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Abstract

Outliers arise in networks due to different reasons such as fraudulent behaviour of malicious users or
default in measurement instruments and can significantly impair network analyses. In addition, real-life
networks are likely to be incompletely observed, with missing links due to individual non-response or
machine failures. Identifying outliers in the presence of missing links is therefore a crucial problem in
network analysis. In this work, we introduce a new algorithm to detect outliers in a network that simul-
taneously predicts the missing links. The proposed method is statistically sound: we prove that, under
fairly general assumptions, our algorithm exactly detects the outliers, and achieves the best known error
for the prediction of missing links with polynomial computation cost. It is also computationally efficient:
we prove sub-linear convergence of our algorithm. We provide a simulation study which demonstrates
the good behaviour of the algorithm in terms of outliers detection and prediction of the missing links.
We also illustrate the method with an application in epidemiology, and with the analysis of a political
Twitter network. The method is freely available as an R package on the Comprehensive R Archive
Network.

Keywords: outlier detection, robust network estimation, missing observations, link prediction

1 Introduction

Networks are powerful tools to analyse complex systems: agents are represented as nodes, and pairwise
interactions between agents are recorded as edges between these nodes. Examples of fields of applications
include biology, where networks may be used to describe protein-protein interactions; ecology, where they
may represent food webs [17] or spatial distributions in crop diversity networks [58]; ethnology, where net-
works summarise relationships or trades between individuals or communities [48, 44]; sociology, where the
recent development of online social networks offers unprecedented possibilities while fostering new challenges
[59]. Those real-life networks are often modelled as realisations of random graphs or, equivalently, as noisy
versions of more structured networks. In this setting, recovering the “noiseless” version of the graph, i.e.
estimating the underlying probabilities of interactions between agents, is a key problem that has recently
gained considerable attention (see, e.g., [35, 20, 22, 64]). Most of the proposed methods are based on models
describing the connectivity of the majority of nodes. However, in many examples those models fail to de-
scribe networks containing a small number of outliers nodes with abnormal behaviour. Following Hawkins
[28], we define an outlier as “an observation that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism”.
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Detecting nodes with anomalous behaviour is an important problem in applications. For example, in
social networks, malicious nodes corresponding to fake accounts created to spread fake news, to distribute
malware, or to spam other users may be hidden among the regular nodes [2]. These outliers often exhibit
connection patterns that differ from that of normal nodes: the authors of [53] show, for example, that spam
attackers are often connected with numerous nodes in a random fashion, thus forming characteristic hubs. By
contrast, the connections between regular nodes are more sparse and more structured: they may, for example,
exhibit community structures. Identifying those malicious nodes is crucial to protect users from the threat
they represent. In the context of graphs obtained from survey data, anomalous behaviour may indicate that
participants are providing false answers to distort the public opinion on a subject [4, 16]. In other cases,
defaults of measurement instruments or fraudulent behaviours can lead to abnormal connectivity patterns.
Finally, in contact networks, individuals with anomalous connection patterns may play an important role in
the propagation of diseases, and their identification finds important applications in epidemiology [61]. These
examples illustrate how identifying outlier nodes can provide us with hindsight on the network. Moreover,
detecting these nodes allows us to control the bias induced by their anomalous behaviour in the network
analysis. For example, it has been shown that the presence of hubs in graphs exhibiting community structure
can hinder the estimation of these communities [10, 32].

In addition, many real-life networks are polluted by missing data [25, 26]. Indeed, complete exploration
of all pairwise interactions between agents can be expensive, time consuming, and requires significant effort.
In social sciences, graphs constructed from survey data are likely to be incomplete, due to non-response or
drop-out of participants. Online social network data are often obtained through crawling of users profile;
however the gigantic size of these networks may drive analysts to stop prematurely this crawling, and work
with a sub-sample of the network [12]. Protein-protein interactions networks provide a blatant example of
incompleteness, as the existence of each interaction must be tested experimentally, and most of these inter-
actions have yet to be tested [66]. When dealing with a partially observed network, being able to predict
the probability of existence of non-observed edges is of particular interest and finds numerous applications,
for example in biology [7], recommender systems [42] and ecology [19].

In this paper, we propose a new algorithm that detects the outliers in networks. In addition, this method
robustly estimates the probabilities of connection of the nodes in the network, which allows to predict the
missing links. The present paper is mostly related to two lines of work in network analysis: anomaly detection
in networks and estimation in networks with missing values. Anomaly detection in networks has indeed been
studied under several sets of assumptions on the behaviour of outlier nodes; we refer the interested reader
to [2] for a review of these technics. For instance, many algorithms based on trust propagation rely on the
assumption that outlier nodes are not well connected with normal nodes [67, 46]. Other algorithms, based on
community structure, assume that outliers [60, 43] fail to be well connected to communities of normal nodes.
However, it has been shown in [65] that these assumptions do not hold in many situations. In addition,
most of these technics focus on outliers detection, and do not study the estimation of underlying structure.
Meanwhile, robust estimation of the graph structure in the presence of outlier nodes has been less studied. In
[10], the authors aim to recover community structures when the majority of the nodes follow an assortative
stochastic block model in the presence of arbitrary outlier nodes. However, their algorithm does not allow
to detect these outlier nodes. Note that our problem is different, as we would like to estimate connection
probabilities between nodes rather than recover community structures, and our assumptions on the random
graph are more general.

On the other hand, estimation in networks with missing observations, and its application to link prediction
has known a quite recent development. In [20], the authors study the least squares estimator for the stochastic
block model assuming observations are missing uniformly at random, and show that the procedure is minimax
optimal. In [22], the authors show that the maximum likelihood estimator is minimax optimal in the same
setting, while being adaptive to more general sampling schemes. These two estimators are too costly to
compute to be used in practice (computationally efficient approximations exist for the maximum likelihood).
In [68], the authors consider the setting where non-existing edges can be erroneously recorded as observed
(or existing edges recorded as not observed), both errors occurring at a fixed rate. More recently, [55] and
[62] proposed algorithms to estimate the edge probabilities under different missing observations schemes,
and [40] proposed a method for consistent community detection also under several missing values scenarios.
Both papers present convincing numerical experiments, but lack theoretical guarantees.
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Finally, our work is also closely related to recent developments in the field of robust matrix completion.
Indeed, in our general model presented in Section 2, we assume that the matrix of connection probabilities
can be decomposed as the sum of a low rank component (connectivity pattern of inliers), and that of a
column-wise sparse component (non-zero columns corresponding to outliers). Our problem is to estimate
the low-rank matrix in order to reconstruct the connectivity of inliers, and to reconstruct the support of the
column-wise sparse component, in order to detect outliers. The problem of estimating the low-rank matrix
is related to that of robust matrix completion, in which one aims at estimating a low-rank matrix from
incomplete and corrupted observations of its entries; see, for example, [11, 13, 30, 63, 3, 14, 41, 34]. More
recently, the problem of robust matrix completion with binary observations has been studied in [50, 52].
However, to the best of our knowledge, existing work on sparse plus low-rank matrix decomposition in the
noisy case do not provide guarantees concerning support recovery of the sparse component. In this paper,
we provide such results and prove that our algorithm exactly recovers the support of the sparse matrix.
Another shortcoming of existing results on binary robust matrix completion (e.g. [50, 52]) is that applying
them to the estimation of connection probabilities in networks yields sub-optimal error rates. Indeed, in our
framework, the signal to noise ratio is critically low, as the variances of the variables are of the same order
as their expectations. The main difficulty arising in our case, and that we tackle in the present paper, is
therefore to obtain the optimal dependence on the sparsity of the network.

In the present work, we present a new algorithm to detect the outliers and to estimate the connection
probabilities of the remaining nodes, which is robust to missing observations. For this algorithm, we provide
both statistical and computational guarantees. In particular, in Theorem 3, we prove that under fairly general
assumptions our algorithm achieves exact detection of the outliers. In Theorem 4, we also prove an upper
bound on the estimation error of connection probabilities between inliers. Importantly, the estimation error
of our method matches the best known error for tractable algorithms [64]. We also analyse the algorithm
convergence complexity in Theorem 1, and show sub-linear convergence. In Section 5, we provide a simulation
study with comparisons to state-of-the-art technics, indicating that the proposed method has good empirical
properties in terms of outliers detection and link prediction. Finally, we illustrate the performance of our
method with two applications in epidemiology and social network analysis.

1.1 Example: “Les Misérables” characters network

Before introducing our general model, let us start with an example.“Les Misérables” characters network
encodes interactions between characters of Victor Hugo’s novel; the network was created by Donald Knuth,
as part of the Stanford Graph Base [36]. It contains 77 nodes corresponding to characters of the novel, and
254 edges connecting two characters whenever they appear in the same chapter. The book itself spans around
two decades of nineteenth century France and numerous characters. It is structured in five volumes, each
one focused on a specific period and featuring handful of characters. One expects to observe communities in
this network, corresponding roughly to the plots narrated in each volume: such structures are well captured
by the classical Stochastic Block Model (SBM). In the SBM (see, e.g., [29]), nodes are classified into k
communities (for example corresponding to volumes of the book). Denote by G = (V, E) the graph, where V
is the set of nodes, and E the set of edges. For any i ∈ V, denote by c(i) its community assignment. Then,
the probability that an edge connects two nodes only depends on their community assignments:

P((i, j) ∈ E) = Qc(i)c(j). (1)

In (1), Q denotes a k × k symmetric matrix of connection probabilities between communities. Usually, in
the Stochastic Block Model, the community assignment is unknown and learned from data.

However, some of the characters behave differently, as their stories follow the entire novel. For instance,
the main character, Jean Valjean, acts as a hub with 36 connections, well above the second most connected
character Gavroche, with a degree of 22. Other characters, for instance, Cosette, do not necessarily have
a large degree but are connected to characters across all the volumes, and thus also stand out from the
communities structure. Nodes such as Cosette correspond to outliers with mixed membership profile. In
Figure 1a, we display the communities assignment resulting from the classical SBM. Note that the node
corresponding to Jean Valjean (large yellow node), is alone in its community. In addition, one of the clusters
(in red) contains most of the main characters of the novel (Les Thénardier, Éponine, Javert).
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(a) SBM model with 6 communities (the num-
ber of communities is chosen to minimise the
Integrated Completed Likelihood criterion).

(b) Proposed Stochastic Block Model with out-
liers. The detected outliers are coloured in red,
and classification is performed on the rest of
the nodes.

Figure 1: Les Misérables characters network. The nodes are represented with size proportional to their
degree, and coloured according to their community assignment. On the left in Figure 1a, classification
is performed according to the classical SBM model. On the right in Figure 1b, the detected outliers are
indicated in red, and classification is performed on the rest of the nodes (inliers).

To model simultaneously the community structure and the outlier profiles, we propose to decompose V
into two sets of nodes: the inliers I following the classical Stochastic Block Model structure and the outliers
O for which we do not make any assumption on their connection pattern. As a result, the probability of
connection between inliers is given, for any (i, j) ∈ I2, by

P((i, j) ∈ E) = L∗ij ,

where L∗ is a symmetric matrix with entries in [0, 1] corresponding to a classical SBM. On the other hand,
for any outlier i ∈ O and for any node j ∈ V we set

P((i, j) ∈ E) =
(
S∗ + S∗

>
)
ij
,

with S∗ an arbitrary matrix in [0, 1]n×n. Our only assumption regarding the outliers is that their number
is small compared to the size of the network, i.e., the matrix S∗ is column-wise sparse. Note that the inlier
and outlier sets are unknown a priori, and learned from data. In Figure 1b, we display the communities
assignment resulting from our model. The outlier nodes – which are selected automatically by our procedure
– are indicated in red, and coincide with central characters of the novel. They correspond either to hubs
(Jean Valjean, Myriel) or to nodes with mixed memberships (Cosette, Javert, Marius).

1.2 Organisation of the paper

The rest of the paper is organised as follows. First, in Section 1.3, we summarise notation used throughout
this paper and, in Section 2, we introduce our model. Then, in Section 3, we present a computationally
efficient algorithm for detecting outliers and estimating the connection probabilities between inliers. We also
provide theoretical guarantees on the speed of convergence of this algorithm. In Section 4, we provide bounds
on the error of the outliers detection and on the error of the estimation of the connection probabilities between
inliers. In Section 5, we present numerical experiments which demonstrate the good empirical behaviour of
our method, both in terms of outliers detection and in terms of prediction of the missing links. The method
is implemented in the R [49] package GSBM available on the Comprehensive R Archive Network. The proofs
are relegated to the Appendix A.
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1.3 Notations

The notation used in the paper is gathered in the following paragraph :

• We use bold notations for matrices and vectors: for any matrix M , we denote by M ij its entry on
row i and column j. The vector corresponding to its i-th row is denoted by M i,·, and the vector
corresponding to its j-th column is denoted by M ·,j . The notation 0 denotes either a matrix or a
vector with entries all equal to 0.

• We write � to denote the entry-wise product for matrices or vectors. For any vector v ∈ Rn, we
denote by ‖v‖2 its Euclidean norm. For any two matrices M ,N ∈ Rn×n,

〈
M
∣∣N〉 ,

∑
ij

M ijN ij is

the Frobenius scalar product between M and N . For any matrix M ∈ Rn×n, ‖M‖F is its Frobenius
norm, ‖M‖∗ is its nuclear norm (the sum of its singular values), ‖M‖op is its operator norm (its

largest singular value), and ‖M‖∞ , max
ij
|M ij | is the largest absolute value of its entries. Its column-

wise 2,1-norm is denoted by ‖M‖2,1 ,
∑
j

√∑
i

M2
ij , and the column-wise 2,∞-norm is denoted by

‖M‖2,∞ , max
j

√∑
i

M2
ij . The weighed L2-norm with respect to the sampling probability Π is written

‖M‖L2(Π). Finally, for any matrix M and any vector v, we denote respectively by (M)+ and (v)+
the matrix and vector obtained by considering the positive part of their entries.

• For a matrixM ∈ Rn×n, we denote by PM the projection defined as follows: for any matrixA ∈ Rn×n,
P⊥M (A) = A− P⊥M (A), where P⊥M (A) = P⊥U(M)AP

⊥
V (M), and P⊥U(M) and P⊥V (M) denote respectively

the projection on the spaces orthogonal to the spaces spanned by the right and left singular vectors of
M .

• We denote by [n] the set of integers from 1 to n, by I the set of inlier nodes, and by O the set of
outlier nodes. For a set of indices S and a matrix M ∈ Rn×n, we write M |S , 1S �M where 1S is
the indicator matrix of the set S. For any set S, we denote by |S| its cardinality.

2 General model

We consider an undirected, unweighted graph with n nodes indexed from 1 to n. To encode the set of edges,
we use the adjacency matrix of the graph, which we denote by A. This matrix is defined as follows: set
Aij = 1 if there exists an edge linking node i and node j, and Aij = 0 otherwise. Note that since the graph
is undirected we have Aij = Aji. We assume there are no loops in the graph: no edge can connect a node
to itself, and thus Aii = 0. The nodes can be divided into inliers and outliers. Inliers correspond to the
majority of the nodes, and their connection probabilities are given by a low-rank model. Outliers correspond
to a small number of nodes with anomalous connections, and connect arbitrarily to inlier and outlier nodes.

Probability of connection between inliers For any pair of inliers (i, j) ∈ I2, i < j we assume that

Aij
ind.∼ Bernoulli(L∗ij), where L∗ is a n×n symmetric matrix with entries in [0, 1]. For inliers, we consider a

more general model than the classical Stochastic Block Model assuming that L∗ is low-rank. This assumption
is enough to model some interesting properties of the SBM, such as positive and negative homophily, and
stochastic equivalence. Indeed, when rank(L∗) = k, there exist a matrix U ∈ Rn×k and a diagonal matrix
Λ ∈ Rk×k such that L∗ = UΛU>. The model can then be interpreted as follows: each row U i,· corresponds
to a vector of k latent attributes describing the node i. If Λaa > 0, two nodes sharing attributes of the
same sign along the a-th coordinate will have a tendency to be more connected (everything else being equal),
modelling positive homophily along this coordinate. If Λaa < 0, they will tend to be less connected, modelling
negative homophily. Note that two nodes with similar characteristics in the latent space will have similar
stochastic behaviour (i.e. their probabilities of connection to other nodes will be given by similar vectors
of probabilities). On the other hand, assuming that L∗ is low-rank closely relates to the latent eigenmodel,
described, for example, in [15]. In this model, the probability of connection of nodes i and j is given by
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f(L∗ij), where L∗ is of rank k and f is a link function. Note that our algorithm can be extended to the latent
eigenmodel by replacing L by f(L) in the objective function (4).

Finally, most graphs encountered by practitioners are sparse, with a small average degree compared to
the number of nodes. To account for the sparsity, we assume that the entries of L∗ are bounded by ρn where
ρn is a sequence of sparsity inducing parameters such that ρn → 0. In particular, we have that the average
degree of the graph grows as ρnn. In the rest of the paper we assume that ρn ≤ 1

2 . This assumption is only
intended to clarify the exposition of our results, and can be easily removed.

Probability of connection of outlier nodes In our model we have no assumptions on the connectivity
of outliers. In particular, we do not assume a block constant or a low rank structure. We set L∗ij = 0 for any
pair of nodes (i, j) such that either i ∈ O or j ∈ O, and we use matrix S∗ to describe the outliers. For any
inlier j ∈ I, the j-th column of S∗ is null. Therefore, the matrix S∗ has at most s = |O| non-zero columns,
where the number of outliers s is small compared to the number of nodes n. For any outlier j ∈ O, the j-th
column of S∗ describes the connectivity of j: for any j ∈ O and i ∈ I, Aij ∼ Bernoulli(S∗ij) and for any
(i, j) ∈ O × O, Aij ∼Bernoulli(S∗ij + S∗ji). We set S∗ii = 0 for any i ∈ [n]. With these notations, we have
that

E [A] = L∗ − diag(L∗) + S∗ + (S∗)
>
. (2)

In this model, the outliers may account for different types of behaviour of the nodes, such as hubs or mixed
membership profiles. In practice, while most nodes may be assigned to a community and share a similar
stochastic behaviour with members of their community, a fraction of the nodes may belong to two or more
communities. Our model allows for such a behaviour by considering the nodes with mixed membership as
outliers. In these cases, being able to detect nodes with singular behaviour provides valuable information
on the network. Note that this setting includes as particular case the Generalised Stochastic Block Model,
introduced in [10]. In this model, the n nodes consist of n − s inliers obeying the Stochastic Block Model
(SBM), and s outliers, which are connected with other nodes in an arbitrary way.

Missing data pattern We say that we sample the pair (i, j) if we observe the presence or absence of the
corresponding edge. We denote by Ω the sampling matrix such that Ωij = 1 if the pair (i, j) is sampled,
Ωij = 0 otherwise. The graph is unoriented and the sampling matrix is therefore symmetric; moreover we set
diag(Ω) = 0 since an observation of a entry on the diagonal of A does not carry any information. We assume
that the entries {Ωij}i<j are independent random variables and that Ω and A are independent. We denote

by Π ∈ Rn×n the expectation of the random matrix Ω. Then, for any pair (i, j), Ωij ∼ Bernoulli(Πij). For
any matrix M ∈ Rn×n, we define

‖M‖2L2(Π) , E
[
‖Ω�M‖2F

]
.

This fairly general sampling scheme covers some of the settings encountered by practitioners. In particular,
it covers the case of random dyad sampling (described, e.g., in [56]), where the probability of sampling any
pair depends on the matrices L∗ and S∗ (and, if we consider the Stochastic Block Model, on the communities
of the adjacent nodes).

Identifiability of the model The matrices L∗ and S∗ appearing in the decomposition (2) may not be
unique. Since we estimate L∗ and S∗ from a noisy, incomplete observation of their sum, we cannot achieve
exact reconstruction of these matrices, and do not require strong identification conditions. We restrict our

attention to pairs of matrices
(
L(1),S(1)

)
such that(

L(1),S(1)
)
∈ arg min

{
rank(L) + ‖S‖2,0 : E [A] = L− diag(L) + S + (S)

>
, (L,S) ∈M

}
,

where ‖S‖2,0 is the number of non-zero columns of the matrix S, and M is the set of admissible pairs of
matrices :

M =
{

(L,S) : L ∈ [0, ρn]n×nsym , S ∈ [0, 1]n×n, ∀j ∈ [n],S·,j 6= 0 ⇔ L·,j = 0
}
.
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Among matrices verifying equation (3), we choose to consider matrices L with minimal rank, as they reflect

our belief that inlier nodes should have a low-rank connectivity pattern. Thus, for c = rank(L(1))+‖S(1)‖2,0,
we define

(L∗,S∗) ∈ arg min
{

rank(L) : E [A] = L− diag(L) + S + (S)
>
, (L,S) ∈M, rank(L) + ‖S‖2,0 = c

}
. (3)

Again, the solution of equation (3) may not be unique. We show in Section 4 that under assumption 4,
strong identifiability is guaranteed, and we can detect exactly all outliers with large probability.

When assumption 4 does not hold, we can still show that all matrices L∗ solution to (3) are close to each
other in Frobenius norm. By definition, all solutions (L∗,S∗) of equation (3) are such that rank(L∗) = k
and ‖S∗‖2,0 = s. Moreover, for all solution (L̃, S̃) 6= (L∗,S∗), we can show that L∗ and L̃ are close in

Frobenius norm. Indeed, let I = {j : L∗·,j 6= 0} (respectively Ĩ = {j : L̃·,j 6= 0}) be the support of the

columns of L∗ (respectively of L̃), and O = {j : S∗·,j 6= 0} (respectively Õ = {j : S̃·,j 6= 0}) be the support

of the columns of S∗ (respectively of S̃). Then,

L∗ = E[A]|I×I and L̃ = E[A]|Ĩ×Ĩ .

Thus, L∗ − L̃ is has support in the symmetrical difference between I × I and Ĩ × Ĩ. Thus, L∗ − L̃ has at
most

2|(I ∩ Õ)× (I ∩ Ĩ)|+ |(I ∩ Õ)× (I ∩ Õ)|+ 2|(Ĩ ∩ O)× (Ĩ ∩ I)|+ |(Ĩ ∩ O)× (Ĩ ∩ O)|

non zero entries, and each entry is bounded by ρn (because it belongs either to I or to Ĩ). Since |Õ| = |O| = s
and |Ĩ| = |I| ≤ n, the solution L̃ is therefore in a Frobenius ball of radius

√
(4ns+ 2s2)ρn ≤

√
6nsρn,

centered at L∗. Now, Corollary 1 ensures that our estimator L̂ is in a ball centered at L∗ of radius

R = Cµ−1/2n

(
νn
µn
ρnkn+ (νnρn ∨ ν̃nγn)ρnsn

)1/2

,

where νn, ν̃n and µn are upper and lower bounds on the sampling probabilities defined in Section 4, γn is
an upper bound on the entries of E[A], and C is an absolute constant. Since R ≥

√
6nsρn, the distance

between our estimator L̂ and any matrix L̃ solution of (3) is bounded by 2R.

3 Estimation procedure

In order to estimate the matrices L∗ and S∗, we consider the following objective function:

F(S,L)
4
=

1

2
‖Ω� (A−L− S− (S)>)‖2F + λ1‖L‖∗ + λ2‖S‖2,1, (4)

defined by a least squares data-fitting term penalised by a hybrid regularisation term. On the one hand, the
nuclear norm penalty ‖L‖∗ is a convex relaxation of the rank constraint, meant to induce low-rank solutions
for L. On the other hand, the term ‖S‖2,1 is a relaxation of the constraint on the number of non-zero
columns in S, meant to induce column-wise sparse solutions for S. Our estimators are defined as(

Ŝ, L̂
)
∈ arg min

S∈[0,1]n×n,L∈[0,ρn]n×nsym

F (S,L) . (5)

When information on the presence or absence of some edges is missing, the objective function may not have
a unique minimiser. We propose to approximate our target parameters (Ŝ, L̂) by minimising the objective
(4) with an additional ridge penalisation term, ε

2 (‖L‖2F + ‖S‖2F ), which ensures strong convexity of the
objective function. This additional penalty is not necessary to obtain convergence in terms of the objective
value, and setting ε = 0 does not impact the convergence of the algorithm. However, it is required to
obtain convergence of the parameters themselves: this additional penalty allows also to ensure approximate
matching of the estimation and approximation errors, as detailed in our theoretical results. Note that, by
choosing ε sufficiently small, Fε can be arbitrarily close to F , but the choice of ε will impact the speed of
convergence of our algorithm.
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Furthermore, we assume for simplicity that the box constraints on S and L are always inactive. We
make a final simplification by dropping the symmetry constraint on L. Indeed, we will see later on that
the low-rank matrix L remains symmetric throughout the algorithm, provided that it is initialised by a
symmetric matrix. Thus, in the end, we (approximately) solve the following optimisation problem:

minimize Fε(S,L) , F(S,L) + ε
2 (‖L‖2F + ‖S‖2F ). (6)

Let us now describe the optimisation procedure. First, we consider the augmented objective function:

Φε(S,L, R)
4
=

1

2
‖Ω� (A−L− S − (S)>)‖2F + λ1R+ λ2‖S‖2,1 +

ε

2
(‖L‖2F + ‖S‖2F ),

with R ∈ R+. Note that, if an optimal solution to (6) (Ŝε, L̂ε) satisfies ‖L̂ε‖∗ ≤ R̄ for some R̄ ≥ 0, then any
optimal solution to the augmented problem

minimise Φε(S,L, R)
such that ‖L‖∗ ≤ R ≤ R̄

(7)

will also be optimal to (6) (we will show in appendix A.2 how the upper bound R̄ can be chosen and tightened
adaptively inside the algorithm). Thus, solving (7) we directly obtain the solution to our initial problem (6).
Finally, our estimators are defined as the minimisers of the following augmented objective function:

(Ŝε, L̂ε, R̃) ∈ argmin Φε(S,L, R)
such that ‖L‖∗ ≤ R ≤ R̄.

A natural option to solve problem (7) is the coordinate descent algorithm, where the parameters (S,L, R)
are updated alternatively along descent directions. To update S, we apply the proximal gradient method.
We use the conjugate gradient method (or Frank-Wolfe method [31], which relies on linear approximations of
the objective function) to update (L, R). Similar Mixed Coordinate Gradient Descent (MCGD) algorithms
were considered in [45, 51, 21] to estimate sparse plus low-rank decomposition with hybrid penalty terms
combining an `1 and a nuclear norm penalties. Here, we extend the procedure to handle the `2,1 penalty
as well. The details of the algorithm are described in Appendix A.2. The entire procedure is sketched in

Algorithm 1, where we also define our final estimators
(
L(T ),S(T )

)
.

Algorithm 1 Mixed coordinate gradient descent (MCGD)

1: Initialisation: (L(0),S(0), R(0), t)← (0,0, 0, 0)
2: for t = 1, . . . , T do
3: t← t+ 1
4: Compute the proximal update (8) to obtain S(t).

5: Compute the upper bound R̄(t) = λ−11 Φε(S
(t−1),L(t−1), R(t−1)).

6: Compute the direction (L̃
(t)
, R̃(t)) using (11).

7: Compute the Conjugate Gradient update (9), with step size βt defined in (10) to obtain (L(t), R(t)).
8: end for
9: return

(
L(T ),S(T )

)
Denote by G

(t−1)
L = −Ω� (A−L(t−1) − S(t) − (S(t))>) + εL(t−1) the gradient with respect to L of the

quadratic part of the objective function, evaluated at (S(t),L(t−1)) and by G
(t−1)
S = −2Ω� (A− L(t−1) −

S(t−1) − (S(t−1))>) + εS(t−1) the gradient with respect to S of the quadratic part of the objective function,

evaluated at (S(t−1),L(t−1)). In Algorithm 1, the column-wise sparse component S is updated with a
proximal gradient step:

S(t) ∈ argmin

(
ηλ2 ‖S‖2,1 + 1

2

∥∥∥S − S(t−1) + ηG
(t−1)
S

∥∥∥2
F

)
,

= Tcηλ2

(
S(t−1) − ηG(t−1)

S

)
,

(8)
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where Tcηλ2 is the column-wise soft-thresholding operator such that for any M ∈ Rn×n and for any λ > 0,
the j-th column of Tcλ(M) is given by (1 − λ/‖M.,j‖2)+M.,j . The step size η is constant and fixed in
advance, and satisfies η ≤ 1/(2 + ε). The low-rank component given by (L, R) is updated using a conjugate
gradient step as follows:(

L(t), R(t)
)

=
(
L(t−1), R(t−1)

)
+ βt

(
L̃

(t) −L(t−1), R̃(t) −R(t−1)
)
, (9)

where βt ∈ [0, 1] is a step size set to:

βt = min

{
1,
〈L(t−1) − L̃(t)

,G
(t−1)
L 〉+ λ1(R(t−1) − R̃(t))

(1 + ε)‖L̃(t) −L(t−1)‖2F

}
. (10)

The direction (L̃
(t)
, R̃(t)) is defined by:(

L̃
(t)
, R̃(t)

)
∈ argminZ,R 〈Z,G(t−1)

L 〉+ λ1R

such that ‖Z‖∗ ≤ R ≤ R̄(t).
(11)

Note that, if the matrixL(t) is symmetric, then the matrixL(t+1) remains symmetric at iteration t+1. Indeed,

the gradient G
(t)
L is defined in terms of the matrices A, Ω, and S(t) + (S(t))>, all three symmetric matrices.

Therefore, to obtain a symmetric estimator of L, it suffices to initialise the algorithm with symmetric L(0).
The Mixed Coordinate Gradient Descent algorithm described in Algorithm 1 converges sublinearly to

the optimal solution of (7), as shown by the following result:

Theorem 1. Let δ > 0. After Tδ = O(1/δ) iterations, the iterate satisfies:

Fε(S(Tδ),L(Tδ))−Fε(Ŝε, L̂ε) ≤ δ. (12)

In addition, by strong convexity of Fε,

‖S(Tδ) − Ŝε‖2F + ‖L(Tδ) − L̂ε‖2F ≤
2δ

ε
. (13)

In Appendix A.3 we provide a more detailed result, with an estimation of the constant in O(1/δ).

4 Theoretical analysis of the estimator

In this section we provide theoretical analysis of our algorithm. First, we provide guarantees on the support
recovery of the outliers. Next, we prove a non asymptotic bound on the risk of our estimator. We start by
introducing assumptions on the missing values mechanism.

4.1 Assumption on the sampling scheme

Our first assumption on the sampling scheme requires that all the edges between the inliers are observed
with a non-vanishing probability. Recall that I = I × I denote the pairs of inlier nodes.

Assumption 1. There exist a strictly positive sequence µn such that for any (i, j) ∈ I, µn ≤ Πij.

Bounding the probabilities of observing any entry away from 0 is a usual assumption in the literature dealing
with missing observations (different patterns for missing observations are discussed, e.g., in [33, 38, 47]).
We denote by νn and ν̃n two sequences such that for any i ∈ I,

∑
j∈IΠij ≤ νnn and for any i ∈ [n],∑

j∈OΠij ≤ ν̃ns. We always have νn ≤ 1 and ν̃n ≤ 1, but when νn and ν̃n are decreasing sequences, we
obtain better error rates by taking advantage of the fact that observations are distributed over different
nodes in the network. Note that our estimators do not require the knowledge of the sequences µn and ν̃n.
On the other hand, for the theoretical analysis we need an upper bound on νnρnn (the average observed
connectivity of inlier nodes), which can be estimated robustly (for example by using Median of Means [39]).

9



Recall that we do not observe any entry on the diagonal of A. Combined with Assumption 1, this implies
that for any matrix M ∈ Rn×n ∥∥M |I

∥∥2
F
≤ 1

µn
‖M‖2L2(Π) + n ‖M‖2∞ . (14)

Moreover, since |O| = 2ns+ (s− 1)(s− 2)/2 ≤ 3ns, we find that∥∥M |O
∥∥2
F
≤ 3ns ‖M‖2∞ . (15)

Before stating the second assumption, recall that ρn is a sparsity inducing sequence such that ‖L∗‖∞ ≤ ρn.
Similarly, we define γn = ‖E[A]‖∞. Since ‖S∗‖∞ ≤ γn, γn characterises the sparsity of connections of the
outlier nodes. Note that outliers and inliers may have different sparsity levels, i.e., γn and ρn may be of
different orders of magnitude.

Assumption 2. νnρn ≥ log(n)/n and ν̃nγn ≥ log(n)/n.

Assumption 2 implies that the observed average node degree is not too small. Note that considering very
sparse graphs, where the expectation of the probability of observing an edge is of order 1

n , is of lesser interest
since it has been shown in [20] that the trivial null estimator is minimax optimal in this setting. On the
other hand, the sparsity threshold log(n)/n is known to correspond to phase transition phenomenons for
recovering structural properties in the SBM [1]. We also need the following assumption on the “signal to
noise ratio”.

Assumption 3. νnρnn ≥ ν̃nγns

Here, edges connecting inliers to inliers can be seen as a “signal term” in the estimation of connection
probabilities, while edges connecting outliers to any other nodes can be seen as a “noise term”. Now, recall
that ρn bounds the probability of any inlier to be connected to any inlier, while γn bounds the probability
of any inlier to be connected to any outlier. Then, Assumption 3 requires that we observe more connection
between inliers than between inliers and outliers, or equivalently that the “signal” induced by the connections
of the inliers be stronger than the “noise”. For example, under a uniform sampling, all entries are observed
with the same probability, so µn = νn = ν̃n = p. Then, Assumption 3 becomes ρnn ≥ γns, and requires
that inlier nodes be more connected with other inlier nodes than with outliers. As the number of outliers s
is typically much smaller than the number of inlier nodes, n− s, this assumption is not restrictive.

4.2 Outlier detection

The ‖ · ‖2,1-norm penalisation induces the column-wise sparsity of the estimator Ŝ (when appropriately

calibrated, it allows only a small number of columns of Ŝ to be non-zero). Using this sparsity, we define the
set of estimated outliers as

Ô ,
{
j ∈ [n] : Ŝ·,j 6= 0

}
. (16)

The following lemma, proven in Appendix A.8.1, provides a characterisation of this set:

Lemma 1. For any j ∈ [n], Ŝ·,j 6= 0 ⇔
∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)

+

∥∥∥∥
2

> λ2

2 .

Lemma 1 provides a lower bound on λ2 that will prevent from erroneously reporting inliers as outliers by
choosing λ2 larger than the expected norm of columns corresponding to inliers. Note that for any inlier j,
E[‖(Ω � (A·,j − L∗·,j)|I)+‖2] is of the order

√
νnρn(n− s) + ν̃nγns. If λ2 falls below this threshold, some

inliers are likely to be erroneously reported as outliers. Therefore, we choose λ2 &
√
νnρn(n− s) + ν̃nγns.

Under Assumption 3, this condition becomes λ2 &
√
νnρnn. With this choice of λ2 we have the following

results proven in Appendix A.4:

Theorem 2. Let λ2 = 19
√
νnρnn. Then, under Assumptions 1-3, there exists an absolute constant c > 0

such that with probability at least 1− c/n
Ô ∩ I = ∅. (17)
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One cannot hope to further separate outliers from inliers without additional assumptions on how the first
group differs from the second one. Here, we provide an intuition about our condition on the connectivity
of outliers that is sufficient for outliers detection. According to Lemma 1, any outlier j will be reported as
such if ‖(Ω·,j � (A·,j − L̂·,j − Ŝj,·))+‖2 > λ2/2. So, in order to detect an outlier j, the threshold λ2 must be

at least smaller than E[‖(Ω·,j � (A·,j − L̂·,j − Ŝj,·))+‖2]. Recalling that L̂ and Ŝ have non-negative entries,
we see that

E
[∥∥∥∥(Ω·,j � (A·,j − L̂·,j − Ŝj,·))

+

∥∥∥∥
2

]
≤ E

[∥∥∥(Ω·,j � (A·,j))+

∥∥∥
F

]
=

√∑
i∈I

ΠijS
∗
ij +

∑
i∈O

Πij(S
∗
ij + S∗ij).

Thus, the condition
√
νnρnn . λ2 . minj∈O

√∑
i∈IΠijS

∗
ij appears naturally when separating the inliers

from the outliers. This condition is formalised in the following assumption:

Assumption 4. minj∈O
∑
i∈IΠijS

∗
ij > Cρnνnn where C is an absolute constant defined in Section A.5.

When the outliers represent only a small fraction of the nodes, we have that |I| ' n. Then, Assumption
4 is met when outlier nodes have higher expected observed degree than inlier nodes. When the sampling
probabilities are uniform, this assumption essentially reads γn ≥ Cρn. This assumption is compatible with
assumption 3, as the number of outliers s is typically much smaller than the number of nodes n. The
following Lemma shows that assumption 4 ensures strong identifiability of the set of outliers and inliers.

Lemma 2. Under assumption 4, the solution (L∗,S∗) to equation (3) is unique up to diagonal terms.

Lemma 2 ensures that under Assumption 4, the set of outliers is well defined. Moreover, all outliers are
detected with large probability, as indicated by the following result proven in Appendix A.5:

Theorem 3. Let λ2 = 19
√
νnρnn. Under Assumptions 1-4, there exists an absolute constant c > 0 such

that O = Ô with probability at least 1− cs/n.

Theorem 3 provides guarantees on the recovery of the support of the column-sparse component of the
decomposition (2). To the best of our knowledge, this is the first result of this sort in the noisy setting,
where the exact reconstruction of both components, the low-rank and the sparse one, is impossible. For both
Theorem 3 and Theorem 2, we actually show that the results hold with probabilities at least 1 − 8se−cnn

and 1− 6e−cnn respectively, where cn is a sequence depending on νn and ρn such that cn ≥ log(n)/n.

4.3 Estimation of the connections probabilities

In this section, we establish the non-asymptotic upper bound on the risk of our estimator. We denote the
noise matrix Σ , A − E[A]. Let Γ be the random matrix defined as follows: for any (i, j), Γij , εijΩij ,
where {εij}1≤i<j≤n is a Rademacher sequence. To clarify the exposition of our results, we introduce the
following error terms

Φ , nρ2n

(
νnk

µn
+ νns

)
, Ψ , 16ν̃nγnρnsn and Ξ ,

√
νnnρn
λ1

+ 1.

The following theorem, proven in Appendix A.6, provides the error bound for the risk of the estimator L̂
that depends on the choice of the regularisation parameter λ1:

Theorem 4. Assume that λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

, and that λ2 = 19
√
νnρnn. Then, under Assumptions 1-3,

there exists absolute constants C > 0 and c > 0 such that with probability at least 1− c/n,∥∥∥∥(L̂−L∗)|I
∥∥∥∥2
L2(Π)

≤ C

(
λ21k

µn
+ Φ + ΞΨ

)
. (18)

Next, we provide a choice for λ1 such that the condition λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

holds with high probability. To

do so, we must first obtain a high-probability bound on
∥∥Ω�Σ|I

∥∥
op

. This is done in the following Lemma:
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Lemma 3. P
(∥∥Ω�Σ|I

∥∥
op
≥ 28

√
νnρnn

)
≤ e−νnρnn.

Using Lemma 3, we obtain the following corollary proven in Appendix A.7:

Corollary 1. Choose λ1 = 84
√
νnρnn and λ2 = 19

√
νnρnn. Then, under the conditions of Theorem 4, there

exists absolute constants C > 0 and c > 0 such that with probability at least 1− c/n,∥∥∥∥(L̂−L∗)|I
∥∥∥∥2
L2(Π)

≤ C

(
νn
µn
ρnkn+ (νnρn ∨ ν̃nγn)ρnsn

)
(19)

and ∥∥∥∥(L̂−L∗)|I
∥∥∥∥2
F

≤ C

µn

(
νn
µn
ρnkn+ (νnρn ∨ ν̃nγn)ρnsn

)
. (20)

Remark 1. The estimator (L̂, Ŝ) returned by the MCGD Algorithm does not have the property L̂·,j 6= 0 ⇔
Ŝ·,j = 0 (non-overlapping support). To obtain estimators verifying this property, we may define a new

estimator L̂
′

for L∗ such that

L̂
′
ij =

{
L̂ij if j /∈ Ô
0 if j ∈ Ô

Note that L̂
′

= PÎ×Î(L̂), where Î = [n]\Ô is the set of estimated inliers, and PÎ×Î is the orthogonal

projection onto the set of matrices with support in Î ×Î. Using Theorem 2, we find that with high probability,

L∗ has a support in Î × Î. Then, classical properties of orthogonal projections ensure that ‖L∗ − L̂
′
‖F ≤

‖L∗ − L̂‖F . Thus, the new estimator (L̂
′
, Ŝ) achieves the same error rate as the estimator (L̂

′
, Ŝ) and

detects the same outliers, while having non-overlapping support.

To get a better understanding of the results of Corollary 1, we consider the following simple example.
We consider a missing data scheme where all entries of A are observed with the same probability p (that is,

νn = ν̃n = µn = p). Then, the error of our estimator L̂ in Frobenius norm is at most O(ρnkn/p+ ρnγnsn).
Assume now that the number of outliers s is bounded by k/(pγn) (note that when the network is sparse,
γn → 0 and thus the number of outliers may grow). Then, the error rate is of the order O(ρnkn/p), which
corresponds to the minimax optimal rate for the low-rank matrix estimation problem without outliers. By
comparison, applying methods from the low-rank matrix completion literature, we obtain an error rate of
the order O(kn/p), which is sub-optimal since ρn is typically of the order of log(n)/n.

To the best of our knowledge, no results on robust estimation of the connection probabilities in the
presence of outliers and missing observations have been established before. Previous rates of convergence for
the problem of estimating the connection probabilities under the Stochastic Block Model with missing links
have been established, for the uniform sampling scheme, in [20], and, for more general sampling schemes, in
[22]. To compare our bound with these previous results, we consider the case of the uniform sampling and
assume that the condition (ν̃nµn ∨ νnρn) s ≤ νnk/µn is met. In [20] and [22], the authors show that the
risk of their estimators in ‖·‖L2(Π)-norm is of the order ρn

(
log(k)n+ k2

)
, and that it is minimax optimal.

The rate provided by Corollary 1 is of the order ρnkn. So, for the relevant case k ≤
√
n, our method falls

short of the minimax optimal rate for this problem by a factor k/ log(k). Note that, estimators proposed
in [20] and [22] have non-polynomial computational cost while our estimator can be used in practice. On
the other hand, the authors of [64] propose a polynomial-time algorithm for estimating the probabilities of
connections in the Stochastic Block Model under complete observation of the network. They show that the
risk of their estimator for the connection probabilities is bounded by Cρnkn. Thus, our method matches
the best known rate established for a polynomial time algorithm for the Stochastic Block Model while being
robust to missing observations and outliers.
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5 Numerical experiments

5.1 Outliers detection

In this section, we illustrate the performance of our method in terms of outliers detection on two different
types of outliers: hubs and mixed membership profiles. We start by generating a graph containing n = 1000
inlier nodes according to the Stochastic Block Model with three communities of approximately the same
size. In each community, the probability of connection between nodes is equal to p = 0.05. The probability
of connection between communities is equal to q = 0.01. With this choice of parameters, the average node
degree is of the order of log(n). Then, we generate s = 20 outlier nodes using the following two methods:

1. Hub: outlier j connects to any other node i with probability πhub.

2. Mixed membership: for any outlier j, we select at random two communities. For any other node i,
if it belongs to one of the two communities, outlier j connects to i with probability πmix. Otherwise, it
connects to i with probability q = 0.01.

Finally, we introduce 20% of missing values in the adjacency matrix uniformly at random. For each of the
two types of outliers, we consider increasing values of the ratio

ρ =
minj∈O

∑
i∈IΠijS

∗
ij

ν̃nρnn
,

highlighted in Theorem 3 as the crucial quantity to guarantee strong identification of the outliers (see
Assumption 4). In our case, it is of the order of ρhub = 3πhub

p+2q for hubs, and ρmix = 2πmix+q
p+2q for mixed

membership nodes. We fix the size of the network n = 1000, the number of outliers s = 20 and the
connection probability intra and inter communities p = 0.05 and q = 0.02. Then, we generate outliers with
increasing values of πhub and πmix so that the ratios ρhub and ρmix spans the range (0.6, 2). For each value of
ρhub and ρmix, we apply our algorithm to detect outliers, fixing the parameters λ1 and λ2 to their theoretical

values. The results are presented in Figures 2a and 2b, where we display the power ( |Ô∩O||O| ) and the False

Discovery Rate (FDR, |Ô∩I||O| ) for hubs and mixed membership nodes, respectively. In both cases, the limit

ρ = 1 is indicated with a dashed black line. Note that, the theoretical detection limit given in Assumption
4 yields ρ ≥ 152� 1 (see A.5). Thus, our empirical results show that our algorithm is in fact able to detect
outliers at much lower signal-to-noise ratio than predicted by theory. In addition we emphasize that, for
ρ = 1, outliers have approximately the same degree as the inliers, and thus cannot be detected by inspecting
the histogram of degrees.

Our numerical results show that for outliers with hubs profiles (Figure 2a), our algorithm successfully
detects the outliers, including in “hard” settings where their average degree is the same as inliers. Our
simulations also confirm the relevance of our theoretical findings, which highlight the importance of the

ratio
minj∈O

∑
i∈I ΠijS

∗
ij

ν̃nρnn
for outliers detection, even though our theoretical constants may not be optimal.

Finally, note that, using the theoretical values of λ1 and λ2, our algorithm almost never falsely labels inliers
as outliers (FDR is consistently 0). In the case of outliers with mixed membership profiles, we observe a
similar behaviour. However, the empirical value of ρmix required for exact outliers selection is in this case of
the order of ρmix ' 1.6, slightly above the observed limit for hubs ρhub ' 1. This seems to indicate that, in
practice, mixed membership nodes are “harder” to detect than hubs.

5.2 Estimation of connection probabilities

We now evaluate the performance of our method in terms of estimation of the connection probabilities of
inliers. As before, we start by generating a network of size n = 1000 using the Stochastic Block Model with
three balanced communities. We keep the same parameters for the SBM, with p = 0.05 and q = 0.01, and
introduce 20% of missing values. Then, we study two settings where we introduce s outliers corresponding to
hubs and mixed membership nodes, respectively. For each of the two types of outliers, we consider increasing
values of the ratio

τ =
ρnνnn

ν̃nγns
,
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(a) Hubs detection: Power (red points) and FDR
(blue triangles) for increasing ρhub ∼ πhub/p, averaged
across 10 replications. ρhub = 1 indicated with dashed
black line.
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(b) Mixed membership detection: Power (red
points) and FDR (blue triangles) for increasing ρmix ∼
πmix/p, averaged across 10 replications. ρmix = 1 indi-
cated with dashed black line.

highlighted in Corollary 1 as the signal to noise ratio for the problem of estimation of the connection

probabilities of inliers (see Assumption 3). In our case, it is of the order of τhub = n(p+2q)
3sπhub

for hubs, and

τmix = n(p+2q)
s(2πmix+q)

for mixed membership nodes.

We fix the size of the network n = 1000, the intra- and inter-communities connection probabilities p = 0.05
and q = 0.02, and the values πhub = 0.2 and πmix = 0.3. Note that, these values of πhub and πmix produce
outliers which are much more connected than inliers. This corresponds to a setting where the detection
of outliers is “easy” because they have large degrees, but the estimation of the connection probabilities of
inliers (parameter L∗) is “hard” because outliers have many connections polluting the network. Then, we
generate an increasing number of outliers (s = 20, s = 50, s = 100), so that the signal to noise ratios τhub
and τmix take different values (5, 2, and 1). For each value of τhub and τmix, we estimate the connection
probabilities of inliers, fixing the parameters λ1 and λ2 to their theoretical values. In each case, we compare
the estimation results with two competitors: the method implemented in the R [49] package missSBM [56, 57]
which fits a Stochastic Block Model in the presence of missing links, and matrix completion as implemented
in the R package softImpute [27]; the methods are compared in terms of the Mean Squared Error (MSE)
of estimation, normalized by size of the set of pairs inliers I = I × I. The MSE is thus defined for some
estimator L̂ by:

MSE(L̂) =

∥∥∥L̂|I −L∗|I∥∥∥2
F

|I|
.

The results are presented in Figure 3 for hubs and Figure 4 for mixed membership nodes, which display
(on the same scale) boxplots of the MSE of each method obtained by 10 replications of the experiment, for
different values of the signal to noise ratio (from left to right: τ = 1, τ = 2, τ = 5).

For the hubs (Figure 3), we observe that missSBM and softImpute have similar estimation errors across
all settings; overall missSBM gives an MSE 20% smaller than softImpute. For the large signal to noise ratio
τhub = 5 where outliers do not impair too much the estimation, our method gsbm gives similar results as
missSBM, but displays a larger variance. However, as the signal to noise ratio τhub decreases, i.e., in the
settings where outliers severely challenge the estimation problem, our method gsbm improves over missSBM

by about 15%. For the mixed membership outliers (Figure 4), we observe that our method gsbm consistently
improves other methods by 30 to 50%. As in the previous experiment with hubs, we observe that the
improvement of gsbm over existing methods increases when the signal to noise ratio τmix decreases i.e., in
the settings where outliers are the most challenging for the estimation of connection probabilities.
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(a) τhub = 1 (100 outliers)
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(b) τhub = 2 (50 outliers).
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(c) τhub = 5 (20 outliers).

Figure 3: Hubs: Estimation of connection probabilities of inliers, for different numbers of outliers (left:
s = 100, middle: s = 50, right: s = 20) corresponding to three signal to noise ratios (left: τhub = 1, middle:
τhub = 2, right: τhub = 5). For each of the three plots, we compare our package gsbm to two missSBM [56, 57]

and softImpute in terms of the standardized MSE of estimation ‖L̂−L∗‖2F /(n− s)2 (10 replications).
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(b) τmix = 2 (50 outliers).
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(c) τmix = 5 (20 outliers).

Figure 4: Mixed membership: Estimation of connection probabilities of inliers, for different numbers of
outliers (left: s = 100, middle: s = 50, right: s = 20) corresponding to three signal to noise ratios (left:
τmix = 1, middle: τmix = 2, right: τmix = 5). For each of the three plots, we compare our package gsbm to

two missSBM [56, 57] and softImpute in terms of the standardized MSE of estimation ‖L̂−L∗‖2F /(n− s)2
(10 replications).
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Figure 5: Network of interactions between children and teachers in a primary school over the course of a
day. Only interactions lasting at least one minutes are represented. On the left, the colour of each node
correspond to its class (if the node represent a child); teachers are indicated by yellow dots. On the right,
the nodes are coloured according to estimated labels (the procedure for obtaining these estimated labels is
described in Section 5.3). Yellow dots indicate nodes identified as outliers by MCGD.

5.3 Analysis of a contact network in a primary school

Next, we apply our algorithm to analyse a network of contacts within a french elementary school, collected
and analysed by the authors of [54], with the objective of better understanding the propagation of respiratory
infections. The network records physical interactions occurring within a primary school between 226 children
divided into 10 classes and their 10 teachers over the course of a day; it was collected using a system of
sensors worn by the participants. This system records the duration of interactions between two individuals
facing each other at a maximum distance of one and a half metres. The duration of these interactions varies
between 20 seconds and two and a half hours. We consider that a physical interaction has been observed if
the corresponding interaction duration is greater than one minute. If an interaction of less than one minute
is observed, we consider that this observation may be erroneous, and treat the corresponding data as missing.
We thus obtain a 236 × 236 adjacency matrix with 7054 missing entries (including 236 diagonal entries),
and 4980 entries equal to 1 (corresponding to 2490 observed undirected edges). The corresponding network
is represented in Figure 5. The analysis of the interactions network provides crucial information from an
epidemiological point of view, as it can be used to model the transmission of respiratory-spread pathogens,
and design strategies to mitigate the propagation of diseases [23]. Interestingly, the interactions recorded in
[54] are strongly structured into communities, as pupils interact mostly with pupils from their class. They
also interact with other pupils from the same level, although less frequently. They are scarcely connected
with pupils from other age groups. Finally, we observe that pupils are on average connected to one teacher:
each one of the ten classes interacts mostly with its teacher. By contrast, the teachers form a smaller group
(there are 10 teachers, while there are around 22.6 pupils in each class); yet they do not form a cluster, as
they are mostly connected to pupils from their class.

The MCGD algorithm allows us to detect individuals with abnormal connectivities. We run this algorithm
for a grid of values of λ1 and λ2. We notice that the set of nodes detected as outliers is stable when the
parameters (λ1, λ2) are chosen around (8.5, 8), and that it contains the nodes 15, 30, 25, 94 and 180. We also
note that those nodes are detected as outliers significantly more frequently than the other nodes when the
parameters vary. In the following, we consider estimators (L̂, Ŝ) obtained by running MCGD for this choice
of parameters. In order to gain insights on the connectivity of these nodes, we compute the frequencies of
their interactions with individuals from each class. Table 1 presents our findings. Nodes 30, 35 and 180
belong to the class “CE1 A”, node 180 belongs to the class “CE1 B”, and node 15 belongs to the class
“CE2 B”. We notice from Table 1 the pupil 30 is 4 times more connected to students from class “CE1
B” and 5 times more in contact with students from class “CP B” than the other students from his class.
Similarly, we observe that the children identified as outliers are strongly connected with different groups.
Thus, the outliers detected by the method correspond to nodes with mixed membership. From a public
health perspective, these children can potentially act as super-propagators, and contribute to spreading a
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ce1 a ce1 b ce2 a ce2 b cm1 a cm1 b cm2 a cm2 b cp a cp b Teachers

ce1 a 0.68 0.07 0.07 0.01 0.00 0.00 0.00 0.00 0.03 0.03 0.10
node 30 0.93 0.30 0.23 0.08 0.00 0.00 0.05 0.00 0.12 0.15 0.11
node 35 0.62 0.24 0.35 0.00 0.06 0.00 0.00 0.05 0.13 0.22 0.11
node 180 1.00 0.43 0.28 0.00 0.00 0.00 0.00 0.00 0.17 0.12 0.12

ce1 b 0.07 0.83 0.02 0.00 0.00 0.01 0.00 0.00 0.05 0.08 0.11
node 94 0.11 0.95 0.06 0.00 0.10 0.00 0.00 0.00 0.22 0.38 0.10

ce2 b 0.01 0.00 0.21 0.94 0.05 0.03 0.00 0.03 0.02 0.00 0.13
node 15 0.00 0.00 0.56 1.00 0.33 0.09 0.00 0.12 0.00 0.00 0.10

Table 1: Frequency of contacts between either a node or an individual from a given class and other individuals
from a given class. On average, a pupil from class “CE1 A” has been in contact with a fraction 0.68 of the
remaining pupils from his class. By contrast, the node 30, who is in class “CE1 A”, is connected with a
fraction 0.93 of the remaining pupils from his class.

virus from one group to the others.
Finally, we demonstrate that our estimator for the matrix of connection probabilities L̂ contains significant

information on the structure of the network. More precisely, we show that the communities corresponding to
the different classes can be recovered from this estimator. To do so, we consider the matrix whose columns
contain the 10 left singular vectors of L̂, and we estimate the classes of the different nodes by running a
10-means algorithm on its rows. This method recovers perfectly the classes of the children considered as
“inliers” (up to a permutation of the labels of the classes). While this method is not able to identify teachers,
we note that teachers are mapped to the classes in a one-to-one fashion, which indicates that this method
succeeds in assigning each class to its teacher. We represent the classes estimated by this method and the
nodes identified as outliers in Figure 5.

5.4 Analysis of a political Twitter network

The “#Élysée2017fr” data set, originally introduced in [18] provides data about 22,853 Twitter profiles active
during the campaign of the French 2017 presidential election, from November 2016 to May 2017. Among other
data, it contains a mentions network, where each node corresponds to a Twitter profile, and a directed edge
(from mentioning profile to mentioned one) connects two profiles whenever one of them mentions the other
in a Tweet. In total, this amounts to 1,896,262 edges. In the original study, the authors of [18] highlighted
a community structure, where communities roughly correspond to affiliations to the 5 main political parties
in France: France Insoumise (FI), Parti Socialiste (PS), Les Républicain (LR), La République en Marche
(LREM), Rassemblement National (RN), with preferential attachment between nodes of the same political
party. Detecting outliers in this network is of interest in order to detect, for example, influential figures. We
apply our algorithm to detect potential outliers to a subsample of this network containing the 10,000 most
connected nodes; we also make the network undirected by drawing an edge between two nodes whenever one
of them mentions the other. After subsampling and symmetrization of the adjacency matrix, the number of
edges in the network is 1,562,419. Using the estimated theoretical values of the regularization parameters λ1
and λ2, we detect around 600 outliers in the network. Inspecting the corresponding 600 profile annotations,
and node degrees we observe that the detected outliers correspond mainly to densely connected hubs or to
mixed membership profiles (i.e. profiles affiliated to at least two political parties).

Hubs First of all, we detect large hubs corresponding to main political figures and large media. The
first detected outliers are the Twitter profiles of candidates to the election: Emmanuel Macron, Marine Le
Pen, François Fillon, Jean-Luc Mélenchon, Benôıt Hamon, Nicolas Dupont-Aignan. Other detected private
personalities include journalists, deputies and senators (Jean-Jacques Bourdin, Alexis Corbière, Benjamin
Griveaux, Yannick Jadot, Richard Ferrand, Éric Ciotti, etc.). Secondly, we detect the Twitter profiles of high-
circulation media: BFM TV, Le Figaro, Le Monde, Libération, Mediapart, France Info, Europe 1, France
Inter, etc. We also note that some hubs correspond to online, unofficial political groups (@TeamProgressist,
@ForceRep fr, @Presse2Droite, @nomacron, etc.).
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Mixed membership We also detect Twitter profiles corresponding to nodes of mixed membership affil-
iated to multiple parties. Some of these nodes also correspond to smaller hubs, such as Christine Boutin
(LR/RN) and La Manif Pour Tous (LR/RN); they have smaller degrees than the main political figures and
media (degree around 1000 rather than >5000 for the main hubs). We also find mixed membership profiles
corresponding to individual profiles with no public exposition (e.g. @mrericmas: LREM/LR, @erayeye:
LR/RN, @Apostillier1: LREM/PS, etc.). After inspecting the Twitter profiles, these seem to be individuals
sharing their own political opinions on Twitter, which would not necessarily be detected by checking only
the histogram of degrees.

6 Conclusion

In this paper, we have proposed a new, computationally efficient algorithm for detecting nodes with anoma-
lous connection patterns. This algorithm, which is robust against missing observations, allows for simulta-
neous estimation of the probabilities of connections of the remaining, normal nodes. A convergence analysis
of this algorithm is provided, which proves that this algorithm converges at a sub-linear rate. Moreover
our simulations studies indicate that its running time remains moderate, even for networks containing a few
thousands of nodes. Our theoretical results show that our method detects exactly the outliers under fairly
general assumptions. Moreover, our estimator for the probabilities of connections achieves the best known
error rate among estimator with polynomial running time. These results are supported by simulation studies
which demonstrate the good properties of our estimators in terms of both outliers detection and link predic-
tion. Finally, we have exemplified how our method can be used to detect outlier nodes and recover structural
information on the remaining nodes in real world networks, by applying this method to ”Les Misérables”
characters network, as well as a network of interactions taking place in a primary school, and on a political
Twitter network. The results of the present paper pave the way to several extensions, which are of interest in
applications. In particular, an important one would be the generalisation of the model to dynamic networks,
where the adjacency matrix is observed at multiple time points, and connections, outliers, and possibly
underlying communities are allowed to vary across time. This is interesting in applied problems where the
outliers have characteristic dynamic behaviour. For instance, to detect fake news in social networks where,
contrary to regular users, malicious users tend to have very unstable connectivity patterns across time.
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A Proofs

The proofs are presented as follows. First, we recall in Section A.1 some results that will be used in our
proofs. In Section A.2 we provide the details of the Algorithm 1. Section A.3 is devoted to the study of
the convergence of our algorithm. Theorem 2 is proved in Section A.4, Theorem 3 is proved in Section A.5,
while in Section A.6 we prove Theorem 4. Corollary 1 is proved in Sections A.7. Auxiliary Lemmas used
throughout these sections are proved in Section A.8.

To ease notations, we denote henceforth by ∆S = S∗ − Ŝ and ∆L = L∗ − L̂ the estimation errors of S∗

and L∗.

A.1 Tools

In our proofs, we will use Bernstein’s inequality on different occasions. We state it here for the reader’s
convenience.

Theorem 5 (Bernstein’s inequality). Let X1, ..., Xn be independent centered random variables. Assume that
for any i ∈ [n], |Xi| ≤M almost surely, then
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 ≤ 2e−t (21)

We will also use Bousquet’s theorem, as stated in [24], Theorem 3.3.16.

Theorem 6 (Bousquet). Let Xi, i ∈ N be independent S-valued random variables, and let F be a countable
class of functions f = (f1, ..., fn) : S → [−1, 1]n such that E[fi(Xi)] = 0 for any f ∈ F and i ∈ [n]. Set

Z = sup
f∈F
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. Then, for any x > 0,
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)
≤ exp(−x).

To bound the operator norm of random matrices with high probability, we use Corollary 3.6 in [5].

Proposition 1 (Bandeira, Van Handel, 2016). Let X be a n×n symmetric random matrix with Xij = ξijbij,
where {ξij}i≤j are independant symmetric random variables with unit variance, and {bij}i≤j are fixed scalars.

Let σ , max
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The following high-probability bound on the spectral norm of a random matrix is based on Remark 3.13 in
[5]. This remark provides a bound up to an unspecified absolute constant. In order to make this constant
explicit, we follow the lines of the proof of this remark, and we combine Theorem 6.10 in [8], Proposition 1,
and a symetrization argument (see, e.g., Corollary 3.3 in [5]) to obtain the following proposition.

Proposition 2. Let X be an n × n symmetric matrix with Xij = ξijbij, where {ξij}i≤j are independent
centered random variables with unit variance, and {bij}i≤j are fixed scalars. Then for every t ≥ 0 and every
α ≥ 3,

P
(
‖X‖op ≥ 2e

2
3

(
2σ + 14αmax

ij

(
E
[
(ξijbij)

2α
]) 1

2α √
log(n)

)
+ t

)
≤ e−t

2/2σ̃∗
2

where we have defined σ̃∗ , max
ij
|Xij | and σ , max

i

√∑
j b

2
ij.

Proof. To prove the desired high-probability bound, we first bound the expectation of the spectral norm,

using the same symmetrization trick as in Corollary 3.3 in [5]. Let X
′

be an independent copy of the random

matrix X, and let Y be the symmetric matrix with random entries defined as Y ij , Xij −X
′

ij for any

(i, j) ∈ [n] × [n]. Note that, for any (i, j) ∈ [n] × [n], i < j, Y ij =
√

2bij ×
(
ξij − ξ

′

ij

)
/
√

2, where ξij are

independent copies of ξij , and
(
ξij − ξ

′

ij

)
/
√

2 are symmetric random variable with unit variance. Applying

Proposition 1, we find that

E
[
‖Y ‖op

]
≤ e 2

3

(
2σY + 14αmax

ij

(
E
[((

ξij − ξ
′

ij

)
bij

)2α]) 1
2α √

log(n)

)

with σY , max
i

√∑
j 2b2ij =

√
2σ. Moreover for any (i, j) ∈ [n] × [n],

(
E
[((

ξij − ξ
′

ij

)
bij

)2α]) 1
2α

≤

2
(
E
[
(ξijbij)

2α
]) 1

2α

. Recall thatX is centered. Then, by Jensen inequality, E
[
‖X‖op

]
= E

[
‖X − E [X]‖op

]
≤

E
[∥∥∥X −X ′∥∥∥

op

]
= E

[
‖Y ‖op

]
. Hence,

E
[
‖X‖op

]
≤ 2e

2
3

(
2σ + 14αmax

ij

(
E
[
(ξijbij)

2α
]) 1

2α √
log(n)

)
. (22)

Then, we use Talagrand’s concentration inequality (see [8], Theorem 6.10) and find that for any t > 0,

P
[
‖X‖op ≥ E ‖X‖op + t

]
≤ e

−t2
2σ̃∗ (23)

Combining equations (22) and (23) yields the desired result.

A.2 Mixed coordinate gradient descent algorithm

Below, we describe the details of our algorithm. At iteration t = 0, we initialize the parameters (S(0),L(0), R(0));

then, at iteration t ≥ 1, we start by updating S. Denote by G
(t−1)
S = −2Ω � (A − L(t−1) − S(t−1) −

(S(t−1))>)+ εS(t−1) the gradient with respect to S of the quadratic part of the objective function, evaluated

at (S(t−1),L(t−1)). The column-wise sparse component S is updated with a proximal gradient step:

S(t) ∈ argmin

(
ηλ2 ‖S‖2,1 + 1

2

∥∥∥S − S(t−1) + ηG
(t−1)
S

∥∥∥2
F

)
,

= Tcηλ2

(
S(t−1) − ηG(t−1)

S

)
,

(24)

where Tcηλ2
is the column-wise soft-thresholding operator such that for any M ∈ Rn×n and for any λ > 0,

the j-th column of Tcλ(M) is given by (1 − λ/‖M.,j‖2)+M.,j . The step size η is constant and fixed in
advance, and satisfies η ≤ 1/(2 + ε). Then, we compute the adaptive upper bound R̄(t) as follows:

R̄(t) = λ−11 Φε(S
(t),L(t−1), R(t−1)). (25)
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Note that, by definition:

Φε(S
(t−1),L(t−1), R(t−1)) ≥ Φε(Ŝε, L̂ε, R̂)

=
1

2
‖Ω� (A− L̂ε − Ŝε − (Ŝε)

>)‖2F + λ1‖L̂ε‖∗ + λ2‖Ŝε‖2,1

+
ε

2
(‖L̂ε‖2F + ‖Ŝε‖2F )

≥ λ1‖L̂ε‖∗,

since every term in the objective function is non-negative. As a result, we obtain that

‖L̂ε‖∗ ≤ λ−11 Φε(S
(t−1),L(t−1), R(t−1)),

and we get the upper bound (25). Finally, the low-rank component given by (L, R) is updated using a
conjugate gradient step as follows:(

L(t), R(t)
)

=
(
L(t−1), R(t−1)

)
+ βt

(
L̃

(t) −L(t−1), R̃(t) −R(t−1)
)
, (26)

where βt ∈ [0, 1] is a step size defined later on. Denote byG
(t−1)
L = −Ω�(A−L(t−1)−S(t)−(S(t))>)+εL(t−1)

the gradient with respect to L of the quadratic part of the objective function, evaluated at (S(t),L(t−1)).

The direction (L̃
(t)
, R̃(t)) is defined by:(

L̃
(t)
, R̃(t)

)
∈ argminZ,R 〈Z,G(t−1)

L 〉+ λ1R

such that ‖Z‖∗ ≤ R ≤ R̄(t).
(27)

Let σ1 be the largest singular value of the gradient matrix G
(t−1)
L , and let u1 and v1 be the corresponding

left and right singular vectors. Then, (27) admits the following closed-form solution:(
L̃

(t)
, R̃(t)

)
=

{
(0, 0) if λ1 ≥ σ1

(−R̄(t)u1v
>
1 , R̄

(t)) if λ1 < σ1.
(28)

The step size βt is set to:

βt = min

{
1,
〈L(t−1) − L̃(t)

,G
(t−1)
L 〉+ λ1(R(t−1) − R̃(t))

(1 + ε)‖L̃(t) −L(t−1)‖2F

}
. (29)

We show in appendix A.3 that this choice of step size ensures that the objective function decreases at
every iteration. The above steps are repeated iteratively until convergence, or for a predefined number
of iterations. In practice, we stop the algorithm when the relative decrease of the objective falls below a
predefined threshold (e.g., 10e-6).

A.3 Proof of Theorem 1

To prove Theorem 1, we proceed in three steps. First, we demonstrate that the objective function decreases
after every update of S or L. In a second step, we compute a lower bound on the amount by which the
objective function decreases at each iteration. In a third step, we use this lower bound to demonstrate that
the distance to the optimal solution at iteration t ≥ 1, ∆t = Φε(S

(t),L(t−1), R(t−1))−Φε(Ŝ, L̂, R̂), decreases
at a rate of the order of 1/t.

Decrease of the objective between successive iterations: We start by showing that the proximal up-
date for the S block yields a decrease of the objective. For t ≥ 1, denoteQ(t−1) = λ−12 Φε(S

(t−1),L(t−1), R(t−1)),
and

gS(S(t−1),L(t−1)) = 〈GS(S(t−1),L(t−1)),S(t−1) − S̃(t−1)〉+ λ2(‖S(t−1)‖2,1 − ‖S̃(t−1)‖2,1). (30)
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In (30), GS(S(t−1),L(t−1)) = −2Ω� (A−L(t−1)−S(t−1)− (S(t−1))>) + εS(t−1) is the gradient matrix with

respect to S of the quadratic part of the objective function, evaluated at (S(t−1),L(t−1)), and

S̃(t−1) = arg min
S

〈GS(S(t−1),L(t−1)),S〉+ λ2‖S‖2,1 s.t. ‖S‖2,1 ≤ Q(t−1).

Lemma 4. For t ≥ 1, the proximal update for the S block defined in (24) satisfies:

Φε(S
(t),L(t−1), R(t−1)) ≤ Φε(S

(t−1),L(t−1), R(t−1))− η

2

g2S(S(t−1),L(t−1))2

(2Q(t−1))
.

Proof. See Section A.8.4.

We now prove a similar result, this time concerning the (L, R) block update. Recall that, for t ≥ 1,

R̄(t) = λ−11 Φε(S
(t),L(t−1), R(t−1)).

gL(S(t),L(t−1), R(t−1)) = 〈GL(S(t),L(t−1)),L(t−1) − L̃(t−1)〉+ λ1(R(t−1) − R̃(t−1)). (31)

In (31), GL(S(t),L(t−1)) = −Ω � (A − L(t−1) − S(t) − (S(t))>) + εL(t−1) is the gradient matrix with

respect to L of the quadratic part of the objective function, evaluated at (S(t),L(t−1)). Recall that M (t) =

‖GL(S(t),L(t−1))‖F . We prove the following result, which ensures a decrease of the objective function after
the conditional gradient update.

Lemma 5. For t ≥ 1, the conditional gradient update for the (L, R) block defined in (28) satisfies:

Φε(S
(t),L(t), R(t))− Φε(S

(t),L(t−1), R(t−1)) ≤ − g2L(S(t),L(t−1), R(t−1))

max{2R̄(t)(λ1 +M (t)), 8(1 + ε)(R̄(t))2}
.

Moreover,

Φε(S
(t),L(t), R(t))− Φε(S

(t),L(t−1), R(t−1)) ≤ − (1 + ε)

2
‖L(t) −L(t−1)‖2F . (32)

Proof. See Section A.8.5.

Lower bound on the decrement Φε(S
(t),L(t−1), R(t−1))−Φε(S

(t+1),L(t), R(t)): Consider the function

gt(Q(t), R̄(t))
4
= gS(S(t),L(t−1)) + gL(S(t),L(t−1), R̄(t−1)).

In what follows, we compute upper and lower bounds on gt(Q(t), R̄(t)). Note that gt(Q(t), R̄(t)) depends on
(Q(t), R̄(t)), because computing gS and gL involve solving constrained optimization problems, which depend
on Q(t) and R̄(t), respectively. By convexity of the quadratic term ‖Ω� (A−L−S−S>)‖2F /2+ ε/2(‖L‖2F +
‖S‖2F ), we obtain that:

gt(Q(t), R̄(t)) ≥ Φε(S
(t),L(t−1), R(t−1))− Φε(S̃

(t)
, L̃

(t−1)
, R̃(t−1)).

Then, by definition of the minimizer (Ŝε, L̂ε, R̂):

gt(Q(t), R̄(t)) ≥ Φε(S
(t),L(t−1), R(t−1))− Φε(Ŝε, L̂ε, R̂), (33)

which gives the lower bound on gt(Q(t), R̄(t)).
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Let us now compute an upper bound for gt(Q(t), R̄(t)). To do so, we start by upper bounding gS(S(t),L(t−1))
defined in (30). By definition,

gS(S(t−1),L(t−1)) = max
‖S‖2,1≤Q(t)

{〈GS(S(t),L(t−1)),S(t) − S〉+ λ2(‖S(t)‖2,1 − ‖S‖2,1)}

= max
‖S‖2,1≤Q(t)

{〈GS(S(t),L(t)),S(t) − S〉

+〈GS(S(t),L(t−1))−GS(S(t),L(t)),S(t) − S〉+ λ2(‖S(t)‖2,1 − ‖S‖2,1)}

≤ max
‖S‖2,1≤Q(t)

{
〈GS(S(t),L(t)),S(t) − S〉+ λ2(‖S(t)‖2,1 − ‖S‖2,1)

+‖GS(S(t),L(t−1))−GS(S(t),L(t))‖F ‖S(t) − S‖F
}
.

≤ 〈GS(S(t),L(t)),S(t)〉+ λ2‖S(t)‖2,1 − min
‖S‖2,1≤Q(t)

{
〈GS(S(t),L(t)),S〉+ λ2‖S‖2,1

}
︸ ︷︷ ︸

I

+ max
‖S‖2,1≤Q(t)

{
‖GS(S(t),L(t−1))−GS(S(t),L(t))‖F ‖S(t) − S‖F

}
︸ ︷︷ ︸

II

On the one hand, by definition of S̃
(t)

and gS(S(t),L(t)) (see (30) and (A.3)), we have:

I ≤ gS(S(t),L(t)). (34)

On the other hand, by definition of Q(t), ‖S(t)‖2,1 ≤ Q(t), which implies ‖S(t)‖F ≤ Q(t); combined with

‖S‖F ≤ Q(t), we obtain that that ‖S(t)−S‖F ≤ 2Q(t). Note also that, as the gradient GS is (1+ε)-Lipschitz,

we have ‖GS(S(t),L(t−1))−GS(S(t),L(t))‖F ≤ (1 + ε)‖L(t−1) −L(t)‖F . Finally we obtain:

II ≤ 2Q(t)(1 + ε)‖L(t−1) −L(t)‖F . (35)

Combining (34) and (35), we finally obtain:

gS(S(t−1),L(t−1)) ≤ gS(S(t),L(t)) + 2Q(t)(1 + ε)‖L(t−1) −L(t)‖F . (36)

We now use (36) to derive our upper bound on gt(Q(t), R̄(t)) as follows. Using Lemma 4 and Lemma 5, we
obtain that:

(g(t)(Q(t), R̄(t)))2 ≤ 2
{
g2L(S(t),L(t−1), R(t−1)) + g2S(S(t),L(t)) + 4(Q(t))2(1 + ε)2‖L(t−1) −L(t)‖2F

}
≤ 2

{
(C

(t)
1 + C

(t)
3 )(Φε(S

(t),L(t−1), R(t−1))− Φε(S
(t),L(t), R(t)))

+C
(t)
2 (Φε(S

(t),L(t), R(t))− Φε(S
(t+1),L(t), R(t)))

}
,

where

C
(t)
1 = max{2R̄(t)(λ1 +M (t)), 8(1 + ε)(R̄(t))2}, C

(t)
2 =

8(Q(t))2

η
, C

(t)
3 = 8(1 + ε)(Q(t))2.

Define:
C(t) = 2 max{C(t)

1 + C
(t)
3 , C

(t)
2 }. (37)

We finally have the following lower bound:

(g(t)(Q(t), R̄(t)))2 ≤ C(t)(Φε(S
(t),L(t−1), R(t−1))− Φε(S

(t+1),L(t), R(t))).
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Convergence rate of order 1/t: Recall that ∆t := Φε(S
(t),L(t−1), R(t−1)) − Φε(Ŝε, L̂ε, R̂). Using the

fact that
(g(t)(Q(t), R̄(t)))2 ≥ (∆t)2,

proven in (33), we obtain that

∆t+1 ≤ ∆t − 1

C(t)
(∆t)2.

We use the following Lemma (see, e.g. [6, Lemma 3.5], [51, Lemma 8]).

Lemma 6. Let {Ak}k≥1 be a non-negative sequence satisfying:

Ak+1 ≤ Ak − γkA2
k, k ≥ 1,

where γk > 0 for any k ≥ 1. Then,

Ak+1 ≤
1

1
A1

+
∑k
i=1 γi

.

Proof. See Section A.9

Lemma 6 yields that:

∆t+1 ≤ 1

(∆1)−1 +
∑t
i=1

1
C(i)

.

noting that ∆1 ≤ ∆̃0 := Φε(S
(0),L(0), R(0))− Φε(Ŝε, L̂, R̂), we have:

∆t+1 ≤ 1

(∆̃0)−1 +
∑t
i=1

1
C(i)

. (38)

Let us derive an upper bound on the time-varying constants C(t) defined in (37). We only need to bound

R̄(t), M (t) and Q(t). First note that, by Lemmas 4 and 5, R̄(t) ≤ λ−11 Φε(S
(0),L(0), R(0)), and Q(t) ≤

λ−12 Φε(S
(0),L(0), R(0)). To bound M (t) = ‖GL(S(t),L(t−1))‖F , we start by noticing that the gradient

GL(S(t),Lt−1) of the quadratic part of the objective with respect to L is bounded whenever S(t) and L(t−1)

are bounded themselves. Since λ1‖L(t−1)‖∗ + λ2‖S(t)‖2,1 ≤ Φε(S
(t),L(t−1), R(t−1)) ≤ Φε(S

(0),L(0), R(0)),
the parameters S and L are indeed bounded, and we obtain that there exists M̄ ≥ 0 such that M (t) ≤ M̄

for any t. Define F0
4
= Φε(S

(0),L(0), R(0)),

C̄1 = max{8λ−11 (1 + ε)F2
0 , 2λ

−1
1 F0(λ1 + M̄)}, C̄2 =

8F2
0

ηλ22
, C̄3 = 8λ−12 (1 + ε)F2

0 ,

and

C̄
4
= max

{
C̄1 + C̄3, C̄2

}
.

Then, we obtain the following rate of convergence:

∆t+1 ≤ 1

(∆̃0)−1 +
∑t
i=1

1
C(i)

≤ 1

(∆̃0)−1 + tC̄
. (39)

Recall that Φε(Ŝε, L̂ε, R̂) = F(Ŝε, L̂ε) by equivalence of the two optimization problems (6) and (7). In

addition, by definition, ‖L(t−1)‖∗ ≤ R(t−1), which gives Fε(S(t),L(t−1)) ≤ Φε(S
(t),L(t−1), R(t−1)). Thus,

we obtain that Fε(S(t),L(t−1))−Fε(Ŝε, L̂ε) ≤ Φε(S
(t),L(t−1), R(t−1))− Φε(Ŝε, L̂ε, R̂) ≤ ∆t+1.

For δ > 0, let Tδ be the integer number defined by:

Tδ
4
=

⌊
C̄

(
1

δ
− 1

F0 −Fε(Ŝε, L̂ε)

)⌋
+ 1.

Then, the Tδ-th iterate of the MCGD sequence satisfies:

Fε(S(Tδ),L(Tδ))−Fε(Ŝε, L̂ε) ≤ δ,
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which proves sub-linear convergence of the MCGD iterates. Note that, by definition, F0 − Fε(Ŝε, L̂ε) ≥ 0,
which implies that Tδ ≤

⌊
C̄/δ

⌋
+ 1. In addition, in the particular case where the initial point is set

to (S(0),L(0), R(0)) = (0,0, 0), we can compute an upper bound on the constant C̄, dependent on the
dimensions of the problem. First, note that in this case, F0 = 1

2‖Ω�A‖
2
F is equal to the number of observed

edges in the graph, denoted by E. Furthermore, by definition,

M (t) = ‖GL(S(t),L(t−1))‖F ≤ ‖Ω� (A−L(t−1) − S(t) − (S(t))>)‖F + ‖εL(t−1)‖F .

Since, by Lemmas 4 and 5, the objective value decreases at every update of L and S. As all the terms of the
objective are positive, we have that ‖Ω � (A − L(t−1) − S(t) − (S(t))>)‖2F ≤ F0 = E, and ‖εL(t−1)‖2F ≤ E

as well. Thus, we obtain that, for any t, M (t) ≤ 2
√
E, which yields M̄ ≤ 2

√
E. We then obtain that the

constant C̄ satisfies

C̄ ≤ C̄0
4
= max

{
2E2

ηλ22
, 8(1 + ε)E2

(
1

λ1
+

1

λ2

)
+

2E3/2

λ1
+ 2E

}
, (40)

meaning that the number of iterations increases at most quadratically with the density of the graph. Note
that, in practice, the convergence is much faster, and we observe that the algorithm converges after a few
iterations.

A.4 Proof of Theorem 2

Recall that, by Lemma 1,

j ∈ Ô ⇔
∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)

+

∥∥∥∥
2

>
λ2
4
.

In a first time, we show that with high probability, no inlier belongs to the set of estimated outliers. Consider
j ∈ I, then∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)

+

∥∥∥∥
2

≤

√√√√∑
i∈I

(
Ωij

(
Aij − L̂ij − Ŝji

)
+

)2

+

√√√√∑
i∈O

(
Ωij

(
Aij − L̂ij − Ŝji

)
+

)2

≤

√√√√∑
i∈I

(
Ωij

(
Σij + ∆Lij − Ŝji

)
+

)2

+

√∑
i∈O

(ΩijAij)
2

where we have used that for (i, j) ∈ I × I, Aij = Σij + L∗ij and that L̂ij ≥ 0 and Ŝij ≥ 0. Therefore, we
find that∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)

+

∥∥∥∥
2

≤
√∑

i∈I
(ΩijΣij)

2
+ +

√∑
i∈I

(Ωij∆Lij)
2
+ +

√∑
i∈O

(ΩijAij)
2
.

Recalling that ‖∆L‖∞ ≤ ρn, we obtain

max
j∈I

{∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

}
≤

∥∥Ω�Σ|I
∥∥
2,∞ + ρn

∥∥Ω|I∥∥2,∞ +
∥∥Ω�A|O×I∥∥2,∞ . (41)

We bound
∥∥Ω�Σ|I

∥∥
2,∞, ρn

∥∥Ω|I∥∥2,∞ and
∥∥Ω�A|O×I∥∥2,∞ using the following Lemma.

Lemma 7. Under assumptions 1-3,

P
(∥∥Ω�Σ|I

∥∥
2,∞ ≥

√
6νnρnn

)
≤ 2e−νnρnn (42)

P
(∥∥Ω|I∥∥2,∞ ≥ 4

√
νnn

)
≤ 2e−νnn (43)

P
(∥∥Ω�A|O×I∥∥2,∞ ≥√6νnρnn

)
≤ 2e−νnρnn. (44)
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Proof. See Section A.8.6

Recall that λ2 = 19
√
νnρnn. Combining Lemma 7, Lemma 3 and equation (41) yields that with proba-

bility larger than 1− 6e−νnρnn,

max
j∈I

{∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

}
≤ 9

√
νnρnn <

λ2
2
.

Using Lemma 1, we conclude that with probability at least 1− 6e−νnρnn, Ô ∩ I = ∅.

A.5 Proof of Theorem 3

Here, we prove that with high probability, all outliers are detected when min
j∈O

∑
i∈I

ΠijS
∗
ij > Cρnνnn for some

absolute constant C > 0. For any j ∈ [n], note that

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≥

√√√√∑
i∈I

(
Ωij

(
Aij − L̂ij − Ŝji

)
+

)2

.

We have shown in Theorem 2 that with probability at least 1− 6e−νnρnn, Ŝji = 0 for any i ∈ I and any

j ∈ [n] . When this equation holds, using the bound
∥∥∥L̂∥∥∥

∞
≤ ρn, we find that

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≥
√∑

i∈I

(
Ωij (Aij − ρn)+

)2
. (45)

We use the following Lemma to obtain a lower bound on the right hand side of equation (45) when j ∈ O.

Lemma 8. Assume that min
j∈O

∑
i∈I

ΠijS
∗
ij ≥ νnρnn, then

P

min
j∈O

√∑
i∈I

(
Ωij (Aij − ρn)+

)2
≤ 1

4
min
j∈O

√∑
i∈I

ΠijS
∗
ij

 ≤ 2se−
−νnρnn

80 .

Proof. See Section A.8.7.

Combining this Lemma with equation (45), we see that with probability at least 1−2se−
−νnρnn

80 −6e−νnρnn,∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≥ 1

4
min
j∈O

√∑
i∈I

ΠijS
∗
ij . (46)

Recall that λ2 = 19
√
νnρnn. When min

j∈O

∑
i∈I

ΠijS
∗
ij > 8 × 19νnρnn, Lemma 8 and equation (46) imply

that with probability larger than 1− 2se−
−νnρnn

80 − 6e−νnρnn,∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

>
λ2
2
.

Combining this result with Lemma 1, we find that with probability at least 1 − 2se−
−νnρnn

80 − 6e−νnγnn ≥
1− 8se−

−νnρnn
80 , O ⊂ Ô. This concludes the proof of Theorem 3.
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A.6 Proof of Theorem 4

To prove Theorem 4, we use the definition of L̂, the separability of the ‖ · ‖∗-norm on orthogonal subspaces,

and results on Ŝ proved in Theorem 3. Recall that Ψ , 16ν̃nγnρnsn.

Lemma 9. Assume that λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

, and that λ2 = 19
√
νnρnn. Then,

‖Ω�∆L‖2F ≤ λ1
3

(
5 ‖PL∗ (∆L)‖∗ −

∥∥P⊥L∗ (∆L)
∥∥
∗

)
+ Ψ (47)

and ‖∆L‖∗ ≤ 6
√
k
∥∥∆L|I

∥∥
F

+ 6
√

3ksnρn +
3Ψ

λ1
. (48)

hold simultaneously with equation (17) with probability at least 1− 6e−νnρnn − 2e−ν̃nγnsn.

Proof. See Section A.8.8.

Bounding the ‖ · ‖L2(Π)-norm of the error ∆L by ‖Ω�∆L‖2F is rather involved, and we use a peeling
argument, combined with the bound on ‖∆L‖∗ obtained in equation (48) in Lemma 9. We recall that Γ is
the random matrix defined as Γij = εijΩij for all (i, j) ∈ [n]× [n], where {ε}i≤j is a Rademacher sequence.
Moreover, we introduce the following notation :

β , E
[∥∥Γ|I∥∥op](482ρ2nk

µn
E
[∥∥Γ|I∥∥op]+ 60ρ2n

√
ksn+

32Ψρn
λ1

)
. (49)

Lemma 10. Assume that λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

, and that λ2 = 19
√
νnρnn. Then, there exists an absolute

constant C > 0 such that ∥∥∆L|I
∥∥2
L2(Π)

≤ C
(
λ21k

µn
+ νnρ

2
nsn+

νnρ
2
nkn

µn
+ Ψ + β

)
(50)

holds simultaneously with equations (17), (47) and (48) with probability at least 1− 7e−νnρnn − 2e−ν̃nγnsn.

Proof. See Section A.8.9.

Finally, we bound β using the following lemma.

Lemma 11. E
[∥∥Γ|I∥∥op] ≤ 84

√
νnn.

Lemma 11 implies that there exists some absolute constant C > 0 such that

β ≤ C
√
νnn

(
ρ2nk

µn

√
νnn+ ρ2n

√
skn+

Ψρn
λ1

)
.

Proof. See Section A.8.10.

Thus, there exists an absolute constant C > 0 such that when equation (50) holds,

β ≤ C

(
νnρ

2
nkn

µn
+ ρ2nn

√
νnsk +

Ψ
√
νnnρn
λ1

)
.

Combining Lemma 4 and Lemma 9-10, and noticing that
√
νnsk ≤ νns + k and that νn

µn
≥ 1, we find that

there exists an absolute constant C > 0 such that with probability at least 1− 7e−νnρnn − 2e−ν̃nγnsn,∥∥∆L|I
∥∥2
L2(Π)

≤ C

(
λ21k

µn
+ νnρ

2
nsn+

νnρ
2
nkn

µn
+ Ψ +

νnρ
2
nkn

µn
+ ρ2nn

√
νnsk +

Ψ
√
νnnρn
λ1

)
≤ C

(
λ21k

µn
+ nρ2n

(
νns+

νnk

µn

)
+ Ψ

(√
νnnρn
λ1

+ 1

))
.

Recall that Φ , nρ2n

(
νnk
µn

+ νns
)

, and that Ξ ,
√
νnnρn
λ1

+ 1. With these notations, we find that

∥∥∆L|I
∥∥2
L2(Π)

≤ C
(
λ21k

µn
+ Φ + ΨΞ

)
with probability at least 1 − 7e−νnρnn − 2e−ν̃nγnsn. We conclude the proof of Theorem 4 by recalling that
νnρnn ≥ log(n) and ν̃nγnn ≥ log(n).
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A.7 Proof of Corollary 1

Lemma 3 allows us to choose λ1 by bounding the noise terms
∥∥Ω�Σ|I

∥∥
op

with high probability. For the

choice λ1 = 84
√
νnρnn, we find that

Ξ =

(
1 +

√
νnρ2nn

84
√
νnρnn

)
≤ 2.

Combining Lemma 3 with Theorem 4, we find that there exists an absolute constant C > 0 such that with
probability at least 1− 7e−νnρnn − 3e−ν̃nγnns,

∥∥∆L|I
∥∥2
L2(Π)

≤ C

(
νnρnkn

µn
+ nρ2n

(
νnk

µn
+ νns

)
+ ν̃nρnγnsn

)
≤ C

(
νnρnkn

µn
+ ρn(νnρn ∨ ν̃nγn)sn

)
.

A.8 Proof of auxiliary Lemmas

A.8.1 Proof of Lemma 1

Recall that by definition of Ŝ,

Ŝ ∈ arg min
S∈Rn×n+

{
1

2

∥∥∥Ω� (A− L̂− S − S>)∥∥∥2
F

+ λ2 ‖S‖2,1

}
(51)

Now, any subgradient of the objective function (51) at Ŝ is of the form

∇SF
(
Ŝ, L̂

)
= 2Ω�

(
−A+ L̂+ Ŝ + Ŝ

>)
+ λ2W

where W is a subgradient of the ‖·‖2,1-norm at Ŝ. The matrix W obeys the following constraints :

• for any j ∈ [n] such that the column Ŝ·,j is null, ‖W ·,j‖2 ≤ 1;

• for any j ∈ [n] such that Ŝ·,j 6= 0, ‖W ·,j‖2 =
Ŝ·,j

‖Ŝ·,j‖
2

.

The Karush-Kuhn-Tucker conditions (see, e.g., [9], Section 5.5.3) imply that there exists H ∈ Rn×n and
W ∈ ∂ ‖·‖2,1 such that

2Ω�
(
−A+ L̂+ Ŝ + Ŝ

>)
+ λ2W −H = 0 (52)

Hij ≥ 0 for any (i, j) ∈ [n]× [n] (53)

H � Ŝ = 0 (54)

First, we prove the implication Ŝ·,j = 0⇒
∥∥∥∥Ω� (Aj,· − L̂j,· − Ŝj,·

)
+

∥∥∥∥
2

≤ λ2

2 . To do so, assume that j

is such that Ŝ·,j = 0. Then, equation (52) implies that

λ2W ·,j = 2Ω�
(
A·,j − L̂·,j − Ŝj,·

)
+H ·,j .

Recall that ‖W ·,j‖2 ≤ 1, and thus

2

λ2

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)+
1

2
H ·,j

∥∥∥∥
2

≤ 1.
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Moreover, by (53), Hij ≥ 0. Therefore,

2

λ2

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≤ 2

λ2

∥∥∥∥∥
(

Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

)
+

1

2
H ·,j

)
+

∥∥∥∥∥
2

≤ 2

λ2

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)+
1

2
H ·,j

∥∥∥∥
2

≤ 1.

This concludes the proof of the first implication.

To prove the other implication, assume that j is such that Ŝ·,j 6= 0. Then W ·,j =
Ŝ·,j

‖Ŝ·,j‖
2

, and equation

(52) becomes2 +
λ2∥∥∥Ŝ·,j∥∥∥

2

 Ŝ·,j = 2Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

)
+H ·,j + 2 (1−Ω·,j)� Ŝ·,j .

First, assume that for some i ∈ [n], Hij 6= 0. Then, equation (54) implies that Ŝij = 0, and so

Ωij

(
Aij − L̂ij − Ŝji

)
= −Hij/2 < 0.

On the other hand, assume that for i ∈ [n], Hij = 0. Then, Ŝij ≥ 0 implies that

Ωij

(
Aij − L̂ij − Ŝji

)
+ (1−Ωij) Ŝij ≥ 0

which implies that Ωij

(
Aij − L̂ij − Ŝji

)
≥ 0. This shows that for j ∈ [n] such that Ŝ·,j 6= 0,2 +

λ2∥∥∥Ŝ·,j∥∥∥
2

 Ŝ·,j = 2Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

)
+

+ 2 (1−Ω·,j)� Ŝ·,j . (55)

Now, for all i such that Ωij = 0, equation (55) becomes

(
2 + λ2

‖Ŝ·,j‖
2

)
Ŝij = 2Ŝij , and thus Ŝij = 0. This

remarks, combined with equation (55), implies that2 +
λ2∥∥∥Ŝ·,j∥∥∥

2

 Ŝ·,j = 2Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

)
+
.

This implies in particular that

2

∥∥∥∥(Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

))
+

∥∥∥∥
2

= 2
∥∥∥Ŝ·,j∥∥∥

2
+ λ2 > λ2.

This concludes the proof of Lemma 1.

A.8.2 Proof of Lemma 2

Note that for any partition of the nodes into inliers I and outliers O, the solution (L∗,S∗) to equation (3)
such that O is the support of the columns of S∗ is unique up to diagonal terms (if it exists). Indeed, we then
have L∗ = E[A]|I×I and S∗ = E[A]|I×O+ 1/2E[A]|O×O. Thus, it is enough to prove that the partition into
inliers and outliers is unique to prove Lemma 2.

We prove Lemma 2 by contradiction. Let us assume that there exists two different sets O and Õ
such that there exists two solutions (L∗,S∗) and (L̃, S̃) to equation (3), where O is the support of the
columns of S∗, and Õ that of S̃, and such that νnn ≥ (maxi∈I

∑
j∈I

Πij) ∨ (maxi∈Ĩ
∑
j∈Ĩ

Πij) and ν̃ns ≥
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(maxi∈I
∑
j∈O

Πij) ∨ (maxi∈Ĩ
∑
j∈Õ

Πij). Here, we have defined O = {j : S∗·j 6= 0}, Õ = {j : S̃·j 6= 0},

I = {j : L∗·j 6= 0}, and Ĩ = {j : L̃·j 6= 0}. Note that (3) implies that |O| = |Õ|, and thus there exists

j ∈ O ∩ Ĩ.
We obtain a contradiction by proving that the expected observed degree of j is too large for j to be

an inlier. By definition of (L∗,S∗), one has S∗ = E[A]|I×O + 1/2E[A]|O×O. Since j ∈ O, this yields∑
i∈I

ΠijS
∗
ij =

∑
i∈I

ΠijE[A]ij . Under assumption 4, we find that
∑
i∈I

ΠijE[A]ij ≥ Cρnνnn, where C = 8 × 19.

In particular, this implies that
∑
i∈[n]

ΠijE[A]ij ≥ 152ρnνnn.

Now, since j ∈ Ĩ, for all i ∈ Ĩ, we have E[A]ij ≤ ρn and
∑
i∈Ĩ

Πij ≤ νnn. Thus,
∑
i∈Ĩ

ΠijE[A]ij ≤ ρnνnn.

Similarly,
∑
i∈Õ

ΠijE[A]ij ≤ γnν̃ns. This implies that
∑
i∈[n]

ΠijE[A]ij ≤ ρnνnn + γnν̃ns. Using assumption 3,

we find that
∑
i∈[n]

ΠijE[A]ij ≤ 2ρnνnn, and obtain a contradiction.

A.8.3 Proof of Lemma 3

Note that Ω�Σ|I is a symmetric random matrix with independent centered entries. Moreover, for (i, j) ∈
I×I, (Ω�Σ)ij = bijξij , where we define bij , ΠijL

∗
ij

(
1−L∗ij

)
and ξij =

ΩijΣij

bij
. With these notations, we

see that max
ij

E
[
(ξijbij)

2α
] 1

2α ≤ 1 and that max
i

√∑
j b

2
ij ≤ νnρnn. Applying Proposition 2 for t =

√
2νnρnn

and α = 3, we find that

P
(∥∥∥(Ω�Σ)|I

∥∥∥
op
≥
√

2e
2
3

(
2
√
νnρnn+ 42

√
log(n)

)
+
√

2νnρnn

)
≤ e−νnρnn.

We conclude the proof of Lemma 3 by recalling that log(n) ≤ νnρnn.

A.8.4 Proof of Lemma 4

First, using the 2-smoothness of the least-squares data fitting term and the ε-smoothness of the ridge regu-
larization, we obtain that:

F(S(t),L(t−1), R(t−1)) ≤ F(S(t−1),L(t−1), R(t−1)) + 〈GS(S(t−1),L(t−1)),S(t) − S(t−1)〉

+
2 + ε

2
‖S(t) − S(t−1)‖2F + λ2(‖S(t)‖2,1 − ‖S(t−1)‖2,1). (56)

Then, by definition of the proximal operator, we have that:

S(t) ∈ arg min
(
ηλ2‖S‖2,1 + 1

2‖S− S(t−1) − ηGS(S(t−1),L(t−1))‖2F
)

∈ arg min
(
〈GS(S(t−1),L(t−1)),S− S(t−1)〉+ 1

2η‖S− S(t−1)‖2F
+λ2(‖S‖2,1 − ‖S(t−1)‖2,1)

)
.

(57)

Combining (56), (57) and the fact that η ≤ 1/(2 + ε), we obtain that, for any S ∈ Rn×n:

F(S(t),L(t−1), R(t−1)) ≤ F(S(t−1),L(t−1), R(t−1)) + 〈GS(S(t−1),L(t−1)),S− S(t−1)〉

+
1

2η
‖S− S(t−1)‖2F + λ2(‖S‖2,1 − ‖S(t−1)‖2,1).

In particular, for matrices of the form bS̃
(t−1)

+ (1− b)S(t−1), b ∈ R, we obtain:

F(S(t),L(t−1), R(t−1)) ≤ F(S(t−1),L(t−1), R(t−1)) + b〈GS(S(t−1),L(t−1)), S̃(t−1) − S(t−1)〉

+
b2

2η
‖S̃(t−1) − S(t−1)‖2F + λ2(‖bS̃(t−1) + (1− b)S(t−1)‖2,1 − ‖S(t−1)‖2,1),
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and, using the triangular inequality:

F(S(t),L(t−1), R(t−1)) ≤ F(S(t−1),L(t−1), R(t−1)) + b〈GS(S(t−1),L(t−1)), S̃(t−1) − S(t−1)〉

+
b2

2η
‖S̃(t−1) − S(t−1)‖2F + bλ2(‖S̃(t−1)‖2,1 − ‖S(t−1)‖2,1). (58)

Finally, minimizing the right hand side of (58) with respect to b, we obtain the final result:

F(S(t),L(t−1), R(t−1))−F(S(t−1),L(t−1), R(t−1)) ≤ −ηgS(S(t−1),L(t−1))2

(2Q(t−1))2
,

where we have used that ‖S̃(t−1) − S(t−1)‖2F ≤ (2Q(t−1))2.

A.8.5 Proof of Lemma 5

We first observe, using a Taylor expansion of the quadratic term of the objective function (the least-squares
data fitting term plus the ridge regularization term), and (26) that:

F(S(t),L(t), R(t)) = F(S(t),L(t−1), R(t−1))− βtgL(S(t),L(t−1), R(t−1)) +
β2
t (1 + ε)

2
‖L̃(t) −L(t−1)‖2F .

Now, recall that

βt = min

{
1,
〈L(t−1) − L̃(t)

,GL(S(t),L(t−1))〉+ λ1(R(t−1) − R̃(t))

(1 + ε)‖L̃(t) −L(t−1)‖2F

}
,

with (L̃
(t)
, R̃(t)) defined in (27), and gL in (31).

Case 1: 〈GL(S(t),L(t−1)),L(t−1)− L̃(t)〉+λ1(R(t−1)− R̃(t)) ≥ (1 + ε)‖L̃(t)−L(t−1)‖2F . Then, βt = 1, and

gL(S(t),L(t−1), R(t−1)) ≥ (1 + ε)‖L̃(t) −L(t−1)‖2F . As a result, we observe:

F(S(t),L(t), R(t))−F(S(t),L(t−1), R(t−1)) ≤ −1

2
gL(S(t),L(t−1), R(t−1))

≤ −1

2

(gL(S(t),L(t−1), R(t−1)))2

gL(S(t),L(t−1), R(t−1))
(59)

≤ −1

2

(gL(S(t),L(t−1), R(t−1)))2

R̄(t)(λ1 + 2M (t))
,

where, to obtain the last inequality, we have used that M (t) = ‖GL(S(t),L(t−1))‖F ≥ ‖GL(S(t),L(t−1))‖op,
and the inequalities R(t−1) − R̃(t) ≤ R̄(t) and

〈GL(S(t),L(t−1)),L(t−1) − L̃(t−1)〉 ≤ 2M (t)R̄(t).

Case 2: 〈GL(S(t),L(t−1)),L(t−1) − L̃(t)〉 + λ1(R(t−1) − R̃(t)) < (1 + ε)‖L(t−1) − L̃(t)‖2F . Then, βt =

gL(S(t),L(t−1), R(t−1))/((1 + ε)‖L(t−1) − L̃(t)‖2F ), and we obtain:

F(S(t),L(t), R(t))−F(S(t),L(t−1), R(t−1)) ≤ −1

2

(gL(S(t),L(t−1), R(t−1)))2

(1 + ε)‖L(t−1) − L̃(t)‖2F

≤ −1

2

(gL(S(t),L(t−1), R(t−1)))2

(1 + ε)(2R̄(t))2
,

where, to obtain the last inequality, we used that ‖L(t−1) − L̃(t)‖2F ≤ ‖L
(t−1) − L̃(t)‖2∗ ≤ (2R̄(t))2.
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We finally prove (32) as follows. We start by noticing that ‖L̃(t−1) −L(t−1)‖2F = β2
t ‖L

(t) −L(t−1)‖2F . If
βt = 1, then by definition of βt:

gL(S(t),L(t−1), R(t−1)) ≥ (1 + ε)‖L̃(t−1) −L(t−1)‖2F = (1 + ε)‖L(t) −L(t−1)‖2F .

Inequality (59) then implies that:

F(S(t),L(t), R(t))−F(S(t),L(t−1), R(t−1)) ≤ − (1 + ε)

2
‖L(t) −L(t−1)‖2F .

If βt = gL(S(t),L(t−1), R(t−1))/((1 + ε)‖L(t−1) − L̃(t)‖2F ), then:

‖L̃(t−1) −L(t−1)‖2F = β2
t ‖L

(t) −L(t−1)‖2F =
(gL(S(t),L(t−1), R(t−1)))2

(1 + ε)‖L̃(t−1) −L(t−1)‖2F

≤ 2

1 + ε

(
F(S(t),L(t−1), R(t−1))−F(S(t),L(t), R(t))

)
,

which proves the result.

A.8.6 Proof of Lemma 7

To prove equation (42) in Lemma 7, recall that for j ∈ I,
∑
i∈I

E
[
ΩijΣ

2
ij

]
≤ nνnρn, that

∑
i∈I

Var
[
ΩijΣ

2
ij

]
≤

nνnρn, and that ‖Ω�Σ�Σ‖∞ ≤ 1. Applying Bernstein’s inequality (21), we obtain that for any j ∈ I
and t > 0,

P

(∑
i∈I

ΩijΣ
2
ij ≥ νnρnn+

√
2tνnρnn+

3

2
t

)
≤ 2e−t

Choosing t = 2νnρnn, we find that

P

max
j∈I

√∑
i∈I

ΩijΣ
2
ij ≥

√
6νnρnn

 ≤ 2ne−2νnρnn

P
(∥∥Ω�Σ|I

∥∥
2,∞ ≥

√
6νnρnn

)
≤ 2e−νnρnn

where we have used the union bound and νnγnn ≥ log(n). This proves equation (42) in Lemma 3.
To prove equation (43) in Lemma 7, note that

∥∥Ω|I∥∥2,∞ ≤ ∥∥Π|I −Ω|I
∥∥
2,∞+

∥∥Π|I∥∥2,∞ and
∥∥Π|I∥∥2,∞ ≤

√
νnn. Moreover, for j ∈ I,

∑
i∈I

E
[
(Πij −Ωij)

2
]
≤ νnn,

∑
i∈I

Var
[
(Π−Ωij)

2
]
≤ νnn, and

∥∥Π|I −Ω|I
∥∥
∞ ≤ 1.

We apply Bernstein’s inequality and find that for any j ∈ I and t > 0,

P

(∑
i∈I

(Πij −Ωij)
2 ≥ νnn+

√
2tνnn+

3

2
t

)
≤ 2e−t

Choosing t = 2νnn and using an union bound, we find that

P

sup
j∈I

√∑
i∈I

(Πij −Ωij)
2 ≥
√

6νnn

 ≤ 2ne−2nνn

P
(∥∥Π|I −Ω|I

∥∥
2,∞ ≥

√
6νnn

)
≤ 2e−νnn

where we have used that νnn ≥ log(n). This proves equation (43).
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To prove equation (44), recall that for (i, j) ∈ O×I, ΩijAij ∼Bernoulli(ΠijS
∗
ij), and that

∥∥∥Π� S>∥∥∥
∞
≤

νnγn. Then, applying Bernstein’s inequality (21), we find that for any j ∈ I and any t > 0,

P

(∑
i∈O

ΩijAij ≥ sνnγn +
√

2tsνnγn +
3t

2

)
≤ 2e−t.

Choosing t = 2νnρnn, we find that

P

(∑
i∈O

ΩijAij ≥ sνnγn + 2
√
γnρnnsνn + 3νnρnn

)
≤ 2e−t.

Under Assumption 3, this implies

P

(∑
i∈O

ΩijAij ≥ 6νnρnn

)
≤ 2e−2νnρnn.

Using the union bound, and the bound νnρnn ≥ log(n), we conclude that

P

max
j∈I

√∑
i∈O

ΩijAij ≥
√

6νnρnnn

 ≤ 2ne−2νnρnn ≤ 2e−νnρnn.

This concludes the proof of Lemma 7.

A.8.7 Proof of Lemma 8

Recall that for j ∈ O,

{(
(ΩijAij − ρn)+

)2}
i∈I

are independent random variables. Moreover, easy cal-

culations yields that E
[(

Ωij (Aij − ρn)+

)2]
= ΠijS

∗
ij(1 − ρn)2, and that Var

[(
Ωij (Aij − ρn)+

)2]
≤

ΠijS
∗
ij(1− ρn)2. Applying Bernstein’s inequality (21), we see that for any t > 0,

P

∣∣∣∣∣∑
i∈I

E
[(

Ωij (Aij − ρn)+

)2]
−
∑
i∈I

(
Ωij (Aij − ρn)+

)2∣∣∣∣∣ ≥
√

2t
∑
i∈I

ΠijS
∗
ij(1− ρn)2 +

3t

2

 ≤ 2e−t.

Choosing t = 1
80

∑
i∈I

ΠijS
∗
ij(1− ρn)2, we find that

P

(∑
i∈I

(Ωij (Aij − ρn))
2
+ ≤

∑
i∈I

ΠijS
∗
ij(1− ρn)2 − 1

2

∑
i∈I

ΠijS
∗
ij(1− ρn)2

)
≤ 2e

− 1
80

∑
i∈I

ΠijS
∗
ij(1−ρn)

2

.

When min
j∈O

∑
i∈I

ΠijS
∗
ij(1− ρn)2 ≥ νnρnn and ρn ≤ 1

2 , this implies that

P

min
j∈O

√∑
i∈I

(
Ωij (Aij − ρn)+

)2
≤ 1

4
min
j∈O

√∑
i∈I

ΠijS
∗
ij

 ≤ 2se−
−νnρnn

80 .

A.8.8 Proof of Lemma 9

Let ∂ ‖·‖∗ and ∂ ‖·‖2,1 denote respectively the sub-differentials of ‖·‖∗ and ‖·‖2,1 norms. Recall that
(
Ŝ, L̂

)
minimizes F . The standard optimality condition over a convex set states that for any admissible matrix

(S,L), there exists V̂ ∈ ∂
∥∥∥Ŝ∥∥∥

2,1
and Ŵ ∈ ∂

∥∥∥L̂∥∥∥
∗

such that
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−
〈
Ω�

(
A− Ŝ − Ŝ

>
− L̂

) ∣∣∣S − Ŝ + S> − Ŝ
>

+L− L̂
〉

+λ1

〈
Ŵ
∣∣L− L̂〉+ λ2

〈
V̂
∣∣S − Ŝ〉 ≥ 0 (60)

Applying equation (60) for the admissible matrices
(
Ŝ,L∗

)
, we find that there exists Ŵ ∈ ∂

∥∥∥L̂∥∥∥
∗

such that

−
〈
Ω�

(
A− Ŝ − Ŝ

>
− L̂

) ∣∣∣∆L〉+ λ1

〈
Ŵ
∣∣∆L〉 ≥ 0. (61)

Recall that Σ|I , A|I + diag(L∗)−L∗, that ∆L , L∗ − L̂, and that Ω� diag(M) = 0 for any matrix M .
Thus, equation (61) becomes

−
〈
Ω�

(
ΣI + ∆L+A|O − Ŝ − Ŝ

>) ∣∣∣∆L〉+ λ1

〈
Ŵ
∣∣∆L〉 ≥ 0. (62)

Developing equation (62), we find that

−
〈
Ω�Σ|I

∣∣∣∆L〉− 〈Ω�∆L
∣∣∣∆L〉−〈Ω�

(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉
+

〈
Ω�

(
Ŝ + Ŝ

>)
|I

∣∣∣∆L〉+ λ1

〈
Ŵ
∣∣∆L〉 ≥ 0.

We have proved in Theorem 3 that Ŝ|I = Ŝ
>
|I = 0 with probability at least 1− 6e−νnρnn . Therefore, when

equation (17) holds,

‖Ω�∆L‖2F ≤
∣∣∣〈Ω�Σ|I

∣∣∣∆L〉∣∣∣+

∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣+ λ1

〈
Ŵ
∣∣∆L〉 .

Using the duality of the ‖ · ‖∗-norm and the ‖ · ‖op-norm, we find that

‖Ω�∆L‖2F ≤
∥∥Ω�Σ|I

∥∥
op
‖∆L‖∗ +

∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣+ λ1

〈
Ŵ
∣∣∆L〉 .

Next, we bound the term

∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣ using the following Lemma.

Lemma 12. With probability at least 1− 2e−ν̃nγnsn,∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣ ≤ 16ν̃nγnρnns.

Proof. See Section A.8.11.

Finally, we bound
〈
Ŵ
∣∣∆L〉. Note that by definition of the subgradient,

〈
Ŵ
∣∣L∗ − L̂〉 ≤ ‖L∗‖∗−∥∥∥L̂∥∥∥∗.

Using the separability of the spectral norm on orthogonal subspaces and the identity PL∗ (L∗) = L∗, we
find that ∥∥∥L̂∥∥∥

∗
=

∥∥P⊥L∗ (∆L) + PL∗ (∆L)−L∗
∥∥
∗

=
∥∥P⊥L∗ (∆L)

∥∥
∗ + ‖PL∗ (∆L)−L∗‖∗

≥
∥∥P⊥L∗ (∆L)

∥∥
∗ + ‖L∗‖∗ − ‖PL∗ (∆L)‖∗ .

Combining this result with Lemma 12, we find that with probability at least 1− 6e−νnρnn − 2e−ν̃nγnsn,

‖Ω�∆L‖2F ≤
∥∥Ω�Σ|I

∥∥
op

(
‖PL∗ (∆L)‖∗ +

∥∥P⊥L∗ (∆L)
∥∥
∗

)
+ 16ν̃nγnρnsn+ λ1

(
‖PL∗ (∆L)‖∗ −

∥∥P⊥L∗ (∆L)
∥∥
∗

)
.

37



Recall that by definition, Ψ ≥ 16ν̃nγnρnns. Thus, when λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

,

‖Ω�∆L‖2F ≤ λ1
3

(
5 ‖PL∗ (∆L)‖∗ −

∥∥P⊥L∗ (∆L)
∥∥
∗

)
+ Ψ.

This proves equation (47) in Lemma 9. This result also implies that∥∥P⊥L∗ (∆L)
∥∥
∗ ≤ 5 ‖PL∗ (∆L)‖∗ +

3Ψ

λ1
.

Recall that L∗ is of rank k and so PL∗ (∆L) is of rank at most k. Therefore,

‖∆L‖∗ ≤ 6 ‖PL∗ (∆L)‖∗ +
3Ψ

λ1
≤ 6
√
k ‖PL∗ (∆L)‖F +

3Ψ

λ1

≤ 6
√
k ‖∆L‖F +

3Ψ

λ1
≤ 6
√
k
∥∥∆L|I

∥∥
F

+ 6
√
k(sn+ s2)ρn +

3Ψ

λ1

≤ 6
√
k
∥∥∆L|I

∥∥
F

+ 6
√

3ksnρn +
3Ψ

λ1
.

where we have used that
∥∥∆L|O

∥∥
F
≤
√
|O|
∥∥∆L|O

∥∥
∞ ≤

√
s2 + 2snρn. This completes the proof of Lemma

9.

A.8.9 Proof of Lemma 10

For ease of notations, let α = 362
νnρ

2
nkn
µn

. To prove Lemma 9, we consider the following two cases.

Case 1:
∥∥∆L|I

∥∥2
L2(Π)

≤ α. Then the result is immediate.

Case 2:
∥∥∆L|I

∥∥2
L2(Π)

> α. Let r > 0 a constant to be specified later. We consider the following sets

Sr =

{
M ∈ Rn×nsym : ‖M‖∞ ≤ ρn,

∥∥M |I
∥∥2
L2(Π)

≥ α, ‖M‖∗ ≤
√
r
∥∥M |I

∥∥
F

+
√

3rsnρn +
3Ψ

λ1

}
.

Recall that the random noise matrix Γ is defined as follows: for any (i, j) ∈ [n]×[n], i < j, Γij = Γji = Ωijεij
where (εij)1≤i<j≤n is a Rademacher sequence. Now, we define βr as follows :

βr , E
[∥∥Γ|I∥∥op](64rρ2n

µn
E
[∥∥Γ|I∥∥op]+ 15

√
srnρ2n +

32Ψρn
λ1

)
.

Lemma 13. With probability larger than 1− e−νnρnn, simultaneously for any M ∈ Sr,

1

2
‖M‖2L2(Π) ≤

∥∥Ω�M |I
∥∥2
F

+ βr

Proof. See Section A.8.12.

Recall that β was defined in equation (49), and note that β = β36k. Then, equation (48) in Lemma 9
implies that ∆L ∈ S36k with probability at least 1 − 6e−νnρnn − 2e−ν̃nγnsn. Combining equation (47) in
Lemma 9 and Lemma 13, we find that with probability at least 1− 7e−nνnρn − 2e−ν̃nγnsn,

1

2

∥∥∆L|I
∥∥2
L2(Π)

≤ 5λ1
3
‖PL∗ (∆L)‖∗ + Ψ + β.

The matrix L∗ is of rank at most k. Therefore,

∥∥∆L|I
∥∥2
L2(Π)

≤ 10λ1
√
k

3
‖∆L‖F + 2Ψ + 2β ≤ 50λ21k

9µn
+
µn
2
‖∆L‖2F + Ψ + β

≤ 50λ21k

9µn
+
µn
2

∥∥∆L|I
∥∥2
F

+
3

2
µnρ

2
nsn+ Ψ + β
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where we have used that
∥∥∆L|O

∥∥2
F
≤ 3ρ2nns. Using equation (14), we find that

∥∥∆L|I
∥∥2
L2(Π)

≤ 1

2

∥∥∆L|I
∥∥2
L2(Π)

+
µn
2
ρ2nn+

3

2
µnρ

2
nsn+

50λ21k

9µn
+ Ψ + β.

Thus ∥∥∆L|I
∥∥2
L2(Π)

≤ 8µnρ
2
nsn+

100λ21k

9µn
+ 2Ψ + 2β.

We conclude the proof of Lemma 10 by recalling that µn ≤ νn.

A.8.10 Proof of Lemma 11

To prove Lemma 11, we use Proposition 1. For (i, j) ∈ I, set bij =
√

Πij , and ξij =
εijΩij

bij
, and for i ∈ I

set bii = 0. Note that for any (i, j) ∈ I, Γij = bijξij , and that {ξij}i≤j is a sequence of independent
symmetric random variables with unit variance. Moreover, for any (i, j) ∈ I, |bijξij | ≤ 1, so for any α ≥ 3,(
E
[
(ξijbij)

2α
]) 1

2α ≤ 1. Finally, note that for any i ∈ I,√∑
j∈I

b2ij =

√∑
j∈I

Πij ≤
√
νnn.

Applying Proposition 1, we find that

E
[∥∥Γ|I∥∥op] ≤ e 2

3

(√
νnn+ 42

√
log(n)

)
We conclude this proof by recalling that νnn ≥ log(n).

A.8.11 Proof of Lemma 12

To prove Lemma 12, note that ‖∆L‖∞ ≤ ρn, and therefore∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣ ≤ 2ρn
∑

(i,j)∈O

∣∣∣Ωij

(
Aij − Ŝij − Ŝji

)∣∣∣ . (63)

Recall that L̂ and Ŝ have non-negative entries, and that L̂ and A are symmetric. Therefore, equation (55)

implies that
{
Ŝij = 0 or Ŝji = 0

}
⇒ Aij = 0, and that Ŝij + Ŝji ≤ Aij . Thus, equation (63) implies∣∣∣∣〈Ω�

(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣ ≤ 2ρn
∑

(i,j)∈O

ΩijAij . (64)

To conclude the proof of Lemma 12, we first prove the following result:

P

 ∑
(i,j)∈O

ΩijAij ≥ 8ν̃nγnsn

 ≤ exp(−ν̃nγnsn). (65)

We use Bernstein’s inequality to obtain equation (65). Note that {ΩijAij}(i,j)∈O,i<j is a sequence of indepen-

dent Bernoulli random variables such that for any i ∈ [n],
∑
j∈O

E [ΩijAij ] ≤ ν̃nγns,
∑
j∈O

Var [ΩijAij ] ≤ ν̃nγns,

and (ΩijAij − E [ΩijAij ]) ∈ [−1, 1]. Hence, applying Bernstein’s inequality (21), we find that for any t > 0,

P

 ∑
(i,j)∈O

ΩijAij ≥ 2ν̃nγnsn+
√

2t× ν̃nγnsn+
3t

2

 ≤ 2 exp(−t).

Choosing t = 2ν̃nγnsn, we obtain equation (65). We conclude the proof of Lemma 12 by combining equations
(64) and (65).
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A.8.12 Proof of Lemma 13

To prove Lemma 13, we show that the probability of the following ”bad” event is small :

B , {∃M ∈ Sr such that
∣∣∣∥∥Ω�M |I

∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ ≥ 1

2

∥∥M |I
∥∥2
L2(Π)

+ βr}.

We use a standard peeling argument to control the probability of the event B. For T > α, define

S(T ) ,
{
M ∈ Sr :

∥∥M |I
∥∥2
L2(Π)

≤ T
}
, Z(T ) = sup

M∈S(T )

∣∣∣∥∥Ω�M |I
∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ , and

B(T ) ,

{
∃M ∈ S(T ) :

∣∣∣∥∥Ω�M |I
∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ ≥ T

4
+ βr

}
=

{
Z(T ) ≥ T

4
+ β

}
.

For l ≥ 1, define also Sl ,
{
M ∈ Sr : 2l−1α <

∥∥M |I
∥∥2
L2(Π)

≤ 2lα
}
⊂ S

(
2lα
)

and

Bl ,

∃M ∈ Sl :
∣∣∣∥∥Ω�M |I

∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ ≥
∥∥M |I

∥∥2
L2(Π)

2
+ βr


⊂

{
∃M ∈ Sl :

∣∣∣∥∥Ω�M |I
∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ ≥ 2l−1

2
α+ βr

}
⊂ B

(
2lα
)
.

Since Sr ⊂ ∪
l≥1
Sl, it is easy to see that B ⊂ ∪

l≥1
Bl. To control the probability of the events Bl, it is enough

to control the probability of the events B(T ), which is done in the following lemma.

Lemma 14. For any T ≥ α, we have P (B(T )) ≤ exp(− T
362ρn

).

Proof. See Section A.8.13.

We apply Lemma 14 to find

P (B) ≤
∑
l≥1

P (Bl) ≤
∑
l≥1

exp

(
− 2lα

362ρn

)

≤
∑
l≥1

exp

(
− 2lα

362ρn
α

)
=

exp
(
− 2α

362ρn

)
1− exp

(
− 2α

362ρn

) =
exp

(
−2νnρnknµn

)
1− exp

(
−2νnρnknµn

)
Note that νnρnkn

µn
≥ νnρnn ≥ log(n) ≥ 1, and so P [B] ≤ 1

2 exp (−2νnρnn) ≤ exp (−νnρnn) . This concludes
the proof of Lemma 13.

A.8.13 Proof of Lemma 14

Recall that Z(T ) = 2 sup
M∈S(T )

∣∣∣∣∣ ∑(i,j)∈I
M2

ij (Ωij −Πij)

∣∣∣∣∣, since all matrices in S are symmetric. In order to

bound Z(T ), we begin by controlling the deviation of Z(T ) from its expectation. To do this, we apply

Bousquet’s Theorem 6 to the random variable Z(T ) = 2ρn sup
M∈S(T )

∣∣∣∣∣ ∑(i,j)∈I
fMij (Ωij)

∣∣∣∣∣ where we set fMij (Ωij) ,

(Ωij−Πij)M
2
ij

ρn
. The set of functions

{
fMij ,M ∈ S(T )

}
is separable and we can apply Theorem 6 (see, e.g.,

[24], Section 2.1). Note that for any (i, j) ∈ I, E
[
fMij (Ωij)

]
= 0,

∣∣fMij (Ωij)
∣∣ ≤ 1, E

[
(Ωij −Πij)

2
]
≤ Πij

and ‖M‖∞ ≤ ρn so

v , 2 sup
M∈S(T )

∑
(i,j)∈I

E
[
fMij (Xij)

2
]
≤ 2

∑
(i,j)∈I

Πij

M4
ij

ρ2n
≤ 2 sup

M∈S(T )

∑
(i,j)∈I

ΠijM
2
ij ≤ T.
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Theorem 6 implies that

P

(
ZT
2ρn

>
E[ZT ]

2ρn
+
x

3
+

√
2x

(
2E[ZT ]

2ρn
+ T

))
≤ exp(−x)

P
(
ZT > E[ZT ] +

2ρnx

3
+ 2ρnx+ 2E[ZT ] + 2ρn

√
2xT

)
≤ exp(−x)

where we used 2
√
ab ≤ a+ b. Setting x = T

362ρn
and noticing that ρn ≤ 1 leads to

P
(
ZT > 2E[ZT ] +

T

8

)
≤ exp(− T

362ρn
). (66)

In a second time, in order to bound E [ZT ], we apply a standard symetrization argument (see, e.g., [37],
Theorem 2.1). We obtain that

E [Z(T )] ≤ 4E

 sup
M∈S(T )

∣∣∣∣∣∣
∑

(i,j)∈I

εijM
2
ijΩij

∣∣∣∣∣∣
 (67)

where (εij)1≤i<j≤n is a Rademacher sequence. For i < j, define φij : x → x2

2ρn
. Recall that for any (i, j),

Ωij ∈ {0, 1}, and so Ωij = Ω2
ij . With these notations, equation (67) becomes

E [Z(T )] ≤ 8ρnE

 sup
M∈S(T )

∣∣∣∣∣∣
∑
i<j

εijφij (ΩijM ij)

∣∣∣∣∣∣
 .

We note that forM ∈ S(T ), ‖M‖∞ ≤ ρn. Therefore, the functions φij are 1-Lipschitz functions on [−ρn, ρn]
vanishing at 0. We apply Talagrand’s contraction principle (see, e.g., Theorem 2.2 in [37]) and find that

E [Z(T )] ≤ 16ρnE

 sup
M∈S(T )

∣∣∣∣∣∣
∑

(i,j)∈I

εijM ijΩij

∣∣∣∣∣∣
 = 8ρnE

[
sup

M∈S(T )

∣∣〈M ∣∣Γ|I〉∣∣
]

where for any (i, j), Γij = εijΩij . By the duality of the ‖·‖∗-norm and ‖·‖op-norm, and by definition of Sr,
we find that

E [Z(T )] ≤ 8ρn sup
M∈S(T )

‖M‖∗ E
[∥∥Γ|I∥∥op]

≤ 8ρn

(
√
r sup
M∈S(T )

∥∥M |I
∥∥
F

+
√

3rsnρn +
3Ψ

λ1

)
E
[∥∥Γ|I∥∥op] .

Using equation (14), we find that

E [Z(T )] ≤ 8ρn

(
√
r

(
1
√
µn

sup
M∈S(T )

∥∥M |I
∥∥
L2(Π)

+
√
nρn

)
+
√

3rsnρn +
3Ψ

λ1

)
E
[∥∥Γ|I∥∥op]

≤

(
8ρn
√
r

√
µn

sup
M∈S(T )

∥∥M |I
∥∥
L2(Π)

+ 8
√
nrρ2n + 8

√
3srnρ2n +

32Ψρn
λ1

)
E
[∥∥Γ|I∥∥op] .

Using the definition of S(T ), we find that

E [Z(T )] ≤

(
8ρn
√
rT

√
µn

+ 8
√
rnρ2n + 8

√
3srnρ2n +

32Ψρn
λ1

)
E
[∥∥Γ|I∥∥op]

≤ T

16
+ E

[∥∥Γ|I∥∥op](64rρ2n
µn

E
[∥∥Γ|I∥∥op]+ 15

√
srnρ2n +

32Ψρn
λ1

)
=

T

16
+ βr. (68)

Combining equation (66) and equation (68) yields the desired result.
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A.9 Proof of Lemma 6

Consider the following chain of inequality:

1

Ak+1
− 1

Ak
=
Ak −Ak+1

AkAk+1
≥ γk

Ak
Ak+1

≥ γk,

since Ak+1 ≤ Ak. Thus, we obtain

1

Ak+1
− 1

A1
=

k∑
i=1

(
1

Ai+1
− 1

Ai

)
≥

k∑
i=1

γi,

which gives the result after reshuffling the terms.
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