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ARTICLE

Mechanism of synergistic actin filament pointed
end depolymerization by cyclase-associated
protein and cofilin
Tommi Kotila 1, Hugo Wioland 2, Giray Enkavi 3, Konstantin Kogan1, Ilpo Vattulainen 3,4,

Antoine Jégou 2, Guillaume Romet-Lemonne2 & Pekka Lappalainen1*

The ability of cells to generate forces through actin filament turnover was an early adaptation

in evolution. While much is known about how actin filaments grow, mechanisms of their

disassembly are incompletely understood. The best-characterized actin disassembly factors

are the cofilin family proteins, which increase cytoskeletal dynamics by severing actin fila-

ments. However, the mechanism by which severed actin filaments are recycled back to

monomeric form has remained enigmatic. We report that cyclase-associated-protein (CAP)

works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold.

Structural work uncovers the molecular mechanism by which CAP interacts with actin

filament pointed end to destabilize the interface between terminal actin subunits, and sub-

sequently recycles the newly-depolymerized actin monomer for the next round of filament

assembly. These findings establish CAP as a molecular machine promoting rapid actin fila-

ment depolymerization and monomer recycling, and explain why CAP is critical for actin-

dependent processes in all eukaryotes.

https://doi.org/10.1038/s41467-019-13213-2 OPEN

1 HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland. 2 Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France.
3 Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland. 4 Computational Physics Laboratory, Tampere University, FI-33101 Tampere,
Finland. *email: pekka.lappalainen@helsinki.fi

NATURE COMMUNICATIONS |         (2019) 10:5320 | https://doi.org/10.1038/s41467-019-13213-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9046-5834
http://orcid.org/0000-0002-9046-5834
http://orcid.org/0000-0002-9046-5834
http://orcid.org/0000-0002-9046-5834
http://orcid.org/0000-0002-9046-5834
http://orcid.org/0000-0001-5254-9642
http://orcid.org/0000-0001-5254-9642
http://orcid.org/0000-0001-5254-9642
http://orcid.org/0000-0001-5254-9642
http://orcid.org/0000-0001-5254-9642
http://orcid.org/0000-0001-5033-8649
http://orcid.org/0000-0001-5033-8649
http://orcid.org/0000-0001-5033-8649
http://orcid.org/0000-0001-5033-8649
http://orcid.org/0000-0001-5033-8649
http://orcid.org/0000-0001-7408-3214
http://orcid.org/0000-0001-7408-3214
http://orcid.org/0000-0001-7408-3214
http://orcid.org/0000-0001-7408-3214
http://orcid.org/0000-0001-7408-3214
http://orcid.org/0000-0003-0356-3127
http://orcid.org/0000-0003-0356-3127
http://orcid.org/0000-0003-0356-3127
http://orcid.org/0000-0003-0356-3127
http://orcid.org/0000-0003-0356-3127
mailto:pekka.lappalainen@helsinki.fi
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The most prominent force-producing machinery in eukar-
yotic cells is the actin cytoskeleton. It powers diverse cel-
lular processes, including migration, morphogenesis, and

endocytosis through rapid polymerization of actin filaments at
their barbed ends against the cellular membranes. In cells, the
rapid assembly of actin filaments must be balanced by filament
disassembly at their pointed ends to maintain the cytoplasmic
pool of assembly-competent actin monomers. While the
mechanisms of actin filament nucleation, polymerization, and
capping1–6 are relatively well-established, we know significantly
less about how actin filaments are disassembled to maintain actin
filament growth7.

Several proteins, including the members of actin-depolymerizing
factor (ADF)/cofilin and gelsolin families, are involved in the dis-
assembly of actin filaments. Gelsolin family proteins can associate
with both monomeric and filamentous actin in a Ca2+-dependent
manner, and regulate the architecture of the actin cytoskeleton by
severing and capping actin filaments8–10. ADF/cofilins, which are
critical for actin dynamics in all eukaryotes tested so far, interact
with both monomeric and filamentous actin, and accelerate cytos-
keletal dynamics by severing actin filaments at the interface of bare
and ADF/cofilin-decorated filament segments11–14. ADF/cofilins
are present in all eukaryotes, and are critical for the maintenance of
rapid actin filament turnover in cells15. Thus, ADF/cofilins multiply
the number of filament ends that undergo depolymerization. ADF/
cofilins also modestly accelerate actin filament depolymerization16–
18. However, whether ADF/cofilin-catalyzed actin filament severing
and slow depolymerization are sufficient for rapid actin dynamics in
cells, or if additional dedicated actin filament depolymerization
factors are needed, has remained an outstanding question.

Moreover, the mechanism by which the newly depolymerized actin
monomers are recycled from ADF/cofilins for the next round of
filament assembly is incompletely understood.

Another actin-binding protein implicated in filament dis-
assembly is cyclase-associated protein (CAP). It is conserved in
evolution from protozoan parasites through yeasts and plants to
animals, and is thus among the small number (<10) of core actin-
binding proteins present in all eukaryotes19–21. Genetic studies
demonstrated that CAP is critical for actin-dependent cellular
and developmental processes in all organisms tested so far, and its
depletion results in abnormal accumulation of actin filaments and
diminished actin filament turnover rates22–29. Moreover, altered
expression levels of CAP are linked to various cancers30,31.

CAP is a relatively large multidomain protein, which can self-
assemble into oligomers, most likely hexamers32,33. CAP can re-
charge ADP-actin monomers with ATP through its C-terminal
half that harbors Wiscott Aldrich Syndrome protein homology 2
(WH2) and CAP-retinitis pigmentosa (CARP) domains34. More-
over, the N-terminal half of CAP (N-CAP), consisting of oligo-
merization (OD) and helical folded (HFD) domains35, binds
cofilin/actin monomer complexes36, and can enhance disassembly
of actin filaments together with ADF-H domain proteins; twinfilin
and ADF/cofilin32,37–39 (Supplementary Fig. 1a). However, whe-
ther CAP promotes actin filament disassembly by accelerating
filament severing or by promoting filament depolymerization has
remained enigmatic. Moreover, the mechanism by which the dif-
ferent functions of CAP, actin filament disassembly and monomer
re-charging, are coordinated is incompletely understood. Thus, the
molecular principles by which this ubiquitous and essential actin-
regulatory protein promotes cytoskeletal dynamics have remained
elusive.

Here, we reveal that CAP promotes rapid actin filament dis-
assembly by accelerating pointed end depolymerization of cofilin-
decorated actin filaments. By determining the crystal structure of
CAP’s HFD domain in complex with actin and an ADF-H
domain, combined with atomistic molecular dynamics simula-
tions, we uncover the molecular mechanism by which CAP
depolymerizes actin filaments and recycles actin monomers for
the next round of filament assembly.

Results
CAP interacts with the pointed end of actin. The N-term-
inal HFD domain of CAP is critical for actin filament disassembly
in vitro and in cells32. However, the structure of this domain does
not resemble other known actin-binding protein domains35, and
thus the mechanism by which it interacts with actin has remained
unknown. To reveal the structural mechanism by which CAP
binds actin to regulate cytoskeletal dynamics, we crystallized the
HFD domain of mouse CAP1 alone (Table 1, Supplementary
Fig. 1b, c), as well as in complex with ADP-G-actin and ADF-H
domain from twinfilin (Fig. 1a; Table 1). The ADF-H domain of
twinfilin is structurally similar to ADF/cofilins, and interacts with
actin through the same interface40,41, but allows crystal formation
due to its monomer sequestering function. The 1.95 Å resolution
crystal structure of the tripartite complex revealed that the HFD
domain binds to the pointed end of an actin monomer, between
subdomains 2 (SD2) and 4 (SD4) (Fig. 1a). In comparison to
other proteins associating with the pointed end of actin, including
tropomodulin, which prevents elongation of actin filaments and
β-thymosin, which sequesters actin monomers42–44, HFD domain
binding heavily relies on contacts with SD2 of actin (Fig. 1b, c;
Supplementary Fig. 1d). Intriguingly, within this interface we
observed a tailor-made hydrophobic cavity in the contacting α-
helix of the HFD domain that coordinates Met47 of actin (Fig. 1b,
c) and thus locks the D-loop to an upright orientation. Moreover,

Table 1 Crystallographic data collection and refinement
statistics.

HFD domain HFD domain bound to
ADF-H/ADP-actin

Data collection
Space group P 21 21 21 P 1 21 1
Cell dimensions

a, b, c (Å) 82.51, 91.41, 106.87 87.37, 54.49, 87.83
α, β, γ (°) 90, 90, 90 90, 93.61, 90

Resolution (Å) 41.26−2.37 (2.46
−2.37)a

41.45−1.95 (2.02−1.95)
a

Rmerge 0.138 (1.786) 0.088 (1.073)
I/σI 10.6 (1.31) 12.9 (1.58)

Completeness (%) 99.8 (99.76) 99.9 (99.87)
Redundancy 7.0 (7.3) 6.4 (6.2)

Refinement
Resolution (Å) 41.26−2.37 41.45−1.95
No. reflections 33,463 60,448
Rwork/Rfree 0.186/0.23 0.166/0.194
No. atoms

Protein 5565 5417
Ligand/ion 18 70
Water 115 652

B-factors
Protein 65.1 44.2
Ligand/ion 73.7 51.9
Water 55.9 51.4

R.m.s. deviations
Bond lengths (Å) 0.014 0.015
Bond angles (°) 1.71 1.67

Ramachandran (%)
Favored 98.9 98.2
Outliers 0 0.15

PDB code 6RSQ 6RSW

aValues in parentheses are for highest-resolution shell
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interaction of the HFD domain with actin is spatially coordinated
by specific aromatic residues and ion pairs formed between
the HFD domain and the α-helix of actin (residues 55–61)
adjacent to the D-loop (Fig. 1b). Accordingly, mutating Phe162
and Tyr163 in the HFD domain disrupted the interac-
tion with twinfilin/actin monomer and cofilin/actin monomer
complexes, demonstrating that these interactions are indeed cri-
tical for binding of the HFD domain to actin (Supplementary
Fig. 2a−c).

Interestingly, the HFD domain interacts with the cofilin/actin
complex with higher affinity compared to bare actin36 (Supple-
mentary Fig. 2c), although it does not make a direct contact with
the ADF-H domain. Analysis of various actin structures revealed
that actin is more twisted in the ADF-H domain/G-actin and in
ADF-H domain/G-actin/HFD domain complexes compared to
structure ADP-G-actin (Fig. 1d; Supplementary Fig. 1e, f). This
provides a plausible explanation for the binding-preference of
HFD domain for cofilin/G-actin. Together, these structural data
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Fig. 1 The crystal structure of the HFD domain of CAP in complex with ADP-actin and ADF-H domain. a The HFD domain of CAP (magenta) binds to the
pointed end of an ADP-actin monomer (green) between subdomains 2 and 4, whereas twinfilin’s ADF-H domain (cyan) binds to the barbed end of the
monomer between subdomains 1 and 3. b Highlighted in yellow are actin’s D-loop and the adjacent α-helix (residues 55–61), which are spatially
coordinated by Tyr162 and Phe163 of the HFD domain. Lys50 and Glu57 of actin form salt bridges with Glu119 and Arg118 of the HFD domain, respectively.
Met47 of actin fits into a hydrophobic cavity formed by a kink in the contacting α-helix of the HFD domain. Selected residues are presented in their
corresponding 2F0 – FC (σ= 1.0) electron density map. c The HFD domain covers an extensive binding surface of 1208 Å2 (yellow) predominantly on actin
subdomain 2. d Different conformational states of actin monomers analyzed by comparing the twist between actin structures superimposed on their inner
domains (subdomains 3 and 4) and measuring the angle of the outer domain (subdomain 1) relative to the ADP-state of F-actin (PDB= 6djo). The HFD
domain-bound actin monomer displays a larger rotation of the outer domain compared to the other indicated structures (PDB= 2btf for profilin/G-actin;
1j6z for G-actin; 3daw for ADF-H domain/G-actin; 5yu8 actin monomer from a cofilin-decorated actin filament). See Supplementary Fig. 1e-f.
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reveal that the HFD domain of CAP binds to the pointed end of
actin through a unique mechanism.

CAP promotes actin filament pointed end depolymerization.
Next, we examined how CAP could accelerate the disassembly of
actin filaments. Because the HFD domain of CAP binds to the
pointed end of an actin monomer, and the conformation of actin
in our tripartite complex is very similar to the one of cofilin/F-
actin (Fig. 1d), we examined if CAP could associate also with the
pointed end of a cofilin-decorated actin filament. Two HFD
domains could indeed be docked to the pointed end of the cofilin/
F-actin structure41 in a way that their actin interaction surfaces
are preserved from our crystal structure (Fig. 2a). However, the
HFD domain could not be docked to the side of either bare45 or
cofilin-decorated actin filament (Supplementary Fig. 3a, b). This
suggests that CAP might not sever actin filaments as previously
reported32,37, but may instead enhance their disassembly through
interaction with the filament pointed end.

To test the hypothesis that CAP might enhance actin filament
disassembly by associating with filament pointed ends, we
performed actin filament pointed end depolymerization assays
by using a single-filament microfluidics approach46 (Fig. 2b). As
reported earlier16,18, cofilin-saturated actin filaments underwent
slightly more rapid depolymerization from their pointed ends
compared to bare actin filaments under physiological conditions.
Strikingly, addition of N-CAP dramatically accelerated pointed
end disassembly of cofilin-decorated actin filaments (Fig. 2c). At
saturating conditions, the pointed end depolymerization of
cofilin-decorated ADP-actin filaments was accelerated by N-
CAP up to ~30-fold, and compared to bare ADP-actin filaments
the depolymerization rate was increased by nearly 100-fold in the
presence of both cofilin and N-CAP (Fig. 2d). By determining the
depolymerization rates at different N-CAP concentrations, we
estimated a Kd of ~1 μM for the interaction of N-CAP with
cofilin-saturated filaments.

We further analyzed the ability of N-CAP to bind to actin
filament pointed ends by performing actin filament reannealing
experiments. The presence of N-CAP leads to a clear inhibition of
filament reannealing, whereas mutations in the actin-binding
interface of the protein diminished this effect (Fig. 2e, f).
Importantly, by using biotin-labeled actin filaments that were
anchored to the chamber surface, and a GFP-tagged version of N-
CAP, we could directly detect the association of N-CAP at
filament pointed end with a residence time of ~0.4 s (Fig. 2g, h).

We also tested whether N-CAP could enhance the pointed end
depolymerization of bare actin filaments. However, docking of
the HFD domain–actin complex to the pointed end of the bare
actin filament leads to nonoptimal contacts or clashes with actin,
suggesting less favored interaction of the HFD domain with the
pointed end of the bare actin filament compared to the cofilin-
decorated filament (Fig. 3a, b). It is important to note that the
atomic structures of actin filament ends have not been
determined, and thus we assumed that the pointed ends of actin
filaments adopt similar conformations as observed in the
monomers at central regions of actin filament. Consistent with
these structural analyses, N-CAP enhanced the pointed end
depolymerization of bare actin filaments much less efficiently
compared to cofilin-decorated filaments (Fig. 3c, d). Similarly, we
observed the cofilin-dependency for N-CAP-mediated actin
filament disassembly also in a bulk actin disassembly assay
(Supplementary Fig. 2d).

Earlier work suggested that the N-terminal half of CAP can
accelerate the severing of partially cofilin-decorated actin
filaments32,33,37. Thus, we examined the effects of mouse N-
CAP on actin filament severing. Consistent with the inability of

HFD domain to be docked to the side of an actin filament, we
could not detect any increase in severing activity induced by N-
CAP on partially decorated cofilin-actin filaments using single-
filament microscopy, and only very modest increase in filament
severing was observed with full-length CAP (Supplementary
Fig. 3c, d). Thus, our biochemical and structural data show that
CAP does not promote robust actin filament severing, but drives
rapid actin filament disassembly by dramatically accelerating
filament pointed end depolymerization.

Mechanism of CAP-catalyzed actin filament depolymerization.
To elucidate the mechanism by which CAP drives actin filament
pointed end depolymerization, we performed structure-guided
mutagenesis on N-CAP. Both HFD domains, docked to the
pointed end of a cofilin-decorated actin filament, associate with
subdomains 2 and 4 of the terminal actins via the surface iden-
tified by our crystal structure (Fig. 4a, interface 1). The HFD
domain docked to the penultimate actin molecule (Actin B) also
associates with the ultimate actin molecule (Actin A) through a
second surface (interface 2) that does not correspond to the
binding-surface identified in the crystal structure (Fig. 4a).
Mutations in surface-exposed residues at both interfaces resulted
in defects in N-CAP’s ability to depolymerize actin filaments at
their pointed ends, providing evidence that CAP indeed uses
these two interfaces for its high affinity association with filament
pointed ends (Fig. 4b; Supplementary Fig. 4a, b).

We next examined the roles of CAP’s different domains in
actin filament depolymerization (Fig. 4c). Both the oligomeric
full-length CAP and N-CAP were equally efficient in accelerating
pointed end depolymerization of cofilin-saturated filaments,
whereas in the case of monomeric HFD domain >20-fold higher
concentrations were needed for strong acceleration of filament
depolymerization (Fig. 4d; Supplementary Fig. 4c−e). To
elucidate whether the difference in depolymerization activities
between the isolated HFD domain and N-CAP, which also
contains a short OD domain, is due to oligomerization or possible
other function of the N-terminal OD domain, we generated an
artificial HFD domain dimer by fusing glutathione-S-transferase
to its C-terminus (Fig. 4c). Interestingly, the dimeric HFD
domain was able to strongly accelerate actin filament depolymer-
ization at much lower concentration when compared to the
monomeric HFD domain. These data demonstrate that the HFD
domain is the functionally minimal unit for actin filament
pointed end depolymerization, and that its oligomerization
decreases the effective protein concentration needed for this
activity. Thus, we propose that filament pointed end depolymer-
ization requires simultaneous association of two HFD domains
with the two terminal actins (Fig. 4d). Together, these data show
that the HFD domain is the main functional unit of CAP for actin
filament depolymerization, and that dimerization/oligomerization
of the HFD domains increases the efficiency of depolymerization,
possibly through increased ability to bind to the pointed end of
actin filaments through the effect of avidity.

CAP destabilizes the pointed end of actin filament. To under-
stand the molecular principles by which CAP accelerates actin
monomer dissociation from filament pointed ends, we applied
atomistic molecular dynamics (MD) simulations. These were
performed on a pointed end segment of cofilin-decorated actin
filament, both in the presence and absence of HFD domains
(three repeats with total lengths of ~5.6 and ~5.8 μs, respectively;
Fig. 5a, Supplementary Fig. 5a; Supplementary Table 1). Simu-
lations of the cofilin-actin filament demonstrated that the
two HFD domains indeed associate stably with the terminal
actins in the configuration captured in the crystal structure
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Fig. 2 CAP catalyzes pointed end depolymerization of cofilin-decorated actin filaments. a The actin monomers in a cofilin-decorated filament (PDB= 5yu8)
display a similar conformation to the one in our crystal structure (Fig. 1d), allowing docking of two HFD domains of CAP to the two pointed end actin
subunits without steric clashes. Rotated view shows that the N-termini of the two HFD domains (Ala39) are within 5 nm, suggesting the filament-bound
CAP can still oligomerize. b A schematic of the actin filament pointed end depolymerization assay. c Representative kymographs showing the pointed end
depolymerization of cofilin-decorated filaments in the absence (top) and presence (bottom) of 3 μM N-CAP. d The pointed end depolymerization activity
of N-CAP fitted by first-order saturation suggests a Kd of 0.978+ 0.148 μM for N-CAP binding to the pointed end of cofilin-decorated actin filament. Error
bars, S.D., n≥ 5 for each point. e Examples of actin filament reannealing experiments, where actin filaments labeled with different colors were mixed and
imaged. f Quantification of the reannealing experiments performed in the absence of N-CAP (control) and presence of wild-type N-CAP or a mutant
defective in binding to the actin monomer pointed end (see Supplementary Fig. 2a−c). Reactions contained 8 μM actin and 30 μM N-CAP. Bars depict the
ratio of two-colored filaments to all analyzed filaments. Error bars, 95% CI in binominal distribution. g Association of N-CAP-GFP with filament pointed
ends. A solution of 200 nM F-actin (10% Alexa-568, 1% biotin), 100 nM N-CAP-GFP, 2 µM cofilin-1, 4 nM capping protein, and 0.2% methylcellulose, was
injected into an open chamber. Left: A typical actin filament (red). The pointed end was designated as the one with frequent N-CAP-GFP binding (green),
because the filaments were capped at barbed ends. Right: Stream acquisition of GFP signal, imaged with 5 frames/second. The binding of N-CAP-GFP was
detected in ~17% of the total number of frames for filament pointed ends (n= 20 filaments, 60 frames). h Unbinding dynamics of N-CAP-GFP from the
pointed end (n= 20 filaments, 73 binding events). Scale bars, 2 μm. Source data are provided as a Source Data file.
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(Supplementary Fig. 5b). Remarkably, the binding of HFD
domains drastically reduced the number of contacts between the
terminal actins in all simulations (Fig. 5b–d; Supplementary
Fig. 5c, d). The most pronounced reductions in the frequencies of
contacts were between the subdomains 1 and 4 of actin A with the
subdomains 4 and 1 of actin B, respectively (Fig. 5c; Supple-
mentary Fig. 5e−f). This resulted in a more open and dynamic
actin filament pointed end compared to the HFD-free filament
(Supplementary Movie 1). On the other hand, the interfaces
between other actin subunits were largely unchanged, suggesting
that CAP only destabilizes the terminal actin subunit in the
filament pointed end (Supplementary Fig. 5e). Removal of the
HFD domains during the simulation rapidly restored the contacts
between the terminal actins (Supplementary Fig. 5c). Moreover,
simulations where the HFD domains were docked to cofilin-actin
filaments without optimizing the D-loop conformation to match
with the one determined in our crystal structure were ineffective
in destabilizing the interface (Supplementary Fig. 5c), suggesting
the conformation of actin observed in the crystal structure is
required for this effect.

Overall, these simulations, together with our mutagenesis data,
provide evidence that binding of two HFD domains to the

pointed end of actin filament, in the mode identified in our crystal
structure, destabilizes the filament pointed end and forces the two
terminal actin subunits to separate from each other (Fig. 5e;
Supplementary Fig. 5d). We propose that this leads to the
dissociation of the terminal actin subunit from the filament
pointed end, and hence promotes the depolymerization of a
cofilin-decorated actin filament.

Mechanism of CAP-catalyzed actin monomer recycling. To
elucidate whether the two main functions of CAP, actin filament
depolymerization and monomer re-charging, could work toge-
ther to enhance actin dynamics, we performed further structural
analysis of different actin-bound states of CAP. We observed that
the CARP domain of CAP, which binds ADP-actin monomers to
promote nucleotide exchange34, interacts with actin using a
different surface compared to the HFD domain (Fig. 6a). These
data suggest that the newly depolymerized ADP-actin monomer
could be first handed over from the HFD domain to the CARP
domain. However, the adjacent WH2 domain occupies an
interface on actin that clashes with the ones of the ADF-H and
HFD domains (Fig. 6b), and this could lead to efficient
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replacement of the HFD domain and cofilin/twinfilin by the
WH2 domain of CAP. To test this hypothesis, we performed gel
filtration and native PAGE experiments, which revealed that the
C-terminal half of CAP, and also the isolated CARP domain to a
lesser extent, can indeed compete the actin monomer from the
twinfilin/HFD domain and cofilin/HFD domain complexes
(Fig. 6c; Supplementary Fig. 6). This leads to the release of
cofilin/twinfilin and the HFD domain from actin, and formation
of a complex between ADP-actin and the C-terminal half of CAP
for nucleotide exchange34. Thus, interplay between the N- and
C-terminal domains of CAP can efficiently recycle actin mono-
mers and cofilin for new rounds of filament assembly and dis-
assembly, respectively.

Discussion
Our work identifies CAP as a remarkably efficient actin filament
pointed end depolymerizing protein and actin recycling
machinery, and elucidates the underlying molecular mechanism.
Based on these data, we propose a working model for how cofilin-
severed actin filaments are disassembled from their pointed ends
by CAP, and how the monomers are recycled for a new round of
filament assembly (Fig. 7). Actin filaments are asymmetrically

severed at the interface between the bare and cofilin-decorated
segments, in a way that most severing events occur towards the
pointed end of the cofilin segment. Thus, majority of the resulting
pointed ends are cofilin-decorated11,14,16,47. We show that CAP
binds to the pointed ends of cofilin-decorated actin filaments
through its N-terminal HFD domains. Experiments with mono-
meric and dimeric HFD domains suggest that both terminal
subunits of an actin filament must be occupied by HFD domains
for efficient destabilization of the filament pointed end, and
subsequent depolymerization. As CAPs are larger oligomers22,48,
this may further increase the depolymerization activity of CAP by
allowing the next HFD domain to associate with the newly
available subunit of the filament pointed end immediately fol-
lowing the dissociation of the first monomer. The N-terminal
HFD domain and the C-terminal CARP domain bind actin
monomers through nonoverlapping surfaces, and this allows an
efficient delivery of the newly depolymerized actin monomer
from the N-terminal half to the C-terminal half of CAP, which
promotes ADP-to-ATP nucleotide exchange on actin to re-
charge it for a next round of polymerization. Thus, CAP work as
a molecular machine that drives two critical steps of the
actin filament turnover cycle; filament depolymerization and
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subsequent monomer recycling (Fig. 7). Our imaging analysis
demonstrated that N-CAP binds filament pointed ends with a
half-life of ~0.4 s, proposing that it can remove on average
~5 subunits per association when assuming a depolymerization
rate of 13 subunits/s (Fig. 2d, g, h). However, further work is

required to reveal the processivity of the full-length CAP at the
actin filament pointed end.

Earlier studies suggested that CAP, and its N-terminal half,
accelerate actin dynamics by filament severing32,33,37. In our
experiments on single cofilin domains, as well as globally on actin
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filaments, we did not detect significant increase in filament
severing catalyzed by N-CAP (Supplementary Fig. 3c−d). How-
ever, a modest increase in severing frequency was observed with
the full-length protein. The small increase in filament severing
with full-length CAP, which tended to stick on the coverslip
surface, may arise from unspecific anchoring of actin filaments to
the microchamber by CAP. This would constrain their twist and
thereby enhance filament severing13. It is important to note that
in the previous reports demonstrating the severing activity of
CAP, actin filaments were immobilized with multiple anchoring
points on the coverslips. This could complicate the observation of
new severing events, particularly when the severed fragments are
not able to diffuse away. It is also possible that CAPs from dif-
ferent species display small differences in their biochemical
activities. Nevertheless, our work provides strong evidence that
CAP promotes actin filament disassembly mainly through
accelerating the pointed end depolymerization of cofilin-
decorated actin filaments.

The function of CAP as an efficient actin filament depoly-
merizing protein is in line with the observed knockdown and

knockout phenotypes in various organisms and cell-types, where
depletion of CAP results in an accumulation of filamentous actin
and diminished actin turnover rates23,25,26,29. CAP is also an
abundant protein, present in approximately 1:4 ratio to actin in
mammalian cells23. Our experiments revealed that full-length
CAP can also efficiently depolymerize actin filaments in the
presence of ATP-G-actin and profilin/ATP-G-actin complexes,
demonstrating that it can indeed drive actin filament depoly-
merization under actin-filament assembly promoting conditions
(Supplementary Fig. 7). Previous genetic work on budding yeast
also demonstrated that mutations (Phe162Ala and Tyr163Ala) at
the HFD domain interface, which based on our structural and
biochemical work is critical for actin-binding and acceleration of
actin filament depolymerization, disrupt the function of CAP
in vivo36. These data, together with earlier genetic and structural
work on the C-terminal CARP domain of CAP34,49, demonstrate
that both rapid actin filament depolymerization and subsequent
nucleotide exchange are essential functions of CAP in cells. CAP
thus promotes two critical steps of actin turnover cycle, and these
two functions appear to be precisely coordinated within this

Fig. 5 CAP destabilizes the interface between the terminal actins at the filament pointed end. a All-atom molecular dynamics simulations of cofilin-
decorated actin filaments (consisting of four actins and three cofilins; see Supplementary Fig. 5a) in the absence of CAP, and in the presence of two HFD
domains bound to filament pointed ends. MD simulations show that the interface between terminal actins of the filament opens in the presence of HFD
domains, as indicated by the decrease in the number of contacts between these subunits. b The number of contacts between actins A and B at the pointed
end from three simulations (started from three independently generated configurations; see Methods) shown as a function of time. Left: Cofilin-decorated
ADP-actin pointed end. Right: With two HFD domains bound to the cofilin-decorated ADP-actin pointed end. The number of contacts was defined as the
number of residues from both chains within 3 Å of each other. c The contact frequencies of individual residues between actin A and actin B are shown. Left:
The cofilin-decorated ADP-actin filament pointed end. Right: With two HFD domains bound to cofilin-decorated ADP-actin filament pointed end. The
frequency of contacts was averaged over three simulations. The residues that underwent a major reduction in the contact frequency in the presence of the
HFD domains are indicated by arrows. For detailed analysis of contacts between other actins and HFD domains, see Supplementary Fig. 5e−f. d Violin plot
displaying the distribution of the number of contacts between A and B actins from three independent simulations of cofilin-decorated filament pointed ends
in the presence and absence of HFD domains. The first 500 ns from simulations were considered as an equilibration period, and were not included in the
plot. 75 and 25% quartiles and median value are shown. e A schematic presentation of the CAP-induced pointed end destabilization suggested by
the biochemical data and atomistic simulations. Source data are provided as a Source Data file.
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multifunctional protein. In the future, it will be important to
reveal the precise structural mechanism and biochemical role
underlying the oligomerization of CAP, as well as to reveal how
posttranslational modifications regulate the different functions of
CAP31,50.

This study, together with a related publication51, change the
current view on actin dynamics according to which actin filament
disassembly in cells is predominantly driven by ADF/cofilin-
catalyzed filament severing, which increases the number of fila-
ment ends that undergo spontaneous depolymerization52. Iden-
tification of CAP as a protein that catalyzes rapid actin filament
pointed end depolymerization also explains why CAP is so critical
for actin-dependent cellular and developmental processes in all
eukaryotes23,25,26.

Methods
DNA constructs. All mouse N-CAP proteins, N-CAP-GFP, full-length CAP1, the
HFD domain, GST-fusion of the HFD domain and the C-terminal ADF-H domain
of twinfilin, were cloned into pSUMOck4 bacterial expression vector (a kind gift
from Inari Kursula, University of Bergen, Norway) to express a SUMO-tagged
fusion protein which leaves a native N-terminus after cleavage with SENP2 pro-
tease. For the CARP domain and C-CAP constructs, we used pCoofy18 bacterial

expression vector (a kind gift from Addgene). For details of the protein constructs
and primers used for cloning the constructs, see Supplementary Table 2.

Expression and purification CAP proteins and its fragments. All mouse CAP
proteins and its fragments, except for full-length CAP1, were expressed at +22 °C
in LB auto-induction media (AIMLB0210, Formedium) for 24 h in BL21(DE3) E.
coli (from Novagen).

Full-length mouse CAP1 was expressed in LB medium using ArcticExpress
(DE3) E. coli cells. First, we inoculated a starter culture containing kanamycin (20
µg/ml) and gentamycin (20 µg/ml) that was incubated for 6 h at +37 °C. The 3.6-l
main culture, containing only kanamycin (20 µg/ml), was inoculated and grown to
OD600 of ~0.4 at +37 °C shaking at 240 rpm. The culturing temperature was
changed to +13 °C for 1 h prior to protein expression that was induced by addition
of 0.26 mM IPTG for 46 h. All bacterial pellets were collected by centrifugation,
resuspended in 50 mM Tris-HCl, 150 mM NaCl, 25 mM imidazole, pH 7.5, snap-
frozen with liquid N2 and stored at −80 °C.

All CAP proteins and the ADF-H domain of twinfilin were purified using a
similar workflow. First, bacteria were lysed by sonication in the presence of
lysozyme (0.5 mg/ml), DNAse (0.1 mg/ml) and protease inhibitors (200 µg/ml
PMSF, 1 µg/ml leupeptin, 1 µg/ml aprotinin, 1 µg/ml pepstatin A; all from
Sigma-Aldrich), and lysate was clarified by centrifugation. Supernatant was
loaded into a 1 ml HisTrap HP Ni-NTA column (GE Healthcare) and washed
extensively (>20 column volumes) with 50 mM Tris-HCl, 150 mM NaCl, 25 mM
imidazole, pH 7.5. Protein was eluted by 25–250 mM imidazole gradient on
AKTA Pure machine (GE Healthcare). Peak fractions were pooled and SENP2
protease was added to final concentration of 40 µg/ml for removal of the SUMO-
tag. Mixture was dialyzed O/N at 4 °C using SnakeSkin dialysis tubing in 1 l of
20 mM HEPES, 300 mM NaCl, 2 mM DTT, pH 7.4 buffer. Next day, the cleaved
SUMO-tags were removed with Ni-NTA agarose beads (Qiagen) in cases where
the SUMO-tag and cleaved protein were equal in size. Proteins were
concentrated with Amicon Ultra-4 10 kDa centrifugal filter (Merck) and loaded
into HiLoad 16/600 Superdex 200 gel filtration column (GE Healthcare)
equilibrated in 5 mM HEPES, 100 mM NaCl, 1 mM DTT, pH 7.4. Peak fractions
were collected, concentrated, and frozen by snap-freezing in N2 for −80 °C
storage.

The full-length CAP was purified with following exceptions. We used a 5 ml
HisTrap HP Ni-NTA column instead of 1 ml column. After dialysis and gel
filtration with HiLoad 16/60 Superdex 200 gel filtration column, the major peak
fractions were run through Superose 6 increase 10/300 GL gel filtration column to
gain better separation of the mixture of oligomeric states. Finally, the major peaks
from several runs were combined, concentrated at 5-min spin-intervals using
Amicon Ultra-4 30 kDa centrifugal filter, and stored as above. CARP and C-CAP
proteins were purified as above with the exception of usage of 3C protease (0.01
mg/ml) for tag cleavage.

Other proteins. Rabbit muscle actin, labeled actins, profilin, mouse cofilin-1,
capping protein, and biotin-gelsolin were prepared as described in ref. 16. ADP-
actin was prepared as described in ref. 34. Briefly, 30 µM ATP-G-actin solution
containing 0.3 mM glucose and 1 unit/ml of hexokinase (Sigma) was dialyzed
against nucleotide exchange buffer (5 mM Tris-HCl, 0.1 mM MgCl2, 0.05 mM
EGTA, 0.2 mM ADP, 1 mM DTT, pH 8.0) for 4 h at 4 °C. All experiments were
performed using rabbit muscle α-actin.

Actin pointed end depolymerization assays. Measurement of the actin filament
pointed end depolymerization rate was performed using a microfluidics device
paired to a microscopy setup, as described16. In short, we prepared a chamber with
poly dimethyl siloxane (PDMS, Sylgard), which was mounted on a cleaned cov-
erslip. Microfluidic chambers were 20 µm in height. The three inlets and the outlet
were connected to pressure-controlled tubes filled with solutions of different bio-
chemical composition (Fluigent microfluidics device).

After mounting, chambers were rinsed with dH20 and F-buffer (5 mM HEPES
pH 7.4, 100 mM KCl, 1 mM MgCl2, 0.2 mM EGTA, 0.4 mM CaCl2, 0.2 mM ATP,
10 mM DTT and 1mM DABCO). The chamber was then successively exposed to:
150 µl of 0.1% biotin-BSA in F-buffer; 300 µl of 5% BSA; 150 µl of 3 µg/ml
neutravidin in F-buffer; and 10–100 µl of 1–3 pM biotin-gelsolin. Prior to
experiments, actin filaments were polymerized (8 µM, >30 min) in F-buffer. A
fraction of actin monomers was labeled with Alexa-488 or 568. Filaments were
finally injected into the chamber and anchored to the coverslip by the gelsolins
until desired density.

To measure the depolymerization rate of cofilin-decorated pointed ends,
filaments were first saturated with 2 µM cofilin, and exposed to 2 µM cofilin
supplemented with different CAP proteins. The depolymerization rate was
analyzed with ImageJ, first making a kymograph for each filament (function
reslice) and manually fitting a slope along the pointed end. Filaments, which
pointed ends could not be clearly tracked or had possible (un)observed pauses53 or
severing events were discarded from analysis.

To minimize the effect of protein label on our measurements, we used either
10% or 16% labeling fraction of actin depending on the microscopy setup. We did
not observe effects of labeling fraction for N-CAP activity in our experiments. All
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Fig. 7 A working model for actin filament depolymerization and monomer
recycling by CAP. The different states of the model are based on prior
structural data34,43,44, as well as crystal structure and atomistic molecular
dynamics models from this study. The CARP domain dimer34 (yellow/orange)
is connected by Rosetta-modeled linkers to the HFD domains (magenta).
Please note that for simplicity CAP is presented as a dimer in the model. (1)
ADP-actin filaments (blue/green) are severed by cofilin (cyan). (2) CAP binds
with high affinity to the cofilin-decorated filament pointed end through its two
HFD domains, and destabilizes the interface between the two terminal
subunits of the actin filament. (3) The ultimate ADP-actin monomer
dissociates from the filament pointed end, due to spatial restrains and lost
contacts to the penultimate monomer. The HFD domain and cofilin stay
associated with the actin monomer. (4) The freshly depolymerized actin
monomer is handed over from the HFD domain to the CARP domain of CAP,
while the second HFD domain remains bound to the actin filament pointed
end. (5) The WH2 domain of CAP wraps around the actin monomer, and
together with the adjacent CARP domain displaces the HFD domain and
cofilin from the actin monomer. It subsequently catalyzes ADP-to-ATP
nucleotide exchange on actin. (6) The ATP-actin monomer is released from
the C-terminal half of CAP, and the free HFD domain binds to the penultimate
actin in the filament to begin a new cycle of depolymerization.
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experiments were performed at room temperature, in non-temperature-
controlled setup.

Reannealing of actin filaments. Preformed, steady-state F-actin solutions (in F-
buffer) with different fluorescent labels were mixed and incubated in order to
quantify reannealing. The mixed solution contained 4 µM of Alexa568-actin (10%
labeled) and 4 µM of Alexa488-actin (10% labeled), with or without N-CAP and
mutants. After 4 min at room temperature, the mixed F-actin solution was diluted
100× in buffer supplemented with 0.2% methylcellulose, and flowed into an open
chamber made with double-sided tape sandwiched between two coverlips, and
passivated with BSA. Images series (2 s interval) were acquired in at least three
different fields of view. The number of green (Alexa488) F-actin segments were
counted, as well as the number of these segments that were connected to a red
(Alexa568) F-actin segment, in order to determine the ratio of two color segments
plotted in Fig. 2f. Monitoring the diffusion of the filaments allowed us to determine
unambiguously when two segments were connected. Controls (with no N-CAP in
the F-actin mix) were repeated several times, and experiments (with N-CAP or
mutants) at least twice.

Actin severing assays. To investigate the impact of N-CAP on the severing by
cofilin, we used two different methods, either (1) by measuring the fraction of
single cofilin domains that have not yet led to a severing or by (2) quantifying the
global number of severing events per µm of actin filament.

(1) Severing associated with single cofilin domains (Supplementary Fig. 3c). We
followed the procedure described previously16. Briefly, inside a microfluidic
chamber, 12% Alexa-488-labeled actin filaments were polymerized from spectrin-
actin seeds, anchored nonspecifically to a BSA-passivated coverslip. Filaments were
aged for 15 min with a solution of G-actin at critical concentration (100 nM G-
actin), so that filaments become >99% ADP46. Filaments were then continuously
exposed to 500 nM mCherry-cofilin-1 alone, with 2 µM full-length CAP1 or with
10 µM N-CAP. On ImageJ, kymographs of the filaments were then constructed to
follow the nucleation and assembly of single cofilin domains and severing events at
the interface with bare actin segments.

For each domain, time 0 was defined at the frame on which they nucleated. We
then recorded either the time at which they induced a severing event, or when they
are lost due to severing by another domain, merging, or censoring event. The
fraction of domains that have not induced a severing event was then calculated
using a classical Kaplan−Meier method.

(2) Total number of severing events/µm (Supplementary Fig. 3d). Inside flow
chambers (between two coverslips spaced by double-sided tape, we first injected
prepolymerized Alexa-488-labeled filaments (in F-buffer, with 0.2–0.3%
Methylcellulose). The solution was then exchanged with 500 nM unlabeled cofilin-
1 and 0, 1 or 10 µM NCAP. After the exchange, filaments that remained near the
surface were analyzed as follows.

The number of severing events per µm was calculated as the cumulative
function

fðtÞ ¼
Xt

u¼0

NsevðuÞP
i liðuÞ

; ð1Þ

where Nsev(u) is the number of severing events at time u, and
P

i liðuÞ is the sum
over all filaments i of their length at time u. As the solution does not contain G-
actin, the filaments depolymerize, and the filament length thus decreases over time.

Binding of N-CAP to filaments pointed ends. The experiment was performed in
flow chambers (see Actin severing assay (2)), passivated with biotin-PLL-PEG and
functionalized with neutravidin. F-actin (10% Alexa-568, 1% biotin) was poly-
merized overnight at 4 µM. Just before injection into the chamber, F-actin was
diluted down to 200 nM and mixed with 100 nM N-CAP-GFP, 2 µM cofilin-1, and
4 nM capping protein, in F-buffer supplemented with 0.2% methylcellulose. Images
of actin filaments were acquired before and after a stream acquisition of the GFP
channel (5 frames/second over 12 s, TIRF microscopy). For analysis of binding to
the filament ends, actin filaments that did not move during the stream acquisition
were blindly selected. The fluorescence was measured on the two ends of each
filament, on a 3 by 3 pixels area. A binding event was detected when the fluor-
escence would go over an arbitrary threshold (same value for all filaments and
filament ends). As capping protein should protect the barbed end, the pointed end
was attributed to the one with the most binding events. N-CAP-GFP was detected
in 17% of the data points at the filament pointed end, while unspecific association
of N-CAP-GFP at the vicinity of filament barbed end was detected in 1.7% of the
data points. The survival fraction of N-CAP at the pointed end was then calculated
and fitted with a single exponential to measure the unbinding rate.

Crystallization and structure determination. The mouse HFD domain was
crystallized with 10×His-tag present, and purified as described above, with
exception of using 5 mM HEPES, 50 mM NaCl, 0.2 mM DTT, 0.01% NaN3, pH 7.5
buffer in gel filtration. Sample was concentrated to 7–10 mg/ml prior to crystal-
lization and mixed 1:1 to 0.1 M sodium cacodylate, 12% PEG4000 (w/v), pH 6.1 in
using a sitting drop method with drop size of 200 nl in 96-well format. After

2 weeks of incubation large needle-like crystals were observed. For remote data
collection at Diamond Light Source (UK, Didgot) at beamline I03 the crystals were
cryo-protected by soaking in mother liquid containing 25% glycerol and snap-
frozen in N2 for shipping to the beamline. The data were collected at 100 K using
0.9763 Å wavelength, Pilatus3 6M detector, 30% transmission power, 0.05 s
exposure and 0.1° oscillation angle as a total of 2400 frames. The diffraction data
were integrated and scaled with X-ray Detector Software (XDS)54. The initial
solution was obtained with molecular replacement using PHASER55 and PDB=
1s0p as a search model. A solution with four HFD domains present in an asym-
metric unit was found, after which multiple rounds of refinement with BUSTER56

and manual building in COOT57 yielded a good fit to the data (see Table 1).
Further improvement was obtained by refining the data with the introduction of
translation-liberation-screw parameters (1/chain), removal of noncrystallographic
restrains and individual atomic B-factor modeling. The final Rwork/Rfree for the
model was 18.6%/23.0% with good overall geometry.

For crystallization of the tripartite complex (of ADP-actin, HFD domain of
mouse CAP1, and C-terminal ADF-H domain of mouse twinfilin-1), ADP-actin
was prepared in O/N dialysis at +4 °C in 5 mM HEPES, 0.2 mM MgCl2, 0.2 mM
ADP, 0.2 mM EGTA, 0.3 mM glucose, 0.5 mM β-mercaptoethanol, pH 8.0. Actin
solution, containing 0.3 mM glucose and 5 U/ml of hexokinase, was transferred to a
Slide-A-Lyser dialysis membrane and put on a floater device at +4 °C. The next day
before complex formation, actin was centrifuged for 20 min at 355,040 × g with
TLA-120 rotor. Proteins were mixed in 1:1.1:1.1 ratio (actin, HFD domain, ADF-H
domain), concentrated to 10–20 mg/ml and used for crystallization as above. Hits
were obtained from several different conditions, and the best diffracting crystal was
obtained at ~10 mg/ml concentration of the complex mixed 1:1 in 0.1 M HEPES,
0.1 mM KCl, 10% PEG4000 (w/v), pH 7.0 with sitting drop size of 200 nl. On the
first day, several small diamond-shaped crystals appeared in the drop. On the third
day, a large rod-like crystal appeared while all the small crystals were dissolved. For
remote data collection at Diamond Light Source (UK, Didgot) at beamline I03, the
crystals were cryo-protected by soaking in LV CryoOil (MiTeGen) and snap-frozen
in N2 for shipping. The data were collected at 100 K using 0.9762 Å wavelength,
Pilatus3 6M detector, 20% transmission power, 0.05 s exposure and 0.15°
oscillation angle as a total of 2400 frames. The diffraction data were integrated and
scaled with XDS54. An initial solution was obtained with molecular replacement
using PHASER55 and PDB= 3daw as a search model that showed clear extra
density in the pointed end of actin monomer. Thus another molecular replacement
was carried out, and an initial model for the tripartite complex was obtained using
BALBES58 with 3daw and 1s0p as search models. This yielded a solution with Q=
0.787 and Rwork/Rfree= 29.7%/35.6%. The asymmetric unit contained a single 1:1:1
complex of HFD:ADF-H:ADP-actin. Multiple rounds of refinement with
BUSTER56 and manual building in COOT57, especially rebuilding of D-loop and
connecting loops of α-helices in the HFD domain were required to improve the
model. Finally, addition of waters, introduction of translation-libration-screw
parameters (1/chain), and individual atomic B-factor modeling yielded a model
with final Rwork/Rfree of 16.6%/19.4% with good overall geometry.

Examining protein−protein interactions by gel filtration. For studying actin
monomer binding, ADP-G-actin was prepared as described in ref. 34. All gel fil-
tration experiments were performed at +4 °C with 0.5 ml/min running speed and
0.5 ml fractionation with Superdex 200 increase 10/300 GL gel filtration column
equilibrated in 5 mM HEPES, 100 mM NaCl, 0.1 mM ADP, 0.1 mM MgCl2, 1 mM
DTT, pH 7.4. One hundred microliters of complex containing 18 µM ADF-H
domain of twinfilin, 15 µM other proteins was injected to the column and analyzed
for elution. Peak fractions were also analyzed by SDS-PAGE. Actin monomer
competition experiments were performed as above, by including 15 µM C-CAP or
CARP domain to the samples. Peak fractions were analyzed on SDS-PAGE, gels
were imaged with ChemiDoc XRS+ imaging system (Bio-Rad), and quantified
using Image Lab (Bio-Rad).

Native-PAGE. Mini-Protean TGX 10% gels (Bio-Rad) were pre-run in cooled
running buffer (25 mM Tris, 195 mM glycine, 0.5 mM ADP, 0.1 mM MgCl2, pH
8.5) for 1 h before loading. Samples were prepared in ADP-actin dialysis buffer (5
mM HEPES or Tris, 0.1 mM MgCl2, 0.1 mM EGTA, 0.2 mM ADP, 0.3 mM glucose,
0.1 mM DTT, pH 8.0) at 20 µM concentration of each protein, mixed at 1:1 ratio
with 2× loading buffer (running buffer containing 20% glycerol, bromophenol blue,
no ADP or MgCl2) and then applying 5 µl volume to 50 µl sample wells. Gels were
run at 100 V on ice for 4 h.

Fluorometric actin filament disassembly assay. The steady-state disassembly of
ADP-actin filaments was performed as following: 5% pyrene-actin was polymerized
in 20 mM HEPES, 100 mM NaCl, 1 mM MgCl2, 1 mM ATP, 1 mM DTT, pH 7.4
for 60 min. The filament barbed ends were capped by 50 nM capping protein.
Subsequently, 0.5 µM cofilin (and 0.5 µM N-CAP) were added, and the reaction
was started by adding 4 µM Vitamin D binding protein (monomer sequestering
agent). Final concentration of actin was 2.5 µM. Actin disassembly was measured
by following pyrene fluorescence with excitation at 365 nm and emission at 407 nm
on fluorescence spectrophotometer (Agilent) for 2400 s at 22 °C.
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CD spectrometry. The CD spectra for the N-CAP wild type, mutants and the HFD
domain were measured at 20 °C with the J-720 spectropolarimeter (Jasco), in 300 µl
quartz cuvette of 0.1 cm light path length with the following parameters: continues
scanning mode with scanning speed of 50 nm/min, bandwidth 0.5 nm, wave range
190–260 nm, data pitch 0.5 nm. All the proteins were diluted to 15 µM with 10%
PBS buffer. Accumulation of ten scans for each protein has been plotted as a
single curve.

Models for atomistic MD simulations. The cofilin-decorated actin models were
based on the 3.8 Å resolution cryo-electron microscopy structure (PDBID: 5YU8)
41. The missing loops were built using RosettaCM59 and RosettaScripts60 in the
presence of the electron density map41 imposing the associated helical symmetry.
To match the experimental constructs in this work, actin and cofilin sequences
were, in this stage, changed from chicken’s to rabbit’s and mouse’s, respectively.
Over 1000 models were generated. They were, then, sorted based on their total
score and the ones that contained structural artifacts (e.g., cis peptide bonds) were
filtered out. Molecular dynamics (MD) simulations were initiated from the top
scoring three models (Supplementary Table 1, simulations F1−3).

The HFD-actin complex was isolated from the crystallized HFD domain/actin/
twinfilin ADF-H domain complex and separately docked on to the selected cofilin-
decorated actin filament models described above. For this purpose, the isolated
HFD-actin was superposed onto each pointed end actin monomer, which was then
replaced with the HFD-actin. This way, the crystal structure conformation of actin-
HFD dimer is transferred to the tip of the cofilin-decorated actin. The docked
models were first locally refined using the docking protocol61 followed by
restrained relaxation with the fast relax62 protocol distributed with the Rosetta
Software Suite. This process was applied separately for each cofilin-decorated actin
filament selected for MD simulations (Supplementary Table 1, simulations C1−3).

Construction of the pointed end segment for MD simulations. Each simulation
was performed on a pointed end segment of the selected cofilin-decorated actin
filament model, which was created by slicing the model perpendicular to the axis
of the filament. The plane of the slicing was chosen so that four whole ADP-Mg2
+ bound actin monomers, and three whole cofilin monomers were included
within the segment (Supplementary Table 1, simulations F1−3). The segment
also contained the two HFD domains at the pointed end in the HFD bound
systems (Supplementary Table 1, simulations C1−3). The pointed end segment
also contained several polypeptide fragments from cofilins and actins at its
barbed end (Supplementary Fig. 5a). To maintain their conformation and
position during the simulations, these broken chains were kept positionally
restrained throughout the simulations as follows: A layer of residues at the
interface with the rest of the pointed end segment were left free; all heavy atoms
near the plane of slicing and only backbone heavy-atoms for the regions in
between were restrained with a force constant of 100 kJ/mol/nm2 (Supplemen-
tary Fig. 5a). These partially restrained polypeptide fragments at the barbed end
act as a platform during the simulations. This approach maintains both the
filament-like protein−protein interface at the barbed end and the orientation of
the filament during the simulations.

The protonation states of residues were determined at the neutral pH based on
pKa calculations using PROPKA363. Each actin H73 residue was methylated (Nτ-
Methyl-L-histidine, HIC), and the N-termini of actin, cofilin, and HFD were
acetylated. The topologies for each molecule in the systems was prepared with the
LeAP program distributed with ambertools1864, which were then converted to the
GROMACS format using the ParmEd tool.

Each pointed end slice created from the selected models was placed in a
hexagonal prism simulation box with its long-axis aligned with the z-axis. The box
dimensions were chosen to have a minimum distance of about 17 Å between the
filament and each face of the box (Supplementary Table 1). Each system was
solvated with 0.15M NaCl solution with the numbers of ions adjusted to neutralize
the system.

Before production runs, steepest descent minimization and successive short
equilibration simulations (in total ~7 ns) in the NVT and NpT ensembles using the
Berendsen thermostat and barostat65 were performed. Harmonic positional
restraints were applied to the pointed end slice during these equilibration
simulations. A smaller group of atoms (all heavy-atoms, the protein backbone, and
finally only the Cα atoms) were restrained in each consecutive equilibration
simulation with a force constant of 1000 kJ/mol/nm2.

The systems that were branched from the others (Supplementary Table 1; C1′,
C2′. F2′) were prepared by making the suitable modification (docking or removing
HFD domains), removing the overlapping solvent molecules (when HFD domains
were docked), and readjusting the box size and solvent atoms for the new system
size. Staged NVT and NpT equilibration with restraints were performed as
mentioned above (in total ~200 ps for simulations where HFD domains were
removed, and in total ~4 ns where it is docked).

All production runs were performed for 1–2.5 μs in the NpT ensemble with
only the aforementioned positional restraints on the platform region.

Force fields and parameters in MD simulations. The following force fields and
parameter sets were employed in the MD simulations: Amber ff14sb66 for the

proteins, TIP3P model67 for water, the monovalent ion parameter set by Joung and
Cheatham68 for Na+ and Cl−, an octahedral multisite ion model by Saxena and
Sept69 for Mg2+, and a polyphosphorylated compound parameter set by Meagher
et al.70 for ADP. Missing bonded parameters for methyl-histidine (Nτ-Methyl-L-
histidine, HIC) were adopted from the GAFF2 force field64. The atomic charges
were calculated following the protocol by Duan et al.71 R.E.D.III.5 software72 was
employed for multiconformation restrained electrostatic potential (RESP) fitting
using an extended and an α‐helical conformations of HIC dipeptide (Ace‐HIC‐
Nme). All quantum-chemical calculations were performed using the Gaussian09
program suite73 at the b3LYP/cc-pVTZ level of theory. Charge calculations were
performed with the IEFPCM model in a polarizable continuum with a dielectric
constant of 4 by setting the solvent as ether.

MD simulation protocols. All simulations were carried out using GROMACS
2018 74. The equations of motion were integrated using a leap-frog algorithm with
a 2 fs time step. All bonds were constrained using the LINCS algorithm75. The
simulation protocols were chosen according to ref. 66. Long-range electrostatic
interactions were treated by the smooth particle mesh Ewald scheme76 with a real-
space cutoff of 0.8 nm, a Fourier spacing of 0.12 nm, and a fourth-order inter-
polation. Lennard–Jones potential with a cutoff of 0.8 nm was used for van der
Waals interactions. Long-range dispersion corrections were applied for energy and
pressure77.

All production simulations were performed in the NpT ensemble. The pointed
end slice, the platform, and solvent (water and 0.15M NaCl) were coupled to
separate temperature baths at 310 °K using the Nosé−Hoover thermostat78,79 with
a time constant of 1.0 ps. Isotropic pressure coupling was performed using the
Parrinello–Rahman barostat80 with a reference pressure of 1 atm, a time constant
of 5 ps, and a compressibility of 4.5 × 10−5 bar−1.

Analysis of the MD simulations. All analyses were performed using VMD81 and
in-house scripts. The MMGBSA calculations were performed using the MMPBSA.
py software82 distributed with ambertools1864 employing the modified GB model
developed by Onufriev et al.83 with 0.15M salt concentration (frames sampled
every 100 ns discarding the first 500 ns of each simulation).

Structural analyses. For analysis of different actin structures and their con-
formational states presented in Fig. 1d, we followed the protocol by Tanaka
et al41,84. using the F-actin structure (PDB 6djo) as the reference.

Statistical analysis and reproducibility. Data in Figs. 2d, 4b and 4d were pooled
from several experiments performed on different days, thus representing data from
several independent experiments. Panels 2f, 2g, 2h and 3d present data analyzed
from a single representative experiment. n describes number of filaments analyzed
for panels 2d, 2f, 2g, 4b and 4d. n in panel 6c corresponds to number of times the
experiment was conducted.

Experiments in Supplementary Figs. 2a−d, 3c, 6a−d were performed with
similar results at least twice. Experiments in 3d, the CARP domain competition
experiment in 6a, and the experiments under assembly promoting conditions in
Fig. 7 were conducted once.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. A reporting summary for this Article is available as a
Supplementary Information file. The crystallographic data are stored in Protein Data
Bank under accession codes 6RSQ and 6RSW. The molecular dynamics simulation data
are available from Zenodo (https://doi.org/10.5281/zenodo.3340994). The source data
underlying Figs. 1d, 2d, 2f, 2h, 3d, 4b, 4d, 5d, 6c and Supplementary Figs. 2, 3c, d, 6 and 7
are provided as a Source Data file.
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