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Abstract (250 words) 

 Objectives 

The goal of this study was to demonstrate the feasibility of semi-automatic evaluation of cardiac 

Doppler indices in a single heartbeat on human hearts by performing 4D ultrafast echocardiography 

with a dedicated sequence of 4D simultaneous tissue and blood flow Doppler imaging.  

Background 

4D echocardiography has the potential to improve the quantification of major cardiac indices by 

providing more reproducible and less user dependent measurements such as the quantification of left 

ventricle (LV) volume. The evaluation of Doppler indices, however, did not benefit yet from 4D 

echocardiography because of limited volume rates achieved in conventional volumetric color Doppler 

imaging but also because spectral Doppler estimation is still restricted to a single location. 

 Methods 

High volume rate (5200 volume/s) transthoracic simultaneous tissue and blood flow Doppler 

acquisitions of three human LV were performed using a 4D ultrafast echocardiography scanner 

prototype during a single heartbeat. 4D color flow, 4D tissue Doppler cineloops and spectral Doppler 

at each voxel were computed. LV outflow tract, mitral inflow and basal inferoseptal locations were 

automatically detected. Doppler indices were derived at these locations and were compared against 

clinical 2D echocardiography. 

 Results 

Blood flow Doppler indices E (early filling), A (atrial filling), E/A ratio, S (systolic ejection) and cardiac 

output were assessed on the three volunteers. Simultaneous tissue Doppler indices e’ (mitral annular 

velocity peak), a’ (late velocity peak), e’/a’ ratio, s’ (systolic annular velocity peak), E/e’ ratio were also 

estimated. Standard deviations on three independent acquisitions were averaged over the indices and 

was found to be inferior to 4% and 8.5% for Doppler flow and tissue Doppler indices, respectively.  

Comparison against clinical 2D echocardiography gave a p value larger than 0.05 in average indicating 

no significant differences.   



 Conclusions 

4D ultrafast echocardiography can quantify the major cardiac Doppler indices in a single heart beat 

acquisition. 
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Introduction 

Four dimensional echocardiography (4DE), or animated three dimensional echocardiography, has 

become a powerful tool for the evaluation of the cardiac function (1). It can provide reliable 

measurements of cardiac function index such as left ventricular volumes (2) or ejection fraction (3) and 

is often considered less user dependent than 2D echocardiography (3). Moreover, post-acquisition 

measurements with 4DE has the potential to become fully automated and therefore to reduce even 

more the user dependency (4). Current evaluation of cardiac function with 4DE remains however 

currently limited to the anatomical measurements performed on the volumetric images. Volumetric 

Color flow Doppler echocardiography is also possible but is highly limited by the low volume rate 

offered by Doppler 4DE (5). Acquisitions are therefore limited to small volumes or require long 

acquisitions with ECG gating (5). More importantly, 4DE Doppler imaging is limited to color flow 

visualization and does not allow the quantification of major Doppler indices that require spectral 

Doppler estimation.    

All the functional Doppler indices are yet recommended to be explored with 2D acquisitions, because 

of 4D frame rate limitations (6). For each index, challenging manual manipulation must be performed 

by a trained cardiologist or sonographer. Variability of Doppler measurements is therefore highly 

dependent on the expertise of the sonographer (7). In addition, the entire examination is time 



consuming since each Doppler measurement can take a noticeable amount of time (and sometimes 

questionable results) due to manipulations and manual selection of regions of interest.  

In biomedical research, ultrafast ultrasound has been developed for more than two decades (8) in 

order to perform ultrasound imaging at 6000 images/s. The method relies on the emission of 

unfocused wave to insonifiate all the medium in a few transmit. Recently, ultrafast imaging was 

extended to 4D ultrasound imaging using matrix transducer arrays to achieve up to 6000 volumes/s of 

the human body. Doppler flow imaging (9), elastography (10–12) and vascular imaging (13) were the 

first applications to benefit from 4D ultrafast imaging. In the heart, 4D ultrasound ultrafast imaging 

was leveraged to image, fiber orientation mapping (14), blood flow in the entire left ventricle of a 

human volunteer (9) and tissue displacement in canine’s hearts (15). One interesting property of 

ultrafast imaging is that it enables quantifications in the entire field of view. In the case of Doppler 

blood flow, one spectrogram can be retrieved from each voxel as if Pulse Wave (PW) Doppler was 

performed simultaneously at each location of the volume (16). Similarly, for tissue Doppler imaging 

(TDI), one tissue velocity curve can be derived from each pixel simultaneously with high temporal 

resolution (17).  

In this study, we first developed a new 4D simultaneous tissue and blood flow Doppler acquisition to 

retrieve 4D color Doppler and 4D TDI in entire volumes during a single heartbeat using a spatio-

temporal clutter filtering based on singular value decomposition. From these volumes, Doppler spectra 

and a tissue velocity curve were automatically extracted at the Left Ventricular Outflow Tract (LVOT), 

across the mitral valve and at the basal septum locations, respectively. Blood flow Doppler indices E 

(early filling), A (atrial filling), E/A ratio and S (systolic ejection) were assessed on the three volunteers. 

Simultaneous tissue Doppler indices e’ (mitral annular velocity peak), a’ (late velocity peak), e’/a’ ratio, 

s’ (systolic annular velocity peak), E/e’ ratio were also estimated. Cardiac output (CO) was quantified 

without making any geometrical assumptions. These major left ventricular Doppler indices were 

quantified in three human volunteers. Each volunteer was scanned three times to assess 

reproducibility. The measurements were compared to indices measured on a 2D clinical ultrasound 

system. 

Methods 

General flow chart of four dimensional ultrafast echocardiography (4DUE) method is displayed in figure 

1. Ultrafast acquisition is first performed at a volume rate of 5200 v/s during 1.2 seconds (figure 1 (a)). 

Radio-frequency data stored in memory are used to beamform 6000 in-phase and quadrature 

components (IQ) data (figure 1 (b)).For visualization, 3D scan-conversion is applied to the data. A 

spatio-temporal clutter filtering is applied to IQ data to separate tissue signal from blood signal (figure 

1 (c)). Spectral Doppler and tissue velocity curves are computed at each voxel of the cavity and 

myocardium, respectively.  4D TDI and 4D color Doppler are assessed. Automatic detection of locations 

of interest are processed based on maxima and minima maps from the 4D color Doppler (figure 1 (d)). 

Spectral Doppler images and tissue velocity curve at the LVOT, mitral inflow and basal inferospetum 

locations are used for quantifications (figure 1 (e)). Doppler indices are extracted from the images and 

curve (figure 1 (f)).  

 



 

Figure 1: Flow chart of 4D ultrafast echocardiography (4DUE) method to retrieve cardiac indices. (a) 

Acquisition of thousands of volumes at ultrafast frame rate. (b) 4D in-phase and quadrature (IQ) B-

mode beamforming. (c) Spatio-temporal clutter filtering was performed to assess spectral Doppler and 

tissue velocity curves for each voxel. 4D tissue Doppler imaging (TDI) and 4D color Doppler were 

computed. (d) Automatic detection of transvalvular flows. (e) Semi-automatic quantification on the 

TDI and the spectral Doppler. (f) Doppler Index assessment. 

4D ultrafast acquisition 

The left ventricle of three healthy human volunteers was imaged. A trained cardiologist positioned the 

matrix array probe with a real-time two dimensional B-mode image on the apical four-chamber view 

centered on the left ventricle. Ultrafast diverging wave acquisitions were performed during 1.2 

seconds and electrocardiogram (ECG) was co-recorded during the acquisition.  

A 2.25MHz matrix array probe (1024 elements, 0.3 mm pitch, Vermon, France) connected to an 

ultrasound device with 1024 channels in emission and receive was used. 6000 diverging waves were 

emitted at a rate of 5200 volumes per second. The pulse length was set to four cycles and a band pass 

receive filter with a center frequency around 2.25MHz was set in receive. 

The acquisition was repeated three times for each volunteer to assess reproducibility and the third 

acquisition was performed by a second trained cardiologist. The three acquisitions for each volunteer 

were performed during the same day. The three volunteers were male with age of 24, 30 and 40 years 

old.  

Mechanical index (MI), spatial peak temporal average intensity (ISPTA), spatial peak pulse average 

intensity (ISPPA) were measured in an acoustic measurement tank (Acertara, USA).  MI = 0.8 - ISPTA = 

365 mW/𝑐𝑚2 – ISPPA = 51 W/𝑐𝑚2 were measured. Therefore, the configuration was kept within the 

FDA safety recommendations for cardiac applications. 

Beamforming 

The virtual source position of the diverging waves was chosen to reach a 70° sector field of view 

according to (9,17). Radio-Frequency data sampled at a 9 MHz frequency was stored in memory for 

each diverging wave. Data were beamformed using a conventional delay and sum parallel algorithm 

implemented on Graphical Processing Unit (Nvidia Titan X), and converted into 4D IQ volumes of 



70x70x470 pixels corresponding to 70°x70°x120mm volumes inducing a lateral resolution of 1° and an 

axial resolution of half-wavelength (342 µm) per voxel. 

For volume visualization, 3D scan-conversion was applied to the data. 3D mask of the left ventricle 

cavity and myocardium were segmented manually by a trained cardiologist on 2D transverse slices 

from scan-converted B-mode volumes. Interpolation over depth was performed to get the 3D masks. 

The volume rendering was performed using Amira software (Visualization, Sciences Group, Burlington, 

MA). 

 Clutter filtering 

4D tissue and color Doppler were computed by performing a spatio-temporal clutter filtering based on 

a singular value decomposition (SVD) to separate signal from the tissue and the signal from the blood 

flow as it is done by Demene et al in (18). The first 800 eigenvectors were associated to tissue whereas 

the last 5200 eigenvectors were associated to blood flow. In this study, the sliding window approach 

was not used.   

4D tissue Doppler imaging was computed by performing 1D cross-correlation on demodulated SVD-

filtered IQ volumes to obtain volumes of tissue volume-to-volume axial displacements. A butter-worth 

low-pass filtering with a 100Hz cut-off frequency was applied. At each voxel, a tissue displacement 

curve was assessed. 

Short-time Fourier transform was performed in time at every voxels of the blood flow SVD-filtered IQ 

volumes using a 60 sample-sliding window to retrieve spectral Doppler for each voxel.  

4D color Doppler was obtained by calculating the mean Doppler velocity (Spectrum 1st moment) on 

demodulated SVD-filtered IQ volumes after applying a directional filter and a dealiasing filter for the 

highest speeds (19). Directional filter and dealiasing algorithm are important to estimate the mean 

Doppler velocity. The idea of the directional filter and dealiasing filter is simple. At a given time inside 

a voxel, it is unlikely to have both upward and downward blood flow in the same time. Because the 

blood flow direction is unique, it enables to have an efficient bandwidth from –fs to fs with a sampling 

frequency of only fs (where fs = 1/volume rate). In practice, the aliased part in the spectrum is moved 

to the opposite side. 

Automatic location detection and quantification 

Blood velocity minima and maxima over time were detected to get 3D blood flow maps of the ejection 

and the rapid filling, respectively. Blood velocity minimum and maximum over time and space were 

detected to automatically derive in three dimensions the spatial coordinates of the highest ejection 

and rapid filling blood flow speed locations. From these locations, two spectral Doppler images were 

generated corresponding to the LVOT and mitral inflow locations.  

Tissue velocity minima over time was mapped in 3D to visualize early relaxation. Basal inferoseptal 

location was automatically detected by using the myocardial tissue next to the spatial coordinates of 

the highest ejection location corresponding to the aortic valve. From this location, a tissue velocity 

curve was generated. 

Doppler index estimation 

Manual selection on the spectrograms and tissue velocity was performed by a trained cardiologist to 

assess indices. From LVOT spectral Doppler, the S index corresponding to systolic ejection was 

measured. From mitral inflow spectral Doppler, E index corresponding to early filling, A index 

corresponding to atrial filling and E/A ratio were also measured. 



From the tissue velocity curve assessed at the basal inferoseptum location, indices s’ corresponding to 

systolic annular velocity peak, e’ corresponding to mitral annular velocity peak, a’ corresponding to 

late velocity peak, e’/a’ ratio and E/e’ ratio were measured using manual selection. 

Finally Cardiac Output (CO) was measured using 4D color Doppler data. CO is classically defined as the 

product of Stroke Volume (SV) with Heart Rhythm (HR) (20): 

𝐶𝑂 = 𝑆𝑉 × 𝐻𝑅  

In our case, the SV was obtained without any geometrical assumption by integrating the mean Doppler 

velocity 𝑣𝑑𝑜𝑝(𝑠, 𝑡) temporally over the systolic phase 𝑡𝑠𝑦𝑠 and spatially over the entire Cross Section 

Area (CSA), at a depth corresponding to the aortic valve location. There was no need of angular 

correction of the Doppler measurement because the integration surface was always perpendicular to 

the beam axis as it is done in (21). 

such as:  

𝑆𝑉 = ∫ ∫ 𝑣𝑑𝑜𝑝(𝑠, 𝑡) 𝑛⃗ 

𝑆=𝐶𝑆𝐴

𝑆=0

𝑡=𝑡𝑠𝑦𝑠

𝑡=0

. 𝑑𝑠⃗⃗⃗⃗⃗⃗  𝑑𝑡  

Where 𝑛⃗  is the normalized vector in the direction of the ultrasound beam and  𝑑𝑠⃗⃗⃗⃗  ⃗ is the infinitesimal 

surface oriented towards the probe. 

Comparison against clinical acquisition using 2D conventional echocardiography  

The three normal subjects were scanned by a trained cardiologist using a clinical ultrasound system 

(Acuson SC2000 system; Siemens Medical Solutions, USA). Two PW Doppler acquisitions and a TDI 

acquisition were performed successively at the mitral annulus, the LVOT and the basal inferoseptal 

location, respectively. Doppler flow profiles were recorded and the different phases of the heart were 

visualized. From these spectrums E, A, E/A, S, e’, a’, e’/a’, s’ and E/e’ index were measured. ECG was 

co-recorded during the acquisition. Comparison of Doppler parameters were made with the Student 

2-tailed paired t-test (table 1). The level of significance was set at an alpha level of ≤0.05. Analyses 

were conducted using MedCalc software (MedCalc Software, Mariakerke, Belgium). 

Results 

 4D color Doppler and 4D tissue velocity 

4D color Doppler and tissue velocity were assessed within the same acquisition. The different cardiac 

phases were visualized for the three volunteers. Figure 2 and the cine loop attached display the results 

for one volunteer. Positive blood flow and tissue velocities are represented in red (going towards the 

probe). Negative blood flow and tissue velocities are represented in blue (going away from the probe). 

During rapid inflow, blood flows upward (red) and tissue relaxation induces a downward motion (blue). 

Diastasis phase is characterized by vortex patterns in the blood and limited motion in the myocardium. 

During atrial systole, the atrium ejects the remaining blood in the ventricle (red) and induces a rapid 

motion in the myocardium also known as ‘atrial kick’ (blue). Pre-ejection displays transitory waves in 

the myocardium and turbulence in the blood. Finally, during the ejection the blood flows downwards 

(blue) while the myocardium contraction induces basal tissue to move upward (orange) and apical 

tissue to slightly move downward (light blue). These phases are displayed in figure 2 (a). At each voxel 

of the volume, Doppler spectrograms and tissue velocity plots can be derived. Two examples are 

displayed in figure 2 (b-c). The spectral Doppler and tissue velocity curve were taken arbitrarily in the 

cavity and myocardium respectively for illustration purposes.  



   

Figure 2:  Simultaneous 4D color Doppler and 4D TDI of a human volunteer left ventricle in a single 

heartbeat. (a) Three dimensional representation of Color Doppler and tissue velocity in volumes 

allowing visualization of the cardiac phases. (b) Doppler spectrogram from one random voxel of the 

cardiac cavity and (c) tissue velocity curve from one voxel of the myocardium allow quantifications. (d) 

ECG is co-registered. 

 Automatic detection of LVOT and mitral inflow locations for blood flow index calculation 

4D blood flow speed minima mapping corresponding to the ejection is displayed for one volunteer in 

figure 3 (a). Horizontal and transverse slices are presented and enabled the localization of the 

transaortic valvular flow. By automatically detecting the minimum over time and space, the location 

of the highest ejection speed was assessed. The Doppler spectrum corresponding to this location is 

displayed in figure 3 (b). From this spectrum, S index value was measured. 

Similarly, 4D blood flow speed maxima mapping corresponding to the rapid filling is displayed in figure 

3 (c). Mitral flow could also be visualized and localized. Maximum over time was detected and a 

spectrogram was displayed at this location (figure 3 (d)). From the spectrogram the E, A and E/A index 

were measured. S, E, A, E/A were measured on the three acquisitions of each volunteer. The results 

are summarized in Table 1. 

 



Figure 3: Automatic detection of absolute blood flow speed maxima during ejection (a) and early filling 

(c). (b-d) Associated spectrograms enable indices assessment. 

Automatic detection of basal inferoseptum location for tissue index calculation 

4D tissue Doppler minima mapping over time is displayed in figure 4. Previously calculated spatial 

coordinate of the LVOT was used to automatically derive the basal inferoseptal location (red dashed 

circle) as the closest tissue. Tissue velocity curve was averaged over a large area (figure 4 (b)) and s’, 

e’, a’ and e’/a’ were assessed for the three acquisitions of each volunteer (Table 1). 

 

Figure 4: 4D tissue Doppler velocity minimum representation with tissue velocity curve associated to 

the basal inferoseptal location.  

 

Cardiac Output calculation 

From the 4D color Doppler, flow rate was derived without making any assumptions on the valve 

geometry as illustrated in figure 5. Blood flow speed was integrated over depth on 2D cross sections. 

Instantaneous flow rate over depth was assessed (figure 5 (b)). At a depth corresponding to the aortic 

valve location (green area in figure 5 (a)), CO was estimated by integrating the instantaneous flow rate 

over the systolic phase (figure 5 (c)). Results are summarized in Table 1. 

 

Figure 5: Cardiac output estimation. (a) Blood velocity is integrated over cross-sections along depth. 

Green cross section is situated at the LVOT. (b) Instantaneous flow rate is displayed over depth and (c) 



at LVOT location. Cardiac output is estimated by integrating the instantaneous flow rate over systolic 

phase (d) according to ECG.  

Mixed blood flow and tissue index  

From E and e’ assessments, E/e’ was calculated in the same acquisition during the same heart beat 

for the three volunteers (Table 1).  

 Comparison between the acquisitions (4DUE and 2D echo) 

The results of the three acquisitions for the three volunteers are presented in Table 1. For each 

volunteer, the indices calculated from the three independent 4DUE acquisitions were averaged and 

standard deviations were assessed. Small standard deviations, ~4% averaged over blood flow indices 

and ~8.5% over tissue indices, suggest good reproducibility between the acquisitions. Results from 2D 

echocardiography were also displayed in Table 1. P values were calculated to assess differences 

between 4DUE and 2D echo acquisitions. With a p value larger than 0.05 in average, no significant 

differences were observed between the two methods.   

 volunteer # 1 volunteer # 2 volunteer # 3 p 

Index 4DUE 2D echo 4DUE 2D echo 4DUE 2D echo  
E (cm/s) 77.8 ± 5.2 73  74.3 ± 1.0 72  83.6 ± 2.5 83 0.72 
A (cm/s) 47.7 ± 0.9 48  51.4 ± 2.4 52  47.6 ± 1.4 49 0.65 

E/A  1.6 ± 0.1 1.5 1.4 ± 0.1 1.4  1.8 ± 0.1 1.7 0.81 
S (cm/s)  96.2 ± 4.3 98  121.3 ± 2.3 118  100.1 ± 2.5 100 0.53 
e' (cm/s)  12.3 ± 0.1 12  9.4 ± 1.2 8  12.0 ± 0.4 12 0.49 
a' (cm/s)  5.4 ± 0.6 5 9.4 ± 1.3 9  10.2 ± 0.1 10 0.61 

e'/a'  2.3 ± 0.8 2.4  1.0 ± 0.1 0.9  1.2 ± 0.1 1.2 0.41 
s' (cm/s)  7.1 ± 1.0 7  7.4 ± 1.1 9 5.7 ± 0.4 5.5 0.59 

E/e'  6.3 ± 0.4 6  7.9 ± 1.0 9  7.0 ± 0.4 6.9 0.38 
CO (L/min)  4.2 ± 0.1 4.6  4.1 ± 0.3 5.3  4.9 ± 0.3 5.5 0.42 

Table 1: Comparison between indices assessed with the 4DUE acquisition and the clinical ultrasound 

system (2D echo) for the three volunteers. 4DUE index results were calculated as the average and 

standard deviation over the three acquisitions. P-values were calculated to analyze the results. 

Cardiac evaluation with a clinical ultrasound system 

Figure 6 displays the index assessment performed on one volunteer with the clinical ultrasound device. 

Clinical indices were derived and summarized in Table 1. 



 

Figure 6: (a) Doppler spectrum at the mitral inflow and (b) at the LVOT. (c) Tissue velocity curve at the 

basal septum obtained with a clinical ultrasound system for one volunteer. The different phases of the 

cardiac cycle are identified and some clinical indices are measured. 

Discussion 

In this study, we demonstrate that 4DUE can be used for semi-automatic quantification of Doppler 

indices at every voxel of the entire field of view. Such a semi-automatic processing requires volumetric 

imaging to acquire the entire LV but also ultrafast imaging to perform quantification over a large field 

of view. The new method promises to simplify and accelerate clinical practice as well as removing most 

of the operator dependency.  

More specifically, we developed 4DUE optimized for simultaneous 4D color Doppler and 4D tissue 

Doppler by acquiring thousands of volumes at a volume rate of 5200 volumes per second. A powerful 

spatio-temporal filter was used to remove the clutter signal and obtain high quality volumetric blood 

flow data. In contrast to temporal filters that separate tissue and blood signals only from their 

difference in velocities, the SVD is based on both spatial and temporal information and has been shown 

to achieve much better filtering (18). Automatization of the number of eigenvectors to separate the 

tissue from the blood signal could be performed as it is done in (22). By taking advantages of ultrafast 

imaging and volumetric acquisition, a novel processing was developed to automatically detect the 

regions of interest that clinicians usually select manually to assess cardiac indices. For instance, LVOT 

and mitral inflow locations were automatically detected by assessing the highest negative and positive 

flow speeds, respectively, from the 4D color Doppler. Spectrograms from these locations enabled to 

assess S, E, A and E/A indices in each acquisition of the three human volunteers. Similarly, basal septum 

location was automatically detected. A tissue velocity curve from this location was used to assess s’, 

e’, a’ and e’/a’ in each acquisitions of the three human volunteers. A unique feature of the method is 

also the capability of measuring both blood flow and tissue related indices (E/e’) in a single heart beat 

which could be of a great interest for patients with atrial fibrillation (23).  

The 4D nature of the acquisition also enabled the calculation of the CO without the need of making 

any assumption on the valve geometry, usually responsible of 3% to 12% error on the CO value (20), 

taking advantage that blood velocity can be assessed in entire cross-sections. CO at the aortic valve 

location was derived. Segmentation could also be used to spatially isolate the atrium and quantify 

regurgitations for instance.  



The rich 4D information obtained with the method could provide other indices not calculated in this 

study such as Mitral Valve (MV) A duration or MV Deceleration Time.   

The new method was tested by two trained cardiologists on three LV of human volunteers and the 

derived indices were successfully compared to the ones obtained with a clinical ultrasound system 

(p>0.5). The proposed method is of a great interest to clinical practice as it removes most of the 

manipulations like switching imaging modes thus reducing significantly the acquisition time and the 

operator dependency (~4% and ~8.5% variability averaged over Doppler flow and tissue indices 

respectively, on the three acquisitions performed on each volunteer). The only remaining manipulation 

would be the positioning of the probe in the apical four-chamber view at the beginning of the 

acquisition which would still require a specific training for the operator.  

There are several limitations due to the transmit scheme. Firstly, due to the diverging nature of the 

transmitted wave, the penetration could be an issue for over-weighted patients as the wave may be 

attenuated faster. In these cases, other transmit strategies such as increasing the length of the 

transmitted pulse or using cascaded dual-polarity waves could be used (24). The receive aspect might 

be ameliorated as well with technological progress as more sensitive matrix array probe will be 

developed in the near future. Secondly, the overall image quality is degraded compared to a focused 

beam approach as only one diverging wave is used in this study. Sidelobes and clutter level may be 

also an issue for morphological representation. However, 4D B-mode volumes quality could be 

increased by using a dedicated sequence with spatial coherent compounding (9) or multi-line 

strategies (25) which would enable morphological and strain measurements to be performed (26). 

Thirdly, the matrix array probe used in this study is suboptimal for cardiac imaging. The number of 

elements are small (32x32 elements) compared to a clinical phased array probe (64-96 elements) 

resulting in a smaller aperture (9.6x9.6mm versus~19.2mm) and a lower image quality. Increasing the 

number of independent elements is challenging as it also implies increasing the number of channels of 

the ultrasound device. Extensive research is going on to reduce the number of channel in ultrafast 

imaging, by using dedicated micro-beamformer or by using sparse acquisition by turning off some 

elements. These strategies would allow to use larger matrix array probe and thus increase signal to 

noise ratio which is critical for Doppler imaging.  

For many patients, valve leakage or stenosis could be present. In this cases, the volume rate of few 

thousands of volume per second might not be sufficient to resolve the very high blood flow speed. 

Dealiasing strategies with multiple pulse repetition frequencies, for example, could be used to retrieve 

the highest blood flow speeds as it is done in (27). Moreover, for patients with dilated heart, it may 

require to increase the beam sector by increasing the angular aperture.  

This study focused on LV but could also be used on right ventricle (RV) by centering the probe on the 

RV using the 2D real-time B-mode images. The full heart could also be acquired in the same time by 

increasing the size of the imaging sector. We know that the impact of one ventricle on the adjacent 

ventricle plays a key role in cardiac function (28). To date, there is little published data describing 

imaging of ventricular-ventricular interactions. 4DUE could be a new and interesting tool to explore 

and understand this interaction. 

To conclude, non-invasive evaluation of cardiac function remains central in clinical practice of 

cardiology, both in the evaluation of systolic and diastolic function. Although cardiac catheterization is 

the reference technique, cardiac ultrasound remains the routine non-invasive examination for 

detection and follow-up of cardiac diseases. The measurement of the ejection fraction and the 

evaluation of the left ventricle filling pressures, play indeed a diagnostic and prognostic role of major 

importance. However, due to the variability of ultrasound results, the use of alternative imaging 



modality, such as MRI or nuclear cardiology, is sometimes required, although more difficult to achieve. 

Ultrasound limitations are induced by the two-dimensional imaging approach and the Doppler signal 

angular dependence which are responsible for inter-operator variability. For these reasons, 4DUE 

represents the next generation of cardiac imaging, overcoming theses current limitations, as it could 

become an accessible, fast, and robust imaging tool in daily practice. In this work, we particularly 

emphasized the measurement method based on a single cardiac cycle, reducing the variability of 

measurements, especially in cases of ectopic beats, a frequent situation that reduces the performance 

of 2D cardiac ultrasound.  

Conclusions 

In this study, 4DUE was developed to revisit the evaluation of the LV indices measured by ultrasound. 

The dedicated simultaneous tissue and blood flow Doppler sequence includes a new acquisition and 

processing flow chart. A few thousands of diverging waves were emitted at ultrafast volume rate on 

the LV of three normal subjects in order to achieve both 4D color Doppler and 4D tissue Doppler in 

volumes in a single heartbeat. From these volumes, methods were developed to semi-automatically 

detect region of interests associated to the indices E, A, E/A, S, e’, a’, e’/a’, s’, E/e’ and cardiac output. 

4DUE enables quantifications, thus spectrograms and tissue velocity curves were derived at each of 

the region of interest to enable index evaluation. 4DUE has the potential to improve patient care by 

accelerating examination time as well as result reproducibilities by removing most of the operator 

dependency. 
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