≥ 0,
∂W
∂d

(δd− ḋ) ≥ 0, ∀δd ≥ 0. (33)

The normality law (30) amounts to a partial differential equation that providesγ2 on the region
Ωo

c , whereγ1 = 0 sinceg1 < 0. In particular, forḋ > 0 equation (30) yields:

G = Y + γ2f
′(d) + div

(

γ2
∇d

||∇d||

)

= Yc. (34)

Over the domainΩo
c one hasg2 = 0 whereby the above equation becomes

(Y − Yc)f(d) + div(γ2∇d) = 0. (35)

Now consider an iso-damage surface and define the functionφ(d) such that

∇d(φ) = f(d)∇φ, ||∇φ|| = 1 (36)

Evidently, the functionφ is a signed distance from the surfaced = 0+, andd′(φ) = f(d). Let
Mo(α, β) be a point ofΓo; any pointM ∈ Ωo

c has coordinates(α, β, z) such that

M(α, β, z) = Mo(α, β) + z∇φ Mo ∈ Γo (37)

Now consider the integral of (35) over a truncated cone of axis∇d and delimited by surfaces
dS(z = 0) and dS(z = l) = j(z) dS(z = 0). The termj(z) accounts for area change
due to geometric curvature when the surfaces are described in a local basis attached to point
Mo ∈ Γo. The integral of the divergence termdiv(γ2∇d) reduces to the only contributions
over surfaces (dS(0), dS(l)) whereγ2 = 0. In this way one obtains the energy release rate
Ĝ that is associated to the motion of the transition layer of finite thicknessφ(d) = lc originally
introduced in the TLS model [2]:

Ĝ =

∫ z=l

z=0

Y f(d)j(φ) dφ (38)

whereby damage evolution takes place under the condition:

Ĝ =

∫ z=l

z=0

Ycf(d)j(φ) dφ = Ĝc. (39)

The above arguments show that the coupling of a local damage model with the constraint equa-
tion (6) allows one to recover the features of the Thick LevelSet approach in its original form.
However, the present model of damage with bounded variationcan be implemented without
using level sets since equation (35) that provides damage evolution is completely independent
from the notion of distance function.
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5 THE TRACTION BAR

We consider a one-dimensional bar of lengthL subject to an increasing elongation. In order
to study the influence of the constraint equations we choose the following form for the free
energy density:

w =
1

2
(1− d)Eε

2 +
k

2
||∇d||2, (40)

wherek > 0 is a regularization parameter with dimensions of a force.
The constraint functiong2 is taken as:

g2(d) = ||∇d|| − 1

lc
≤ 0. (41)

which characterizes a linear damage distribution.
The study of the traction bar whose free energy density contains a quadratic term in∇d

allows to determine the conditions that the parameterk has to comply with in order to obtain a
solution which is coherent with the one of the non-regularized problem.

We obtain two families of solutions. The first one is a homogeneous solution, whereas the
second one gives the initiation and growth of a defect. We assume that such a defect nucleates
at pointx = 0. For the regularized model the solution depends on the valueof the parameter
k. Actually, the presence of the regularization term changesthe definition of the energy release
rate (22) as follows

Gk = G+ k∆d (42)

and also the boundary conditions turn out to be modified and now require

∇d · n = 0 (43)

over the boundary ofΩc. During damage growth two phases of evolution can be distinguished.
The first one during which||∇d|| < 1/lc etγ2 = 0, and a second one during which the constraint
is satisfied with the equality. One can show that the second phase can take place only ifk is
sufficiently small.

Actually, conditionGk = Yc with γ2 = 0 allows to obtain the damage distribution along the
bard(x) by integrating

Σ2

2E(1− d)
− Ycd+

k

2
(∇d)2 = C. (44)

The integration constantC is provided by the boundary conditions

∇d(x = 0) · ex = ∇d(x = L) · ex = 0; d(x = L) = 0. (45)

Now assumed(0) = dm. We infer thatC = Σ2/2E over[0, L] and obtain the loadΣ as:

Σ2 = 2EYc(1− dm) = Σ2
c(1− dm). (46)

Such a solution holds provided that||∇d|| < 1/lc, which in turn occurs if

K =
k

2 l2c Yc

< 1. (47)

Under this last condition a region[xa, xb] appears for whichd = da+
xb − x

lc
. Over this segment

γ2 ≥ 0, γ2(xa) = γ2(xb) = 0, and the gradient∇d · ex is continuous at such points.
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We then obtainK = dadb with

da =
1

2
(dm +K)(1 +

√

1− 4K

(dm +K)2
) (48)

db =
1

2
(dm +K)(1−

√

1− 4K

(dm +K)2
) (49)

The response curves of the traction bar are shown in Figure 2.
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Figure 2: Response curvesΣ− ε for K = 0.01. L = 1 (left), andL = 5 (right).

A valueK = 0.1 is not well-suited since the resulting damage distributionbroadens too
much. For a givenK, the valuedo for which the constraintg2 is fulfilled at a point is given by:

do = 2
√
K −K, (50)

which implies thatK must be lower than1. The smallerK, the more localized is damage
around the positionx = 0 during the first phase.

It is worth emphasizing that the solution we presented here is an approximation of the exact
solution. Actually, during the phase that precedes the fulfillment of the condition (41) with the
equality, the damage evolution is characterized by a loading region[0, xc] and an unloading
region[xc, xM ] over the segment of lengtxM . The functionxc(dm) is first decreasing and then
increasing beyond the valuexM . This is apparent on the damage response depicted in Figure 3
when the curvesd(x) do intersect each other.

The conditionḋ > 0 is fulfilled only when the region where the conditiong2 = 0 is firmly
established. The smallerK, the more rapidly the conditiong2 = 0 is satisfied during the loading
history. The value ofK must be small enough in order to obtain an abscissaxM much smaller
thanlc so that the linear part of the damage distribution is the dominating one.
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Figure 3: Damage profilesd(x) for K = 0.01 (left) andK = 0.1 (right).

6 CLOSURE

We presented a new model of damage with bounded variation that fits in theThick Level
Setapproach. However, in the present model the introduction oflevel sets with all consequent
difficulties can be abandoned, since the information necessary to track the evolution of inter-
phases where progressive damage occurs is implicitly contained in the Lagrange multipliers
fields associated to two constraint equations described viaconvex functions.
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