Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity
F. Copie, M. Conforti, A. Kudlinski, S. Trillo, A. Mussot

To cite this version:

HAL Id: hal-02386359
https://hal.archives-ouvertes.fr/hal-02386359
Submitted on 29 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity
F. Copie, M. Conforti, A. Kudlinski, S. Trillo, A. Mussot

To cite this version:
F. Copie, M. Conforti, A. Kudlinski, S. Trillo, A. Mussot. Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity. Optics Letters, Optical Society of America, 2017, 42 (3), pp.435. 10.1364/OL.42.000435. hal-02386359

HAL Id: hal-02386359
https://hal.archives-ouvertes.fr/hal-02386359
Submitted on 29 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber ring cavity

F. COPIE1,*, M. CONFORTI1, A. KUDLINSKI1, S. TRILLO2, AND A. MUSDOT1

1Univ. Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers Atomes et Molécules, F-59000 Lille, France
2Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
*Corresponding author: francois.copie@univ-lille1.fr

Compiled December 20, 2016

We experimentally investigate the roundtrip-to-roundtrip dynamics of the modulation instability spectrum in a passive fiber ring cavity presenting an inhomogeneous dispersion profile. By implementing a real-time spectroscopy technique we are able to record successive single-shot spectra, which display the evolution of the system toward a stationary state. We find that the two instability regimes (Turing and Faraday) that compete in this kind of inhomogeneous cavities not only differ by their characteristic frequency but also by their dynamical behaviour. The dynamic transition between those two regimes of instability is also presented.

OCIS codes: (190.4370) Nonlinear optics, fibers; (190.3100) Instabilities and chaos; (230.5750) Resonators

http://dx.doi.org/10.1364/ao.XXXXXXXXX

Modulation Instability (MI) is unarguably the most ubiquitous nonlinear phenomenon whether it be in hydrodynamics, plasma physics or optics [1]. In its best-known form it can be seen as a long-wave instability at the origin of the exponential growth of a periodic modulation on top of a homogeneous background solution in the time or the spatial domain. The signature in the frequency domain is the appearance of spectral sidebands symmetric to the pump frequency. MI also occurs in dissipative systems such as passive cavities where it is commonly referred to as the Turing instability, [2, 3]. The latter has been extensively studied in the context of short pulse train generation in homogeneous cavities, where MI extends to the normal dispersion regime [4-8]. Recently, we showed that a longitudinal modulation of the dispersion inside the cavity can lead to the emergence of a new kind of coexisting parametric instability [9, 10], which is analogous to the Faraday instability occurring in a periodically forced system [11]. The Faraday or parametric instability is shared by optical resonators with modulation of other parameters as well [12, 13], and its universal nature is witnessed by observations in other fields [14]. Recent experiments showed that the Turing and Faraday unstable regimes can be independently excited and identified thanks to the different frequency of their characteristic sidebands in the optical spectrum. For a certain range of parameters one can even switch from one instability regime to the other by tuning the input pump power [15]. In this previous work we limited our investigations to the stationary regime (i.e., spectra were recorded after a very large number of roundtrips thus ensuring that the system reached a stable state). Conversely, the development of real-time spectroscopy techniques such as the time-strech dispersive Fourier transformation (DFT) enabled the recording of shot-to-shot spectral fluctuations associated to ultrafast nonlinear phenomena such as MI [16, 17] or supercontinuum generation [18]. The recent years have seen a growing interest in this technique to investigate the roundtrip-to-roundtrip dynamics of both passive and active fiber cavities [19-22]. However, to date, experimental studies of the transient behaviour of MI in a passive ring resonator remain substantially unaddressed. In this Letter we experimentally investigate on the transient evolution of Turing and Faraday instabilities in a dispersion oscillating passive fiber cavity by implementing the DFT technique. We captured the growth and saturation of the power of the different unstable bands as well as the switching dynamics between Turing and Faraday instabilities by abruptly changing the input pump power. Our experimental results turn out to be well supported by numerical simulations of the cavity map model.

We conveniently describe the light propagation in the fiber ring cavity by the following Ikeda-like map for the intracavity field $E_m = E_m(z, \tau)$ in the m-th circulation [9, 10, 23]

$$\frac{\partial E_m(z, \tau)}{\partial z} = \left(-\frac{a_f}{2} - i\frac{B_2(z)}{2} \frac{\partial^2}{\partial \tau^2} + i\gamma |E_m(z, \tau)|^2 \right) E_m(z, \tau), \quad (1)$$

$$E_{m+1}(0, \tau) = \rho E_m(L, \tau) \exp(i\phi_0) + \theta E_m(\tau + mt_R). \quad (2)$$

Equation (1) turns out to be the nonlinear Schrödinger equation which describes the propagation of the field during one roundtrip (i.e. from $z = 0$ to the fiber loop length $z = L$), τ being the fast time in the frame traveling at group velocity of light. Equation (2) accounts for the boundary conditions (i.e., the interferometric and dissipative nature of the system) describing how the field at the beginning of the roundtrip ($m + 1$) is related to the one at the end of the roundtrip (m) and to the injected driving field E_{in}. Here ρ and θ are the reflection and transmission coefficients of the input/output coupler such that $\rho^2 + \theta^2 = 1$, ϕ_0 is the phase accumulated by the intracavity field during one roundtrip of duration t_R (length L). Moreover a_f is
the power loss coefficient associated with the propagation (linear absorption and splice loss), β_s the group velocity dispersion which in our case is a function of the position in the fiber loop (z) and γ the nonlinear coefficient of the fiber. The finesse (which describes how efficiently light is confined inside the cavity) can be calculated as $F = \pi / \alpha$ where $\alpha = \theta^2 / 2 + a / L$ describes the overall losses of the cavity. Also, it is convenient to introduce a parameter $\Delta = \delta_0 / \alpha$, dubbed the "normalized detuning", which relates to the phase mismatch between the pump and the nearest cavity resonance through $\delta_0 = 2\pi / \alpha - \delta_0$ with k integer. The system is known to be bistable for $\Delta > \sqrt{3}$ [24], which is the regime investigated here.

To investigate the onset of Turing and Faraday instabilities as well as the transition between both regimes in such a fiber ring cavity we used the experimental setup depicted in Fig. 1(a). It is essentially the same as the one described in Ref. [15]. The output of a continuous wave (CW) laser at 1550 nm is chopped via an electro-optic modulator (EOM 1) into a train of square pulses of ≈ 400 ps duration (see inset in Fig. 1) at a repetition rate that is finely tuned to fit the free spectral range (FSR) of the cavity. In other words, there is only one pulse circulating inside the cavity at any time. The use of short pulses allows us to access high peak power while mitigating Brillouin scattering. Pulses are amplified by an erbium doped fiber amplifier (EDFA) and a band-pass filter (BPF) removes the amplified spontaneous emission (ASE) in excess. A second EOM (EOM 2) is used to create either periodic bursts of pump pulses (see Fig. 2(a)) or a two-level pump pattern (see Fig. 4(a)). Optical circulators placed before each input of the cavity allow us both to use a single coupler for input and output and to use independently the two directions of propagation inside the resonator. On the right side, the pump pulses are launched inside the fiber ring and circulate in the anti-clockwise direction. This beam is referred to as the nonlinear beam. A fraction of the power of the pump laser is launched in the opposite direction inside the cavity and is used as a reference (linear beam) to actively stabilize the system (using a proportional-integral-derivative (PID) feedback loop which finely tunes the pump wavelength) in order to operate at a fixed detuning. The output of the nonlinear beam (which consists of 10% of the intracavity power that exits the resonator on top of 90% of the pump reflected by the coupler) enters the detection stage highlighted in light blue. This detection stage allows the simultaneous observation of the output spectrum by means of a standard optical spectrum analyser (OSA) and a fast oscilloscope (OSC) coupled to a dispersion compensating fiber (DCF) using the real-time spectroscopy technique described below. These two techniques give complementary informations during any run of the experiment. Indeed the OSA gives at any time informations concerning the state of the system (i.e., which regime of instability is excited in our case) but fails to reveal the dynamics due to its sweeping time which is in the order of the second, thus spanning a few millions of roundtrips. On the other hand, real-time spectroscopy allows the recording of spectra spanning a few THz at the characteristic repetition rate of 4.14 MHz of our cavity, though it requires numerical post-processing.

The real time technique implemented here is the DFT, which basically consists on the stretching of the temporal pulses by a highly and purely dispersive element. Note that sufficient stretching is all the easier achieved when the pump pulses are short. In our setup the frequency-to-time conversion is realized by a DCF with a coefficient β_DCF of 888 ps^2. The time-to-frequency mapping is then easily obtained at first order by the relation $T(\omega) = \beta_\text{DCF} \times L \times (\omega - \omega_0)$, where ω_0 is the angular frequency of the pump. We use a fast photodiode and a 6 GHz oscilloscope for detection and we estimate the spectral resolution to be ≈ 30 GHz [25]. In order to avoid saturation of the photodetector and to be able to reveal weak MI sidebands, the pump is filtered out using a notch filter (BSF) centered at the pump wavelength.

To investigate the onset of Turing and Faraday instabilities we used the experimental setup depicted in Fig. 1(a). Within each cavity, the resonator is closed by a 90/10 input/output coupler, an erbium doped fiber amplifier (EDFA), a band-pass filter (BPF) removing the amplified spontaneous emission (ASE) in excess, and a photodetector serving as a reference for the real-time spectroscopy technique described below. These two techniques give complementary informations during any run of the experiment. Indeed the OSA gives at any time informations concerning the state of the system (i.e., which regime of instability is excited in our case) but fails to reveal the dynamics due to its sweeping time which is in the order of the second, thus spanning a few millions of roundtrips. On the other hand, real-time spectroscopy allows the recording of spectra spanning a few THz at the characteristic repetition rate of 4.14 MHz of our cavity, though it requires numerical post-processing.

The real time technique implemented here is the DFT, which basically consists on the stretching of the temporal pulses by a highly and purely dispersive element. Note that sufficient stretching is all the easier achieved when the pump pulses are short. In our setup the frequency-to-time conversion is realized by a DCF with a coefficient β_DCF of 888 ps^2. The time-to-frequency mapping is then easily obtained at first order by the relation $T(\omega) = \beta_\text{DCF} \times L \times (\omega - \omega_0)$, where ω_0 is the angular frequency of the pump. We use a fast photodiode and a 6 GHz oscilloscope for detection and we estimate the spectral resolution to be ≈ 30 GHz [25]. In order to avoid saturation of the photodetector and to be able to reveal weak MI sidebands, the pump is filtered out using a notch filter (BSF) centered at the pump wavelength.

The fiber cavity (highlighted in green in Fig. 1(a)) is composed of 1.8 m of standard SMF-28 ($\beta_2 = -20.6 \text{ ps}^2 / \text{km}$) and 47.5 m of DSF ($\beta_2 = 2 \text{ ps}^2 / \text{km}$), hence exhibiting normal average dispersion. The average nonlinear coefficient is $\gamma = 5.5 / \text{W/km}$. We checked numerically that a realistic modulation of this coefficient does not play a significant role in the dynamics of the cavity. The resonator is closed by a 90/10 input/output coupler, an erbium doped fiber amplifier (EDFA), a band-pass filter (BPF) removing the amplified spontaneous emission (ASE) in excess, and a photodetector serving as a reference for the real-time spectroscopy technique described below. These two techniques give complementary informations during any run of the experiment. Indeed the OSA gives at any time informations concerning the state of the system (i.e., which regime of instability is excited in our case) but fails to reveal the dynamics due to its sweeping time which is in the order of the second, thus spanning a few millions of roundtrips. On the other hand, real-time spectroscopy allows the recording of spectra spanning a few THz at the characteristic repetition rate of 4.14 MHz of our cavity, though it requires numerical post-processing.

The real time technique implemented here is the DFT, which basically consists on the stretching of the temporal pulses by a highly and purely dispersive element. Note that sufficient stretching is all the easier achieved when the pump pulses are short. In our setup the frequency-to-time conversion is realized by a DCF with a coefficient β_DCF of 888 ps^2. The time-to-frequency mapping is then easily obtained at first order by the relation $T(\omega) = \beta_\text{DCF} \times L \times (\omega - \omega_0)$, where ω_0 is the angular frequency of the pump. We use a fast photodiode and a 6 GHz oscilloscope for detection and we estimate the spectral resolution to be ≈ 30 GHz [25]. In order to avoid saturation of the photodetector and to be able to reveal weak MI sidebands, the pump is filtered out using a notch filter (BSF) centered at the pump wavelength.

The fiber cavity (highlighted in green in Fig. 1(a)) is composed of 1.8 m of standard SMF-28 ($\beta_2 = -20.6 \text{ ps}^2 / \text{km}$) and 47.5 m of DSF ($\beta_2 = 2 \text{ ps}^2 / \text{km}$), hence exhibiting normal average dispersion. The average nonlinear coefficient is $\gamma = 5.5 / \text{W/km}$. We checked numerically that a realistic modulation of this coefficient does not play a significant role in the dynamics of the cavity. The resonator is closed by a 90/10 input/output coupler, an erbium doped fiber amplifier (EDFA), a band-pass filter (BPF) removing the amplified spontaneous emission (ASE) in excess, and a photodetector serving as a reference for the real-time spectroscopy technique described below. These two techniques give complementary informations during any run of the experiment. Indeed the OSA gives at any time informations concerning the state of the system (i.e., which regime of instability is excited in our case) but fails to reveal the dynamics due to its sweeping time which is in the order of the second, thus spanning a few millions of roundtrips. On the other hand, real-time spectroscopy allows the recording of spectra spanning a few THz at the characteristic repetition rate of 4.14 MHz of our cavity, though it requires numerical post-processing.

The real time technique implemented here is the DFT, which basically consists on the stretching of the temporal pulses by a highly and purely dispersive element. Note that sufficient stretching is all the easier achieved when the pump pulses are short. In our setup the frequency-to-time conversion is realized by a DCF with a coefficient β_DCF of 888 ps^2. The time-to-frequency mapping is then easily obtained at first order by the relation $T(\omega) = \beta_\text{DCF} \times L \times (\omega - \omega_0)$, where ω_0 is the angular frequency of the pump. We use a fast photodiode and a 6 GHz oscilloscope for detection and we estimate the spectral resolution to be ≈ 30 GHz [25]. In order to avoid saturation of the photodetector and to be able to reveal weak MI sidebands, the pump is filtered out using a notch filter (BSF) centered at the pump wavelength.

The fiber cavity (highlighted in green in Fig. 1(a)) is composed of 1.8 m of standard SMF-28 ($\beta_2 = -20.6 \text{ ps}^2 / \text{km}$) and 47.5 m of DSF ($\beta_2 = 2 \text{ ps}^2 / \text{km}$), hence exhibiting normal average dispersion. The average nonlinear coefficient is $\gamma = 5.5 / \text{W/km}$. We checked numerically that a realistic modulation of this coefficient does not play a significant role in the dynamics of the cavity. The resonator is closed by a 90/10 input/output coupler, an erbium doped fiber amplifier (EDFA), a band-pass filter (BPF) removing the amplified spontaneous emission (ASE) in excess, and a photodetector serving as a reference for the real-time spectroscopy technique described below. These two techniques give complementary informations during any run of the experiment. Indeed the OSA gives at any time informations concerning the state of the system (i.e., which regime of instability is excited in our case) but fails to reveal the dynamics due to its sweeping time which is in the order of the second, thus spanning a few millions of roundtrips. On the other hand, real-time spectroscopy allows the recording of spectra spanning a few THz at the characteristic repetition rate of 4.14 MHz of our cavity, though it requires numerical post-processing.
A simple and intuitive explanation lies on the difference of parametric gain between the two regimes of instability. Indeed, we ver the parametric gain (estimated from [9] and the supplemental material of [15]) is more than two times higher in the Faraday case compared to the Turing case. On the other hand, the rise time of the Faraday mode is nearly two times shorter than the one of the Turing mode, as can be seen in Fig. 2(c) and Fig. 3(c). This supports the argument that the difference in the dynamics between these two regimes is essentially driven by the strength of the parametric gain.

In order to compare with the experimental recordings, we also conducted numerical simulations based on the full cavity map [Equations (1) and (2)] including weak monochromatic seeds at the most unstable Turing and Faraday frequencies. The outcome is displayed as dashed black lines in Fig. 2(c) and 3(c). A good qualitative agreement is obtained, clearly highlighting the faster transition in the case of the Faraday instability.

Besides the emergence of the Faraday unstable branch in addition to the Turing one, the inhomogeneous dispersion profile allows the transition between these instability regimes by simply tuning the input power while keeping the detuning fixed. This power dependence has been observed in the stationary regime through the abrupt change of unstable frequency associated to the two instabilities [15]. Here we address the question of the transition between those instabilities by recording the real-time evolution of the cavity output spectrum when abruptly tuning the input pump power from a level corresponding to the Turing regime to a higher one which corresponds to the Faraday regime.

Figure 2(b) shows the evolution of the output spectrum corresponding to the pump power evolution of Fig. 4(a). The abrupt power step is preceded by a large number of pump pulses of 10 W peak power (not shown here) to ensure that a stable Turing state is reached. Once again, the different regimes of instability can be identified owing to their different characteristic frequencies. Figure 5 (a) showcases the evolution of the normalized
powers of Turing and Faraday modes during the “Turing-to-Faraday” transition. Starting from the stationary state of the Turing mode, the abrupt increase of the input power triggers the transition characterised by a sudden boost of the power of low frequency components before the power of the Turing mode falls to nearly zero. This is rapidly followed by the growth and saturation of the power of the Faraday mode in a fashion very similar to Fig. 3(c). The corresponding simulations shown in Fig. 5(b) accurately reproduce this behaviour. Conversely, we point out that the bistable nature of the system and the underpinning hysteresis (demonstrated in Ref. [15]) can result in a more complex dynamics for the “Faraday-to-Turing” transition, which extends beyond the simple tuning of the input power that we applied here. We thus do not address this case in this letter.

In summary, we recorded the real-time evolution of the optical spectrum at the output of a longitudinally modulated passive fiber ring cavity. Such configuration exhibits two different regimes of instability which can be excited independently depending on the input pump power. Besides sharing some features in common such as the growth and saturation of the power of the unstable band, these regimes differ from one another by their dynamical behaviour. The transition between the two regimes is also investigated and reveals a complex dynamics during which the system switches from one mode to the other without any evidence for their coexistence.

This work has been partially supported by the Agence Nationale de la Recherche through the NoAWE (ANR-14- ACHN-0014) and TOPWAVE (ANR-13-JS04-0004) projects, the LABEX CEMPI (ANR-11-LABX-0007) and the Equipex Flux (ANR-11-EQPX-0017), as well as by the Ministry of Higher Education and Research, Nord-Pas de Calais Regional Council and European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Region (CPER Photonics for Society P4S) and by IRCICA, USR 3380, CNRS-Univ, F-59000 Lille, France (http://www.ircica.univ-lille1.fr). S. T. acknowledges fund PRIN (2012BFNWZ2).

REFERENCES

FULL REFERENCES

1. V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: The begin-
Transactions of the Royal Society of London B: Biological Sciences
237, 37 (1952).
5196 (1988).
5. M. Haelterman, S. Trillo, and S. Wabnitz, “Additive-modulation-
6. M. Haelterman, S. Trillo, and S. Wabnitz, “Low dimensional modula-
tional chaos in diffractive nonlinear cavities,” Optics Communications
7. S. Coen and M. Haelterman, “Modulational Instability Induced by Cavity
8. S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-
rate pulse-train generation through modulational instability in a passive
(2014).
5030 (2016).
11. M. Faraday, “On a Peculiar Class of Acoustical Figures; and on Certain
Forms Assumed by Groups of Particles upon Vibrating Elastic Surfaces,”
Philosophical Transactions of the Royal Society of London 121, 299
(1831).
12. K. Staliunas, C. Hang, and V. V. Konotop, “Parametric patterns in optical
13. N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn,
“Mode-locking via dissipative Faraday instability,” Nature Communications
7, 12441 (2016).
(2007).
Turing and Faraday Instabilities in Longitudinally Modulated Passive
16. D. R. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and
17. X. Wang, D. Bigourd, A. Kudlinski, K. K. Y. Wong, M. Douay, L. Bigot,
A. Lerouge, Y. Quinquempois, and A. Mussot, “Correlation between mul-
tiple modulation instability side lobes in dispersion oscillating fiber”Opt.
18. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre,
A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-
time full bandwidth measurement of spectral noise in supercontinuum
generation” Scientific Reports 2, 882 (2012).
and N. Joly, “Spectrally resolved shot-to-shot nonlinear dynamics of a
20. A. F. J. Runge, N. G. R. Broderick, and M. Erikintalo, “Dynamics of
soliton explosions in passively mode-locked fiber lasers,” Journal of the
Optical Society of America B 33, 46 (2016).
21. J. Hammer, P. Hosseini, C. R. Menyuk, P. St.J. Russell, and N. Y. Joly,
“Single-shot reconstruction of spectral amplitude and phase in a fiber
ring cavity at a 80 MHz repetition rate,” Optics Letters 41, 4641 (2016).
22. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up
of femtosecond mode-locking with single-shot spectroscopy at 90 MHz
23. K. Ikeda, “Multiple-valued stationary state and its instability of the
transmitted light by a ring cavity system,” Optics Communications 30,
24. M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation in-
25. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast con-
26. S. Coen, M. Haelterman, P. Emplit, L. Delage, L. M. Simohamed, and
F. Reynaud, “Bistable switching induced by modulational instability in a