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Alternating Automata Modulo First Order Theories

Radu Iosif and Xiao Xu

CNRS, Verimag, Université de Grenoble Alpes
Email: {Radu.Iosif,Xiao.Xu}@univ-grenoble-alpes.fr

Abstract. We introduce first-order alternating automata, a generalization of boolean
alternating automata, in which transition rules are described by multisorted first-
order formulae, with states and internal variables given by uninterpreted predi-
cate terms. The model is closed under union, intersection and complement, and
its emptiness problem is undecidable, even for the simplest data theory of equal-
ity. To cope with the undecidability problem, we develop an abstraction refine-
ment semi-algorithm based on lazy annotation of the symbolic execution paths
with interpolants, obtained by applying (i) quantifier elimination with witness
term generation and (ii) Lyndon interpolation in the quantifier-free theory of the
data domain, with uninterpreted predicate symbols. This provides a method for
checking inclusion of timed and finite-memory register automata, and emptiness
of quantified predicate automata, previously used in the verification of parameter-
ized concurrent programs, composed of replicated threads, with shared memory.

1 Introduction

Many results in automata theory rely on the finite alphabet hypothesis, which guaran-
tees, in some cases, the existence of determinization, complementation and inclusion
checking methods. However, this hypothesis prevents the use of automata as models
of real-time systems or even simple programs, whose input and output are data values
ranging over very large domains, typically viewed as infinite mathematical abstractions.

Traditional attempts to generalize classical Rabin-Scott automata to infinite alpha-
bets, such as timed automata [1] and finite-memory automata [16] face the complement
closure problem: there exist automata for which the complement language cannot be
recognized by an automaton in the same class. This makes it impossible to encode a
language inclusion problemL(A) ⊆L(B) as the emptiness of an automaton recognizing
the language L(A)∩Lc(B), where Lc(B) denotes the complement of L(B).

Even for finite alphabets, complementation of finite-state automata faces inherent
exponential blowup, due to nondeterminism. However, if we allow universal nonde-
terminism, in addition to the classical existential nondeterminism, complementation
is possible is linear time. Having both existential and universal nondeterminism de-
fines the alternating automata model [4]. A finite-alphabet alternating automaton is
described by a set of transition rules q

a
−→ φ, where q is a state, a is an input symbol and

φ is a boolean formula, whose propositional variables denote successor states.
Our Contribution We extend alternating automata to infinite data alphabets, by defining
a model of computation in which all boolean operations, including complementation,
can be done in linear time. The control states are given by k-ary predicate symbols



q(y1, . . . ,yk), the input consists of an event a from a finite alphabet and a tuple of data
variables x1, . . . , xn, ranging over an infinite domain, and transitions are of the form

q(y1, . . . ,yk)
a(x1 ,...,xn)
−−−−−−−→ φ(x1, . . . , xn,y1, . . . ,yk), where φ is a formula in the first-order the-

ory of the data domain. In this model, the arguments of a predicate atom q(y1, . . . ,yk)
represent the values of the internal variables associated with the state. Together with the
input values x1, . . . , xn, these values define the next configurations, but remain invisible
in the input sequence.

The tight coupling of internal values and control states, by means of uninterpreted
predicate symbols, allows for linear-time complementation just as in the case of clas-
sical propositional alternating automata. Complementation is, moreover, possible when
the transition formulae contain first-order quantifiers, generating infinitely-branching
execution trees. The price to be paid for this expressivity is that emptiness of first-order
alternating automata is undecidable, even for the simplest data theory of equality [6].

The main contribution of this paper is an effective emptiness checking semi-algorithm
for first-order alternating automata, in the spirit of the IMPACT lazy annotation proce-
dure, originally developed for checking safety of nondeterministic integer programs
[20,21]. In a nutshell, a lazy annotation procedure unfolds an automaton A trying to
find an execution that recognizes a word from L(A). If a path that reaches a final state
does not correspond to a concrete run of the automaton, the positions on the path are
labeled with interpolants from the proof of infeasibility, thus marking this path and all
continuations as infeasible for future searches. Termination of lazy annotation proce-
dures is not guaranteed, but having a suitable coverage relation between the nodes of
the search tree may ensure convergence of many real-life examples. However, applying
lazy annotation to first-order alternating automata faces two nontrivial problems:
1. Quantified transition rules make it hard, if not impossible, in general, to decide if

a path is infeasible. This is mainly because adding uninterpreted predicate symbols
to decidable first-order theories, such as Presburger arithmetic, results in undecid-
ability [10]. To deal with this problem, we assume that the first-order data theory,
without uninterpreted predicate symbols, has a quantifier elimination procedure,
that instantiates quantifers with effectively computable witness terms.

2. The interpolants that prove the infeasibility of a path are not local, as they may
refer to input values encountered in the past. However, the future executions are
oblivious to when these values have been seen in the past and depend only on the
relation between the past and current values. We use this fact to define a labeling of
nodes, visited by the lazy annotation procedure, with conjunctions of existentially
quantified interpolants combining predicate atoms with data constraints.
We use first-order alternating automata to develop practical semi-algorithms for a

number of known undecidable problems, such as: inclusion of regular timed languages
[1], inclusion of quasi-regular languages recognized by finite-memory automata [16]
and emptiness of predicate automata, a subclass of first-order alternating automata used
to verify parameterized concurrent programs [6,7].
Related Work Recognizers for languages over infinite alphabets have found various
applications, ranging from Unicode text recognition [5] to runtime program monitoring
[2]. Extending finite automata to infinite alphabets has been considered in the context
of symbolic alternating finite automata (s-AFA), whose transitions are labeled with
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guards taken from a decidable theory of the data domain [5]. As in our model, s-AFA
are closed under union, intersection and complement and emptiness is decidable, due
to the lack of registers. However, s-AFA are strictly less expressive than our model,
because comparing data at different positions in the input word is not possible.

Constrained Horn clauses (CHC) are a branching computation model widespread
in program verification [9]. The main difference between alternating and bottom-up
branching computations is that, in an alternating model, all branches of the compu-
tation must synchronize on the same input word. With this in mind, it is possible to
express emptiness of first-order alternating automata as the existence of solutions of
a CHC over a higher-order theory of data, extended with algebraic data types (lists).
The effectiveness of such an encoding depends on the effectiveness of interpolation and
witness term generation for theories of algebraic data types [11].

The alternating automata model presented in this paper extends the alternating au-
tomata with variables ranging over infinite data considered in [14]. There all variables
were required to be observable in the input. We overcome this restriction by allow-
ing internal (invisible) variables. Another closely related work [13] considers an inclu-
sion between an asynchronous product of automata A1 × . . .× An, extended with data
variables, and a monitor automaton B. The semi-algorithm defined there was based on
the assumption that all variables of the observer B must be declared in the automata
A1, . . . ,An under check. This limitation can now be bypassed, since the inclusion prob-
lem can be encoded as emptiness of a first-order alternating automaton and, moreover,
the emptiness checking semi-algorithm can handle invisible variables.

The work probably closest to ours concerns the model of predicate automata (PA)
[6,7,17], used in the verification of parameterized concurrent programs with shared
memory. In this model, the alphabet consists of pairs of program statements and thread
identifiers and is considered infinite because the number of threads is unbounded. Since
thread identifiers can only be compared for equality, the data theory in PA is the the-
ory of equality. Even with this simplification, the emptiness problem is undecidable
when either the predicates have arity greater than one [6] or use quantified transition
rules [17]. Checking emptiness of quantifier-free PA is possible semi-algorithmically,
by explicitly enumerating reachable configurations and checking coverage by looking
for permutations of argument values. However, no semi-algorithm has been given for
quantified PA. Dealing with quantified transition rules is one of our contributions.

1.1 Preliminaries

For two integers 0 ≤ i ≤ j, we define [i, j] def
= {i, . . . , j} and [i] def

= [0, i]. We consider two
disjoint sortsD and B, whereD is an infinite domain and B= {>,⊥} is the set of boolean
values true (>) and false (⊥), respectively. The D sort is equipped with countably many
function symbols f : D#( f ) → D∪B, where #( f ) ≥ 0 denotes the number of arguments
(arity) of f . A predicate is a function symbol p : D#(p)→ B that is, a #(p)-ary relation.

We consider the interpretation of all function symbols f : D#( f )→ D to be fixed by
the interpretation of the D sort, for instance if D is the set of integers Z, these are zero,
the successor function and the arithmetic operations of addition and multiplication. We
extend this convention to several predicates over D, such as the inequality relation over
Z, and write Pred for the set of remaining uninterpreted predicates.
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Let Var = {x,y,z, . . .} be a countably infinite set of variables, ranging over D. Terms
are either constants of sort D, variables or function applications f (t1, . . . , t#( f )), where
t1, . . . , t#( f ) are terms. The set of first-order formulae is defined by the syntax below:

φ := t = s | p(t1, . . . , t#(p)) | ¬φ1 | φ1∧φ2 | ∃x . φ1

where t, s, t1, . . . , t#(p) denote terms and p is a predicate symbol. We write φ1∨φ2, φ1→

φ2 and ∀x . φ1 for ¬(¬φ1∧¬φ2), ¬φ1∨φ2 and ¬∃x . ¬φ1, respectively. FV(φ) is the set
of free variables in φ and the size |φ| of a formula φ is the number of symbols needed
to write it down. A sentence is a formula φ with no free variables. A formula is positive
if each uninterpreted predicate symbol occurs under an even number of negations and
we denote by Form+(Q,X) the set of positive formulae with predicates from the set
Q ⊆ Pred and free variables from the set X ⊆ Var. A formula is in prenex form if it is
of the form ϕ = Q1x1 . . .Qnxn . φ, where φ has no quantifiers. In this case we call φ the
matrix of ϕ. Every first-order formula can be written in prenex form, by renaming each
quantified variable to a unique name and moving the quantifiers upfront.

An interpretation Imaps each predicate symbol p into a set pI ⊆D#(p), if #(p) > 0,
or into an element of B if #(p) = 0. A valuation ν maps each variable x into an element
of D. Given a term t, we denote by tν the value obtained by replacing each variable x by
the value ν(x) and evaluating each function application. For a formula φ, we define the
forcing relation I, ν |= φ recursively on the structure of φ, as usual. For a formula φ and
a valuation ν, we define [[φ]]ν

def
= {I | I, ν |= φ} and drop the ν subscript for sentences.

A sentence φ is satisfiable if [[φ]] , ∅. An element of [[φ]] is called a model of φ. A
formula φ is valid if I, ν |= φ for every interpretation I and every valuation ν. We say
that φ entails ψ, written φ |= ψ if and only if [[φ]] ⊆ [[ψ]].

Interpretations are partially ordered by the pointwise subset order, defined as I1 ⊆

I2 if and only if pI1 ⊆ pI2 for each predicate symbol p ∈ Pred. Given a formula φ and
a valuation ν, we define [[φ]]µν

def
= {I | I, ν |= φ, ∀I′ ⊆ I . I′, ν 6|= φ} the set of minimal

interpretations that, together with ν, form models of φ.

2 First Order Alternating Automata

Let Σ be a finite alphabet Σ of input events. Given a finite set of variables X ⊆ Var, we
denote by X 7→ D the set of valuations of the variables X and Σ[X] = Σ × (X 7→ D) be
the possibly infinite set of data symbols (a, ν), where a is an input symbol and ν is a
valuation. A data word (simply called word in the following) is a finite sequence w =

(a1, ν1)(a2, ν2) . . . (an, νn) of data symbols. Given a word w, we denote by wΣ
def
= a1 . . .an

its sequence of input events and by wD the valuation associating each time-stamped
variable x(i), where x ∈ Var, the value νi(x), for all i ∈ [1,n]. We denote by ε the empty
sequence, by Σ∗ the set of finite input sequences and by Σ[X]∗ the set of finite data
words over the variables X.

A first-order alternating automaton is a tuple A = 〈Σ,X,Q, ι,F,∆〉, where Σ is a
finite set of input events, X is a finite set of input variables, Q is a finite set of predicates
denoting control states, ι ∈ Form+(Q,∅) is a sentence defining initial configurations,
F ⊆ Q is the set of predicates denoting final states and ∆ is a set of transition rules. A

transition rule is of the form q(y1, . . . ,y#(q))
a(X)
−−−→ ψ, where q ∈ Q is a predicate, a ∈ Σ
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is an input event and ψ ∈ Form+(Q,X∪ {y1, . . . ,y#(q)}) is a positive formula, where X∩
{y1, . . . ,y#(q)} = ∅. Without loss of generality, we consider, for each predicate q ∈ Q and
each input event a ∈ Σ, at most one such rule, as two or more rules can be joined using
disjunction. The quantifiers occurring in the right-hand side formula of a transition rule

are called transition quantifiers. The size ofA is |A| def
= |ι|+

∑
{|ψ| | q(y)

a(X)
−−−→ ψ ∈ ∆}.

The semantics of first-order alternating automata is analogous to the semantics of
propositional alternating automata, with rules of the form q

a
−→ φ, where q is a propo-

sitional variable and φ a positive boolean combination of propositional variables. For
instance, q0

a
−→ (q1∧q2)∨q3 means that the automaton can choose to transition in either

both q1 and q2 or in q3 alone. This leads to defining transitions as the minimal models of
the right hand side of a rule1. The original definition of alternating automata [4] works
around this problem and considers boolean valuations instead of formulae. In contrast,
a finite description of a first-order alternating automaton cannot be given in terms of in-
terpretations, as a first-order formula may have infinitely many models, corresponding
to infinitely many initial or successor states occurring within an execution step.

Given an uninterpreted predicate symbol q ∈ Q and data values d1, . . . ,d#(q) ∈D, the
tuple (q,d1, . . . ,d#(q)) is called a configuration, sometimes written q(d1, . . . ,d#(q)), when
no confusion arises. A configuration is final if q ∈ F. An interpretation I corresponds
to a set of configurations c(I) def

= {(q,d1, . . . ,d#(q)) | q ∈ Q, (d1, . . . ,d#(q)) ∈ qI}, called a
cube. This notation is lifted to sets of configurations in the usual way.

Definition 1. Given a word w = (a1, ν1) . . . (an, νn) ∈ Σ[X]∗ and a cube c, an execution
of A = 〈Σ,X,Q, ι,F,∆〉 over w, starting with c, is a forest T = {T1,T2, . . .}, where each
Ti is a tree labeled with configurations, such that:
1. c = {T (ε) | T ∈ T } is the set of configurations labeling the roots of T1,T2, . . . and
2. if (q,d1, . . . ,d#(q)) labels a node on the level j ∈ [n− 1] in Ti, then the labels of its

children form a cube from c([[ψ]]µη), where η = ν j+1[y1 ← d1, . . . ,y#(q) ← d#(q)] and

q(y1, . . . ,y#(q))
a j+1(X)
−−−−−→ ψ ∈ ∆ is a transition rule ofA.

An executionT over w, starting with c, is accepting if and only if all paths inT have
the same length and the frontier of each tree T ∈ T is labeled with final configurations.
IfA has an accepting execution over w starting with a cube c ∈ c([[ι]]µ), thenA accepts
w and letL(A) be the set of words accepted byA. For example, consider the automaton

A= 〈{a}, {x}, {q0,q1,q2,q f },q0(0), {q f },∆〉, where ∆ is the set: q0(y)
a(x)
−−→ q1(y+ x)∧q2(y−

x), q1(y)
a(x)
−−→ q1(y + x)∨ (y > 0∧ q f ) and q2(y)

a(x)
−−→ q2(y− x)∨ (y > 0∧ q f ). A possible

execution tree of this automaton is the following:

(q2,−10)

(q1,1) (q1,3) q f(q1,6) (q1,10)
(q0,0)

a, {x← 1} a, {x← 2} a, {x← 3} a, {x← 4} a, {x← 5}

(q2,−6)(q2,−1) (q2,−3) (q2,−15)

The execution tree is not accepting, since its frontier is not labeled with final configura-
tions everywhere. Incidentally, here we have L(A) = ∅, which is proved by our tool in
∼0.5 seconds on an average machine.

1 Both {q1←>,q2←>,q3←⊥} and {q1←⊥,q2←⊥,q3←>} are minimal models, however
{q1←>,q2←>,q3←>} is a model but is not minimal.
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In the rest of this paper, we are concerned with the following problems:
1. boolean closure: given automataAi = 〈Σ,X,Qi, ιi,Fi,∆i〉, for i = 1,2, do there exist

automata A∩, A∪ and A1 such that L(A∩) = L(A1)∩ L(A2), L(A∪) = L(A1)∪
L(A2) and L(A1) = Σ[X]∗ \L(A1) ?

2. emptiness: given an automatonA, is L(A) = ∅ ?
For technical reasons, we address the following problem next: given an automaton A
and an input sequence α ∈ Σ∗, does there exists a word w ∈ L(A) such that wΣ = α ? By
solving this problem first, we develop the machinery required to prove that first-order
alternating automata are closed under complement and, further, set up the ground for
developping a practical semi-algorithm for the emptiness problem.

2.1 Path Formulae

In the upcoming developments it is sometimes more convenient to work with logical
formulae defining executions of automata, than with low-level execution forests. For
this reason, we first introduce path formulae Θ(α), which are formulae defining the
executions of an automaton, over words that share a given sequence α of input events.
Second, we restrict a path formula Θ(α) to an acceptance formula Υ(α), which defines
only those executions that are accepting among Θ(α). Consequently, the automaton
accepts a word w such that wΣ = α if and only if Υ(α) is satisfiable.

Let A = 〈Σ,X,Q, ι,F,∆〉 be an automaton for the rest of this section. For any i ∈ N,
we denote by Q(i) = {q(i) | q ∈ Q} and X(i) = {x(i) | x ∈ X} the sets of time-stamped predi-
cate symbols and variables, respectively. We also define Q(≤n) def

= {q(i) | q ∈ Q, i ∈ [n]} and
X(≤n) def

= {x(i) | x ∈ X, i ∈ [n]}. For a formula ψ and i ∈ N, we define ψ(i) def
= ψ[X(i)/X,Q(i)/Q]

the formula in which all input variables and state predicates (and only those sym-
bols) are replaced by their time-stamped counterparts. Moreover, we write q(y) for
q(y1, . . . ,y#(q)), when no confusion arises.

Given a sequence of input events α = a1 . . .an ∈ Σ
∗, the path formula of α is:

Θ(α) def
= ι(0)∧

∧n
i=1

∧
q(y)

ai(X)
−−−→ψ∈∆

∀y1 . . .∀y#(q) . q(i−1)(y)→ ψ(i) (1)

The automaton A, to which Θ(α) refers, will always be clear from the context. To
formalize the relation between the low-level configuration-based execution semantics
and path formulae, consider a word w = (a1, ν1) . . . (an, νn) ∈ Σ[X]∗. Any execution T of
A over w has an associated interpretation IT of time-stamped predicates Q(≤n):

IT (q(i)) def
= {(d1, . . . ,d#(q)) | (q,d1, . . . ,d#(q)) labels a node on level i in T }, ∀q ∈Q ∀i ∈ [n]

Lemma 1. Given an automatonA= 〈Σ,X,Q, ι,F,∆〉, for any word w = (a1, ν1) . . . (an, νn),
we have [[Θ(wΣ)]]µwD = {IT | T is an execution ofA over w}.

Next, we give a logical characterization of acceptance, relative to a given sequence
of input events α ∈ Σ∗. To this end, we constrain the path formula Θ(α) by requiring
that only final states of A occur on the last level of the execution. The result is the
acceptance formula for α:

Υ(α) def
= Θ(α)∧

∧
q∈Q\F ∀y1 . . .∀y#(q) . q(n)(y)→⊥ (2)

The top-level universal quantifiers from a subformula ∀y1 . . .∀y#(q) . q(i)(y)→ ψ of Υ(α)
will be referred to as path quantifiers, in the following. Notice that path quantifiers
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are distinct from the transition quantifiers that occur within a formula ψ of a transition

rule q(y1, . . . ,y#(q))
a(X)
−−−→ ψ ofA. The relation between the words accepted byA and the

acceptance formula above, is formally captured by the following lemma:

Lemma 2. Given an automaton A = 〈Σ,X,Q, ι,F,∆〉, for every word w ∈ Σ[X]∗, the
following are equivalent: (1) there exists an interpretation I such that I,wD |= Υ(wΣ)
and (2) w ∈ L(A).

As an immediate consequence, one can decide whether A accepts some word w
with a given input sequence wΣ = α, by checking whether Υ(α) is satisfiable. However,
unlike non-alternating infinite-state models of computation, such as counter automata
(nondeterministic programs with integer variables), the satisfiability query for an ac-
ceptance (path) formula falls outside of known decidable theories, supported by stan-
dard SMT solvers. There are basically two reasons for this, namely (i) the presence of
predicate symbols, and (ii) the non-trivial alternation of quantifiers. To understand this
point, consider for example, the decidable theory of Presburger arithmetic [24]. Adding
even only one monadic predicate symbol to it yields undecidability in the presence of
non-trivial quantifier alternation [10]. On the other hand, the quantifier-free fragment of
Presburger arithmetic extended with uninterpreted function symbols is decidable, by a
Nelson-Oppen style congruence closure argument [22].

To tackle the problem of deciding satisfiability of Υ(α) formulae, we start from the
observation that their form is rather particular, which allows the elimination of path
quantifiers and uninterpreted predicate symbols, by a couple of satisfiability-preserving
transformations. The result of applying these transformations is a formula with no pred-
icate symbols, whose only quantifiers are those introduced by the transition rules of the
automaton. Next, in §3 we shall assume moreover that the first-order theory of the data
sort D (without uninterpreted predicate symbols) has quantifier elimination, providing
thus an effective decision procedure.

For the time being, let us formally define the elimination of transition quantifiers and
predicate symbols. Let α = a1 . . .an be a given sequence of input events and let αi be
the prefix a1 . . .ai of α, for i ∈ [n], where α0 = ε. We consider the sequence of formulae
Θ̂(α0), . . . , Θ̂(αn) defined as Θ̂(α0) def

= ι(0) and, for all i ∈ [1,n], let Θ̂(αi) be the conjunc-
tion of Θ̂(αi−1) with all formulae q(i−1)(t1, . . . , t#(q))→ ψ(i)[t1/y1, . . . , t#(q)/y#(q)], such that
q(i−1)(t1, . . . , t#(q)) occurs in Θ̂(αi−1), for some terms t1, . . . , t#(q). Next, we write Υ̂(α) for
the conjunction of Θ̂(αn) with all q(n)(t1, . . . , t#(q))→⊥, such that q(n)(t1, . . . , t#(q)) occurs
in Θ̂(αn), for some q ∈ Q \F. Note that Υ̂(α) contains no path quantifiers, as required.
On the other hand, the scope of the transition quantifiers in Υ̂(α) exceeds the right-hand
side formulae from the transition rules, as shown by the following example.

Example 1. Consider the automatonA = 〈{a1,a2}, {x}, {q,q f }, ι, {q f },∆〉, where:
ι = ∃z . z ≥ 0∧q(z)

∆ = {q(y)
a1(x)
−−−→ x ≥ 0∧∀z . z ≤ y→ q(x + z), q(y)

a2(x)
−−−→ y < 0∧q f (x + y)}

For the input event sequence α = a1a2, the acceptance formula is:
Υ(α) = ∃z1 . z1 ≥ 0∧q(0)(z1) ∧

∀y . q(0)(y)→ [x(1) ≥ 0∧∀z2 . z2 ≥ y→ q(1)(x(1) + z2)] ∧
∀y . q(1)(y)→ [y < 0∧q f

(2)(x(2) + y)]
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The result of eliminating the path quantifiers, in prenex normal form, is shown below:
Υ̂(α) = ∃z1∀z2 . z1 ≥ 0∧q(0)(z1) ∧

[q(0)(z1)→ x(1) ≥ 0∧ (z2 ≥ z1→ q(1)(x(1) + z2))] ∧
[q(1)(x(1) + z2)→ x(1) + z2 < 0∧q f

(2)(x(2) + x(1) + z2)]

Notice that the transition quantifiers ∃z1 and ∀z2 from Υ(α) range now over Υ̂(α). �

Lemma 3. For any input event sequence α = a1 . . .an and each valuation ν : X(≤n)→D,
the following hold, for every interpretation I: (1) if I, ν |= Υ(α) then I, ν |= Υ̂(α), and
(2) if I, ν |= Υ̂(α) there exists an interpretation J ⊆ I such that J , ν |= Υ(α).

Further, we eliminate the predicate atoms from Υ̂(α), by considering the sequence
of formulae Θ(α0) def

= ι(0) and Θ(αi) is obtained by substituting each predicate atom

q(i−1)(t1, . . . , t#(q)) in Θ(αi−1) by ψ(i)[t1/y1, . . . , t#(q)/y#(q)], where q(y)
ai(X)
−−−→ ψ ∈ ∆, for all

i ∈ [1,n]. We write Υ(α) for the formula obtained by replacing, inΘ(α), each occurrence
of a predicate q(n), such that q ∈ Q \F (resp. q ∈ F), by ⊥ (resp. >).

Example 2 (Contd. from Example 1). The result of the elimination of predicate atoms
from the acceptance formula in Example 1 is shown below:

Υ(α) = ∃z1∀z2 . z1 ≥ 0∧ [x(1) ≥ 0∧ (z2 ≥ z1→ x(1) + z2 < 0)]
Since this formula is unsatisfiable, by Lemma 5 below, no word w with input event
sequence wΣ = a1a2 is accepted by the automatonA from Example 1. �

At this point, we prove the formal relation between the satisfiability of the formulae
Υ̂(α) and Υ(α). Since there are no occurrences of predicates in Υ(α), for each valuation
ν : X(≤n)→ D, there exists an interpretation I such that I, ν |= Υ(α) if and only if J , ν |=
Υ(α), for every interpretation J . In this case we omit I and simply write ν |= Υ(α).

Lemma 4. For any input event sequence α = a1 . . .an and each valuation ν : X(≤n)→D,
there exists a valuation I such that I, ν |= Υ̂(α) if and only if ν |= Υ(α).

Finally, we define the acceptance of a word with a given input event sequence by
means of a quantifier-free formula in which no predicate atom occurs.

Lemma 5. Given an automaton A = 〈Σ,X,Q, ι,F,∆〉, for every word w ∈ Σ[X]∗, we
have wD |= Υ(wΣ) if and only if w ∈ L(A).

2.2 Boolean Closure of First Order Alternating Automata

Given a positive formula φ, we define the dual formula φ∼ recursively as follows:

(φ1∨φ2)∼ def
= φ1

∼∧φ2
∼ (φ1∧φ2)∼ def

= φ1
∼∨φ2

∼ (t = s)∼ def
= t , s

(∃x . φ1)∼ def
= ∀x . φ1

∼ (∀x . φ1)∼ def
= ∃x . φ1

∼ (t , s)∼ def
= t = s

q(x1, . . . , x#(q))∼
def
= q(x1, . . . , x#(q))

The following theorem shows closure of automata under all boolean operations. Note
that it is sufficient to show closure under intersection and negation because L(A1)∪
L(A2) is the complement of the language Lc(A1)∩Lc(A2), for any two automataA1
andA2 with the same input event alphabet and set of input variables.
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Theorem 1. Given automataAi = 〈Σ,X,Qi, ιi,Fi,∆i〉, for i = 1,2, such that Q1∩Q2 = ∅,
the following hold:
1. L(A∩) =L(A1)∩L(A2), whereA∩ = 〈Σ,X,Q1∪Q2, ι1∧ ι2,F1∪F2,∆1∪∆2〉,
2. L(Ai) = Σ[X]∗ \L(Ai), where Ai = 〈Σ,X,Qi, ι

∼,Qi \ Fi,∆
∼
i 〉 and ∆∼i = {q(y)

a(X)
−−−→

ψ∼ | q(y)
a(X)
−−−→ ψ ∈ ∆i}, for i = 1,2.

Moreover, |A∩| = O(|A1|+ |A2|) and |Ai| = O(|Ai|), for i = 1,2.

3 The Emptiness Problem

The emptiness problem is undecidable even for automata with predicates of arity two,
whose transition rules use only equalities and disequalities, having no transition quan-
tifiers [6]. Since even such simple classes of alternating automata have no general de-
cision procedure for emptiness, we use an abstraction-refinement semi-algorithm based
on lazy annotation [20,21]. In a nutshell, a lazy annotation procedure systematically ex-
plores the set of finite input event sequences searching for an accepting execution. For
an input sequence, if the path formula is satisfiable, we compute a word in the language
of the automaton, from the model of the path formula. Otherwise, i.e. the sequence is
spurious, the search backtracks and each position in the sequence is annotated with an
interpolant, thus marking the sequence as infeasible. The semi-algorithm uses moreover
a coverage relation between sequences, ensuring that the continuations of already cov-
ered sequences are never explored. Sometimes this coverage relation provides a sound
termination argument, in case when the automaton is empty.

For two input event sequences α,β ∈ Σ∗, we say that α is a prefix of β, written α � β,
if α = βγ for some sequence γ ∈ Σ∗. A set S of sequences is prefix-closed if for each
α ∈ S , if β � α then β ∈ S , and complete if for each α ∈ S , there exists a ∈ Σ such that
αa ∈ S if and only if αb ∈ S for all b ∈ Σ. A prefix-closed set is the backbone of a tree
whose edges are labeled with input events. If the set is, moreover, complete, then every
node of the tree has either zero successors, in which case it is called a leaf, or it has a
successor edge labeled with a for each input event a ∈ Σ.

Definition 2. An unfolding of an automatonA= 〈Σ,X,Q, ι,F,∆〉 is a finite partial map-
ping U : Σ∗⇀fin Form+(Q,∅), whose domain dom(U) is a finite prefix-closed complete
set, such that U(ε) = ι, and for each sequence αa ∈ dom(U), such that α ∈ Σ∗ and a ∈ Σ:

U(α)(0)∧
∧

q(y)
a(X)
−−−→ψ

∀y1 . . .∀y#q . q(0)(y)→ ψ(1) |= U(αa)(1)

A path α is safe in U if and only if U(α)∧
∧

q∈Q\F ∀y1 . . .∀y#(q) . q(y)→⊥ is unsatisfiable.
The unfolding U is safe if and only if every path in dom(U) is safe in U.

Lazy annotation semi-algorithms [20,21] build unfoldings of automata trying to
discover counterexamples for emptiness. If the automatonA in question is non-empty,
a systematic enumeration of the input event sequences2 from Σ∗ will suffice to discover
a word w ∈ L(A), provided that the first-order theory of the data domain D is decidable
(Lemma 2). However, if L(A) = ∅, the enumeration of input event sequences may, in
principle, run forever. The typical way of fighting this divergence problem is to define
a coverage relation between the nodes of the unfolding tree.

2 For instance, using breadth-first search.
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Algorithm 1 IMPACT-based Semi-algorithm for First Order Alternating Automata
input: a first order alternating automatonA = 〈Σ,X,Q, ι,F,∆〉
output: > if L(A) = ∅, or word w ∈ L(A), otherwise
data structures: WorkList and unfolding treeU = 〈N,E,r,U,C〉, where:

– N is a set of nodes,
– E ⊆ N ×Σ ×N is a set of edges labeled by input events,
– U : N→ Form+(Q,∅) is a labeling of nodes with positive sentences
– C ⊆ N ×N is a coverage relation,

initially WorkList = {r} and N = E = U = C = ∅.
1: while WorkList , ∅ do
2: dequeue n from WorkList
3: N← N ∪{n}
4: let α(n) be a1, . . . ,ak
5: if Υ(α)(X(1), . . . ,X(k)) is satisfiable then . counterexample is feasible
6: get model ν of Υ(α)(X(1), . . . ,X(k))
7: return w = (a1, ν(X(1))) . . . (ak, ν(X(k))) . w ∈ L(A) by construction
8: else . spurious counterexample
9: let (I0, . . . , Ik) be a GLI for α

10: b←⊥
11: for i = 0, . . . ,k do
12: if U(ni) 6|= Ii then
13: Uncover← {m ∈ N | (m,ni) ∈ C}
14: C← C \ {(m,ni) | m ∈ Uncover} . uncover the nodes covered by ni
15: for m ∈ Uncover such that m is a leaf ofU do
16: enqueue m into WorkList . reactivate uncovered leaves
17: U(ni)← U(ni)∧ Ji . strenghten the label of ni (Lemma 7)
18: if ¬b then
19: b← Close(ni)
20: if n is not covered then
21: for a ∈ Σ do . expand n
22: let s be a fresh node and e = (n,a, s) be a new edge
23: E← E∪{e}
24: U ← U ∪{(s,>)}
25: enqueue s into WorkList
26: return >
27: function Close(x) returns B
28: for y ∈ N such that α(y) ≺∗ α(x) do
29: if U(x) |= U(y) then
30: C←

[
C \ {(p,q) ∈ C | q is x or a successor of x}

]
∪{(x,y)}

31: return >
32: return ⊥

Definition 3. Given an unfolding U of an automaton A = 〈Σ,X,Q, ι,F,∆〉 a node α ∈
dom(U) is covered by another node β ∈ dom(U), denoted α v β, if and only if there
exists a node α′ � α such that U(α′) |= U(β). Moreover, U is closed if and only if every
leaf from dom(U) is covered by an uncovered node.
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A lazy annotation semi-algorithm will stop and report emptiness provided that it
succeeds in building a closed and safe unfolding of the automaton. Notice that, by
Definition 3, for any three nodes of an unfolding U, say α,β,γ ∈ dom(U), if α ≺ β and
α v γ, then β v γ as well. As we show next (Theorem 2), there is no need to expand
covered nodes, because, intuitively, there exists a word w ∈ L(A) such that α � wΣ and
α v γ only if there exists another word u ∈ L(A) such that γ � uΣ . Hence, exploring
only those input event sequences that are continuations of γ (and ignoring those of α)
suffices in order to find a counterexample for emptiness, if one exists.

An unfolding node α ∈ dom(U) is said to be spurious if and only if Υ(α) is unsat-
isfiable. In this case, we change (refine) the labels of (some of the) prefixes of α (and
that of α), such that U(α) becomes ⊥, thus indicating that there is no real execution of
the automaton along that input event sequence. As a result of the change of labels, if
a node γ � α used to cover another node from dom(U), it might not cover it with the
new label. Therefore, the coverage relation has to be recomputed after each refinement
of the labeling. The semi-algorithm stops when (and if) a safe complete unfolding has
been found.

Theorem 2. If an automatonA has a nonempty safe closed unfolding then L(A) = ∅.

We describe the semi-algorithm used to check emptiness of first-order alternating
automata. The execution of Algorithm 1 consists of three phases, corresponding to the
Close, Refine and Expand of the original IMPACT procedure [20]. Let n be a node
removed from the worklist at line 2 and let α(n) be the input sequence labeling the path
from the root node to n. If Υ(α(n)) is satisfiable, the sequence α(n) is feasible, in which
case a model of Υ(α(n)) is obtained and a word w ∈ L(A) is returned. Otherwise, α(n) is
an infeasible input sequence and the procedure enters the refinement phase (lines 9-19).
The GLI for α(n) is used to strenghten the labels of all the ancestors of n, by conjoining
the formulae of the interpolant, changed according to Lemma 7, to the existing labels.

In this process, the nodes on the path between r and n, including n, might become
eligible for coverage, therefore we attempt to close each ancestor of n that is impacted
by the refinement (line 19). Observe that, in this case the call to Close must uncover
each node which is covered by a successor of n (line 30 of the Close function). This is
required because, due to the over-approximation of the sets of reachable configurations,
the covering relation is not transitive, as explained in [20]. If Close adds a covering edge
(ni,m) to C, it does not have to be called for the successors of ni on this path, which is
handled via the boolean flag b. Finally, if n is still uncovered (it has not been previously
covered during the refinement phase) we expand n (lines 21-25) by creating a new node
for each successor s via the input event a ∈ Σ and inserting it into the worklist.

4 Interpolant Generation

Typically, when checking the unreachability of a set of program configurations, the
interpolants used to annotate the unfolded control structure are assertions about the val-
ues of the program variables in a given control state, at a certain step of an execution
[20]. Because we consider alternating computation trees (forests), we must distinguish
between (i) locality of interpolants w.r.t. a given control state (control locality) and
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(ii) locality w.r.t. a given time stamp (time locality). In logical terms, control-local in-
terpolants are formulae involving a single predicate symbol, whereas time-local inter-
polants involve only predicates q(i) and variables x(i), for a single i ≥ 0. When consid-
ering alternating executions, control-local interpolants are not always enough to prove
emptiness, because of the synchronization of several branches of the computation on the
same input word. For this reason, the interpolants considered in this paper will never be
control-local and we shall use the term local to denote time-local interpolants, with no
free variables.

First, let us give the formal definition of the class of interpolants we shall work with.
Given a formula φ, the vocabulary of φ, denoted V(φ) is the set of predicate symbols
q ∈ Q(i) and variables x ∈ X(i), occurring in φ, for some i ≥ 0. For a term t, its vocabulary
V(t) is the set of variables that occur in t. Observe that quantified variables and the
interpreted function symbols of the data theory3 do not belong to the vocabulary of a
formula. By P+(φ) [P−(φ)] we denote the set of predicate symbols that occur in φ under
an even [odd] number of negations.

Definition 4 ([19]). Given formulae φ and ψ such that φ∧ψ is unsatisfiable, a Lyndon
interpolant is a formula I such that φ |= I, the formula I ∧ψ is unsatisfiable, V(I) ⊆
V(φ)∩V(ψ), P+(I) ⊆ P+(φ)∩P+(ψ) and P−(I) ⊆ P−(φ)∩P−(ψ).

In the rest of this section, fix an automaton A = 〈Σ,X,Q, ι,F,∆〉. The following
definition generalizes interpolants from unsatisfiable conjunctions to input sequences:

Definition 5. Given a sequence of input events α = a1 . . .an ∈ Σ
∗, a generalized Lyndon

interpolant (GLI) is a sequence (I0, . . . , In) of formulae such that, for all k ∈ [n−1], the
following hold: (1) P−(Ik) = ∅, (2) ι(0) |= I0, Ik ∧

(∧
q(y)

ai(X)
−−−→ψ∈∆

∀y1 . . .∀y#(q) . q(k)(y)→

ψ(k+1)
)
|= Ik+1 and (3) In∧

∧
q∈Q\F ∀y1 . . .∀y#(q) . q(y)→⊥ is unsatisfiable. Moreover, the

GLI is local if and only if V(Ik) ⊆ Q(k), for all k ∈ [n].

The following proposition states the existence of local GLI for the theories in which
Lyndon’s Interpolation Theorem holds.

Proposition 1. If there exists a Lyndon interpolant for any two formulae φ and ψ, in
the first-order theory of data with uninterpreted predicate symbols, such that φ∧ψ is
unsatisfiable, then any sequence of input events α = a1 . . .an ∈ Σ

∗, such that Υ(α) is
unsatisfiable, has a local GLI (I0, . . . , In).

A problematic point of the above proposition is that the existence of Lyndon inter-
polants (Definition 4) is proved in principle, but the proof is non-constructive. In other
words, the proof of Proposition 1 does not yield an algorithm for computing GLIs, for
the following reason. Building an interpolant for an unsatisfiable conjunction of formu-
lae φ∧ψ is typically the job of the decision procedure that proves the unsatisfiability
and, in general, there is no such procedure, when φ and ψ contain predicates and have
non-trivial quantifier alternation. In this case, some provers use instantiation heuristics
for the universal quantifiers that are sufficient for proving unsatisfiability, however these

3 E.g., the arithmetic operators of addition and multiplication, when D is the set of integers.
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heuristics are not always suitable for interpolant generation. Consequently, from now
on, we assume the existence of an effective Lyndon interpolation procedure only for
decidable theories, such as the quantifier-free linear (integer) arithmetic with uninter-
preted functions (UFLIA, UFLRA, etc.) [26].

This is where the predicate-free path formulae (defined in §2.1) come into play.
Recall that, for a given event sequence α, the automaton A accepts a word w such that
wΣ = α if and only if Υ(α) is satisfiable (Lemma 5). Assuming further that the equality
and interpreted predicates (e.g. inequalities for integers) atoms from the transition rules
of A belong to a decidable first-order theory, such as Presburger arithmetic, Lemma 5
gives us an effective way of checking emptiness ofA, relative to a given event sequence.
However, this method does not cope well with lazy annotation, because there is no way
to extract, from the unsatisfiability proof of Υ(α), the interpolants needed to annotate α.
This is because (I) the formula Υ(α), obtained by repeated substitutions loses track of
the steps of the execution, and (II) quantifiers that occur nested in Υ(α) make it difficult
to write Υ(α) as an unsatisfiable quantifier-free conjunction of formulae from which
interpolants are extracted (Definition 4).

The solution we adopt for the first issue (I) consists in partially recovering the time-
stamped structure of the acceptance formulaΥ(α) using the formula Υ̂(α), in which only
transition quantifiers occur. The second issue (II) is solved under the additional assup-
tion that the theory of the data domain D has witness-producing quantifier elimination.
More precisely, we assume that, for each formula ∃x . φ(x), there exists an effectively
computable term τ, in which x does not occur, such that ∃x . φ and φ[τ/x] are equisat-
isfiable. These terms, called witness terms in the following, are actual definitions of the
Skolem function symbols from the following folklore theorem:

Theorem 3 ([3]). Given Q1x1 . . .Qnxn . φ a first-order sentence, where Q1, . . . ,Qn ∈

{∃,∀} and φ is quantifier-free, let ηi
def
= fi(y1, . . . ,yki ) if Qi = ∀ and ηi

def
= xi if Qi = ∃,

where fi is a fresh function symbol and {y1, . . . ,yki } = {x j | j < i, Q j = ∃}. Then the
entailment Q1x1 . . .Qnxn . φ |= φ[η1/x1, . . . , ηn/xn] holds.

Examples of witness-producing quantifier elimination procedures can be found in the
literature for e.g. linear integer (real) arithmetic (LIA,LRA), Presburger arithmetic and
boolean algebra of sets and Presburger cardinality constraints (BAPA) [18].

Under the assumption that witness terms can be effectively built, we describe the
generation of a non-local GLI for a given input event sequence α = a1 . . .an. First, we
generate successively the acceptance formula Υ(α) and its equisatisfiable forms Υ̂(α) =

Q1x1 . . .Qmxm . Φ̂ and Υ(α) = Q1x1 . . .Qmxm . Φ, both written in prenex form, with
matrices Φ̂ and Φ, respectively. Because we assumed that the first order theory of D
has quantifier elimination, the satisfiability problem for Υ(α) is decidable. If Υ(α) is
satisfiable, we build a counterexample for emptiness w such that wΣ = α and wD is a
satisfying assignment for Υ(α). Otherwise, Υ(α) is unsatisfiable and there exist witness
terms τi1 . . . τi` , where {i1, . . . , i`} = { j ∈ [1,m] | Q j = ∀}, such that Φ[τi1/xi1 , . . . , τi`/xi` ]
is unsatisfiable (Theorem 3). Then it turns out that the formula Φ̂[τi1/xi1 , . . . , τi`/xi` ],
obtained analogously from the matrix of Υ̂(α), is unsatisfiable as well (Lemma 6 below).
Because this latter formula is structured as a conjunction of formulae ι(0)∧φ1 . . .∧φn∧ψ,
where V(φk)∩Q(≤n) ⊆ Q(k−1) ∪Q(k) and V(ψ)∩Q(≤n) ⊆ Q(n), it is now possible to use
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an existing interpolation procedure for the quantifier-free theory of D, extended with
uninterpreted function symbols, to compute a (not necessarily local) GLI (I0, . . . , In)
such that V(Ik)∩Q(≤n) ⊆ Q(k), for all k ∈ [n].

Example 3 (Contd. from Examples 1 and 2). The formula Υ(α) (Example 2) is unsat-
isfiable and let τ2

def
= z1 be the witness term for the universally quantified variable z2.

Replacing z2 with τ2 (z1) in the matrix of Υ̂(α) (Example 1) yields the unsatisfiable
conjunction below, obtained after trivial simplifications:

[z1 ≥ 0∧q(0)(z1)] ∧ [q(0)(z1)→ x(1) ≥ 0∧q(1)(x(1) + z1)] ∧
[q(1)(x(1) + z1)→ x(1) + z1 < 0∧q f

(2)(x(2) + x(1) + z1)]
A non-local GLI for the above conjunction is the sequence of formulae:

(q(0)(z1)∧ z1 ≥ 0, x(1) ≥ 0∧q(1)(x(1) + z1)∧ z1 ≥ 0, ⊥) �

We formalize and prove the correctness for the above construction of non-local GLI.
A function ξ : N→ N is monotonic iff for each n < m we have ξ(n) ≤ ξ(m) and finite-
range iff for each n ∈ N the set {m | ξ(m) = n} is finite. If ξ is finite-range, we denote by
ξ−1

max(n) ∈ N the maximal value m such that ξ(m) = n.

Lemma 6. Given a non-empty input event sequence α= a1 . . .an ∈ Σ
∗, such that Υ(α) is

unsatisfiable, let Q1x1 . . .Qmxm . Φ̂ be a prenex form of Υ̂(α) and let ξ : [1,m]→ [n] be a
monotonic finite-range function mapping each transition quantifier to the minimal index
from the sequence Θ̂(α0), . . . , Θ̂(αn) where it occurs. Then one can effectively build:
1. witness terms τi1 , . . . , τi` , where {i1, . . . , i`}= { j ∈ [1,m] |Q j =∀} and V(τi j )⊆ X(≤ξ(i j))∪

{xk | k < i j,Qk = ∃}, ∀ j ∈ [1, `] such that Φ̂[τi1/xi1 , . . . , τi`/xi` ] is unsatisfiable, and
2. a GLI (I0, . . . , In) for α, such that V(Ik) ⊆ Q(k)∪X(≤k)∪{x j | j < ξ−1

max(k), Q j = ∃}, for
all k ∈ [n].

Consequently, under two assumptions about the first-order theory of the data do-
main, namely (i) witness-producing quantifier elimination, and (ii) Lyndon interpolation
for the quantifier-free fragment with uninterpreted functions, we developed a generic
method that produces GLIs for unfeasible input event sequences. Moreover, each for-
mula in the interpolant refers only to the current predicate symbols, the current and past
input variables and the existentially quantified transition variables introduced at the pre-
vious steps. The remaining questions are how to use these GLIs to label the sequences
in the unfolding of an automaton (Definition 2) and compute coverage (Definition 3)
between nodes of the unfolding.

4.1 Unfolding with Non-local Interpolants

As required by Definition 2, the unfolding U of an automaton A = 〈Σ,X,Q, ι,F,∆〉 is
labeled by formulae U(α) ∈ Form+(Q,∅), with no free symbols, other than predicate
symbols, such that the labeling is compatible with the transition relation of the automa-
ton. Each newly expanded input sequence ofA is initially labeled with > and the labels
are refined using GLIs computed from proofs of spuriousness. The following lemma
describes the refinement of the labeling of an input sequence by a non-local GLI:
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Lemma 7. Let U be an unfolding of an automaton A = 〈Σ,X,Q, ι,F,∆〉 such that α =

a1 . . .an ∈ dom(U) and (I0, . . . , In) is a GLI for α. Then the mapping U′ : dom(U)→
Form+(Q,∅) is an unfolding ofA, where:

– U′(αk) = U(αk)∧ Jk, for all k ∈ [n], where Jk is the formula obtained from Ik by
removing the time stamp of each predicate symbol q(k) and existentially quantifying
each free variable, and

– U′(β) = U(β) if β ∈ dom(U) and β 6� α,
Moreover, α is safe in U′.

Observe that, by Lemma 6 (2), the set of free variables of a GLI formula Ik consists of
(i) variables X(≤k) keeping track of data values seen in the input at some earlier moment
in time, and (ii) variables that track past choices made within the transition rules. Basi-
cally, it is not important when exactly in the past a certain input has been read or when
a choice has been made, because only the relation between the values of these and the
current variables determines the future behavior of the automaton. Quantifying these
variables existentially does the job of ignoring when exactly in the past these values
have been seen. Moreover, the last point of Lemma 7 ensures that the refined path is
safe in the new unfolding and will stay safe in all future refinements of this unfolding.

The last ingredient of the lazy annotation semi-algorithm based on unfoldings con-
sist in the implementation of the coverage check, when the unfolding of an automaton
is labeled with conjunctions of existentially quantified formulae with predicate sym-
bols, obtained from interpolation. By Definition 3, checking whether a given node
α ∈ dom(U) is covered amounts to finding a prefix α′ � α and a node β ∈ dom(U)
such that U(α′) |= U(β), or equivalently, the formula U(α′)∧¬U(β) is unsatisfiable.
However, the latter formula, in prenex form, has quantifier prefix in the language ∃∗∀∗

and, as previously mentioned, the satisfiability problem for such formulae becomes un-
decidable when the data theory subsumes Presburger arithmetic [10].

Nevertheless, if we require just a yes/no answer (i.e. not an interpolant) recently
developed quantifier instantiation heuristics [25] perform rather well in answering a
large number of queries in this class. Observe, moreover, that coverage does not need
to rely on a complete decision procedure. If the prover fails in answering the above
satisfiability query, then the semi-algorithm assumes that the node is not covered and
continues exploring its successors. Failure to compute complete coverage may lead to
divergence (non-termination) and ultimately, to failure to prove emptiness, but does not
affect the soundness of the semi-algorithm (real counterexamples will still be found).

5 Experimental Results

We have implemented a version of the IMPACT semi-algorithm [20] in a prototype tool,
avaliable online [8]. The tool is written in Java and uses the Z3 SMT solver [27], via
the JavaSMT interface [15], for spuriousness and coverage queries and also for inter-
polant generation. Table 1 reports the size of the input automaton in bytes, the numbers
of Predicates, Variables and Transitions, the result of emptiness check, the number of
Expanded and Visited Nodes during the unfolding and the Time in miliseconds. The
experiments were carried out on a MacOS x64 - 1.3 GHz Intel Core i5 - 8 GB 1867
MHz LPDDR3 machine.
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Example |A| (bytes) Predicates Variables Transitions L(A) = ∅ ? Nodes Expanded Nodes Visited Time (msec)
incdec.pa 499 3 1 12 no 21 17 779
localdec.pa 678 4 1 16 no 49 35 1814
ticket.pa 4250 13 1 73 no 229 91 9543
count thread0.pa 9767 14 1 126 no 154 128 8553
count thread1.pa 10925 15 1 135 no 766 692 76771
local0.pa 10595 13 1 117 no 73 27 1431
local1.pa 11385 14 1 126 no 1135 858 101042
array rotation.ada 1834 8 7 7 yes 9 8 1543
array simple.ada 3440 9 5 8 yes 11 10 6787
array shift.ada 874 6 5 5 yes 6 5 413
abp.ada 6909 16 14 28 no 52 47 4788
train.ada 1823 10 4 26 yes 68 67 7319
hw1.ada 322 3 2 5 Solver Error / / /

hw2.ada 674 7 2 8 yes 20 22 4974
rr-crossing.foada 1780 10 1 16 yes 67 67 7574
train-simple1.foada 5421 13 1 61 yes 43 44 2893
train-simple2.foada 10177 16 1 118 yes 111 113 8386
train-simple3.foada 15961 19 1 193 yes 196 200 15041
fischer-mutex2.foada 3000 11 2 23 yes 23 23 808
fischer-mutex3.foada 4452 16 2 34 yes 33 33 1154

Table 1. Experiments with First Order Alternating Automata

The test cases shown in Table 1, come from several sources, namely predicate au-
tomata models (*.pa) [6,7] available online [23], timed automata inclusion problems
(abp.ada, train.ada, rr-crossing.foada), array logic entailments (array rota-
tion.ada, array simple.ada, array shift.ada) and hardware circuit verification
(hw1.ada, hw2.ada), initially considered in [13], with the restriction that local vari-
ables are made visible in the input. The train-simpleN. foada and fischer-mutexN.
foada examples are parametric verification problems in which one checks inclusions
of the form

⋂N
i=1L(Ai) ⊆ L(B), where Ai is the i-th copy of the template automaton.

The advantage of using FOADA over the INCLUDER [12] tool from [13] is the
possibility of having automata over infinite alphabets with local variables, whose values
are not visible in the input. In particular, this is essential for checking inclusion of timed
automata that use internal clocks to control the computation.

6 Conclusions

We present first-order alternating automata, a model of computation that generalizes
classical boolean alternating automata to first-order theories. Due to their expressivity,
first-order alternating automata are closed under union, intersection and complement.
However the emptiness problem is undecidable even in the most simple case, of the
quantifier-free theory of equality with uninterpreted predicate symbols. We deal with
the emptiness problem by developping a practical semi-algorithm that always termi-
nates, when the automaton is not empty. In case of emptiness, termination of the semi-
algorithm occurs in most practical test cases, as shown by a number of experiments.
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