Physicochemical Stability of Monoclonal Antibodies: A Review.
Yoann Le Basle, P. Chennell, Nicolas Tokhadze, Alain Astier, V. Sautou

To cite this version:

HAL Id: hal-02385936
https://hal.archives-ouvertes.fr/hal-02385936
Submitted on 29 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Physicochemical stability of monoclonal antibodies: a review

Y. LE BASLE(1), P. CHENNELL(1), N. TOKHADZE(1), A. ASTIER(2), V. SAUTOU(1)

(1) UNIVERSITE CLERMONT AUVERGNE, CHU CLERMONT FERRAND, CNRS, SIGMA CLERMONT, ICCF, F-63000 CLERMONT-FERRAND, FRANCE

(2) ASSISTANCE PUBLIQUE DES HÔPITAUX DE PARIS, HÔPITAL UNIVERSITAIRE HENRI MONDOR, SERVICE PHARMACIE, 94010 CRETEIL, France
ABSTRACT

Monoclonal antibodies (mAbs) are subject to instability issues linked to their protein nature. In this work, we review the different mechanisms that can be linked to monoclonal antibodies instability, the parameters and conditions affecting their stability (protein structure and concentration, temperature, interfaces, light exposure, excipients and contaminants, and agitation) and the different analytical methods used for appropriate physicochemical stability studies: physical stability assays (aggregation, fragmentation and primary, secondary and tertiary structure analysis), chemical stability assays and quantitative assays. Lastly, data from different published stability studies of mAbs formulations, either in their reconstituted form, or in diluted ready to administer solutions, was compiled. Overall, the physicochemical stability of mAbs is linked to numerous factors such as formulation, environment and manipulations, and must be thoroughly investigated using several complementary analytical techniques, each of which allowing specific characterization information to be harvested. Several stability studies have been published, some of them showing possibilities of extended stability. However, those data should be questioned due to potential lacks in study methodology.

KEYWORDS

Physicochemical stability; monoclonal antibody; drug; biopharmaceutical; protein.

ABBREVIATIONS

Asp: Aspartate
AUC: Analytical ultracentrifugation
AFM: Atomic Force Microscopy
CD: Circular Dichroism
CDR: Complementary Determining Region
CEX: Cation Exchange Chromatography
CE: Capillary Electromigration
CIEF: Capillary Isoelectric Focusing
CZE: Capillary Zone Electrophoresis
CGE: Capillary Gel Electrophoresis
DNA: DesoxyriboNucleic Acid
Fab: Antigen binding fragment
Fc: Crystallizable fragment
FT-IR: Fourier-transformed Infrared
HOS: Higher Order Structure
ICH: International Council for Harmonisation
INN: International Nonproprietary Name
IV: Intravenous
mAb: Monoclonal Antibody
MALDI: Matrix-Assisted Laser Desorption Ionization
MS: Mass Spectrometry
PAGE: PolyAcrylamide Gel Electrophoresis
Ph. Eur.: European Pharmacopeia
pI: Isoelectric point
PMF: Peptide Mass Fingerprint
PVC: Polyvinylchloride
RPLC: Reversed-Phase Liquid Chromatography
SDS: Sodium Dodecyl Sulfate
SEC: Size-Exclusion Chromatography
TOF: Time Of Flight
UV: Ultraviolet
Tm: Thermal unfolding temperature
1 Introduction

The use of biopharmaceuticals has drastically expanded since the 80s with the development of recombinant DNA technology. Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals with indications now covering a large panel of diseases, from cancer to asthma, including central nervous system disorders, infectious and cardiovascular diseases. Monoclonal antibodies are immunoglobulins (or fragments of immunoglobulins) with a precise target, produced from a single cellular clone. They are proteins composed of 4 chains – two light chains and two heavy chains – linked together with disulfide bridges. In those chains can be found two different types of domains: constant or variable; the three complementary determining regions found in each variable domain are responsible for specificity of antibody binding to its target. Finally, the whole quaternary structure can be divided into three fragments: two antigen-binding fragments (Fab, corresponding to the “arms” of the antibody) containing one light chain, one variable heavy domain and one constant heavy domain, and one crystallizable fragment (Fc, corresponding to the “base” of the antibody) containing the rest of both heavy chains. Figure 1 summarize those different structures.

Antibodies are divided into 5 isotypes (IgG, IgA, IgM, IgE and IgD), different in structure and function. The IgG isotype can be further divided into subtypes, differing in the number of disulfide bonds, especially in hinge region. IgG1 is the most commonly used subtype for drug manufacturing, although IgG2 and IgG4 may be found (IgG4 subtype, for example, being used in the design of immunotherapies for its different anti-inflammatory mechanisms). Once their patent expires, therapeutic proteins become open to development and manufacture by other companies. However, the term “generic” is inappropriate, as the new product wouldn’t be produced by the exact same cell line, and therefore cannot be duplicated identically. For example, there may be post-translational differences (glycosylation) or altered higher order structures (HOS). The term “biosimilar” is preferred, short for “similar biological medicinal product”, and is defined by the European medicine agency as “a biological medicine highly similar to another biological medicine already approved in the EU (called ‘reference medicine’) in terms of structure, biological activity and efficacy, safety and immunogenicity profile (the intrinsic ability of proteins and other biological medicines to cause an immune response)”6, the U.S. Food and Drug Administration having a similar definition7. The approval requirements for marketing include comparability studies with the reference biological medicine, both analytical (physicochemical and biological) and clinical (pharmacokinetics, pharmacodynamics, safety, and potency)8. After approval and marketing, other indications may be extrapolated from the reference biological medicine only based on extensive justification of comparability and without further clinical studies8. However, extrapolation of clinical data can be challenging, especially in cancer indications9. Likewise, complex proteins like mAbs unavoidably have
microheterogeneities and contain co- and post-translationally modified variants, which in combination with possible excipient changes and different manufacturing conditions make extrapolation of stability data a complex process \(^1\).

During therapeutic antibody production via mammalian cells such as Chinese hamster ovary, a multitude of parameters can be the cause of unwanted modifications, such as variability of the cell line, the number of cell subcultures performed over a time, cell passages over a time or environmental cell culture conditions \(^1\). Post-translational modifications, like glycosylations (eg. N-linked glycosylation) can alter biological activity \(^1\), as for example altered fucosylation levels impacting antibody-dependent cell-mediated cytotoxicity activities \(^1\), as well as mAb stability \(^4\). For example, Mimura et al. found that it may play an important role in thermal stability of mAbs \(^5\), while Gaza-Bulseco and Liu showed that oligosaccharides reduced the fragmentation rate at a pH of 4, but not between 5 and 9 \(^6\).

Later in its life, a mAb may encounter various situations at risk of causing instability, like during repackaging, accidental freezing or just normal dilution in intravenous (IV) bags and administration through IV-lines \(^7\). Also, in certain situations, based on published stability studies, users may wander from the summary of product characteristics recommendations concerning diluted bags and reconstituted vial conservation time. However, this should be a careful practice, as the reliability of those stability studies is uncertain if they do not explore every aspect of protein stability, and their conclusions may not be transposable to every situation, being then at risk of mAb instability. Clinical consequences of such events are still under investigation, especially with regards to the immunogenicity potential \(^8\), and available data is not always reassuring, as several publications have shown an enhanced immune response due to aggregates, even though the relationship is not fully understood and seems dependent on the degradation pathway \(^9\–\)\(^2\).

Despite there being many excellent reviews on the overall subject of protein stability \(^2\–\)\(^7\), the objective of this work is to propose an up-to-date review about mAb stability and a compilation of data from different published stability studies of mAbs, either in their reconstituted form, or in diluted ready to administer solutions, in order to give readers a comparative overview of post-marketing stability studies and to point out their potential lack of compliance to recommendations for protein stability studies through a gradation proposal. For a complete comprehension, we will first briefly describe the different instability mechanisms mAbs are subjected to and the parameters and conditions affecting their stability, before going into a description of the different analytical methods used for appropriate physicochemical stability studies, and eventually present the compilation itself. It is to be noted that, despite being an important subject, microbiological considerations will not be addressed in this paper.
2 Mab instabilities mechanisms

Protein degradation can result from many different instability mechanisms that can be divided into chemical and physical instabilities. Those instabilities are closely interwined, as chemical reactions can lead to physical instability and physical instability may give access to chemically susceptible residues or close the gap between residues that may interact, even if it hard to know what was the original cause of instability. For example, Luo et al. showed the presence of several chemical modifications in aggregates, however they didn’t conclude about wither those modifications existed or not before aggregation.

2.1 Chemical instabilities

Oxidation, including disulfide bond formation, is one of the most frequent chemical degradation. It may happen in presence of oxidants (like peroxides, light or metals) or without, then referred to as auto-oxidation. Some residues are particularly susceptible to oxidation, including methionine, histidine and cysteine residues. Disulfide bond formation is one of the consequences of cysteine oxidation that occurs between two oxidized free residues, with a thiolate anion intermediate. The formation of those bridges may be intra or intermolecular, and is enhanced in basic environment.

Another major chemical degradation process of proteins is deamidation, affecting mostly asparagine and, in a lesser extent, glutamine residues. It is an acid-base reaction, facilitated by the presence of specific nearby residues that may act as proton donors (threonine or serine for example), that results in the formation of a cyclic imide intermediate that can cause a distortion in the polypeptidic structure. In the case of Asparagine, the succinimide intermediate spontaneously hydrolysed into Aspartic acid or Isoaspartic acid.

Fragmentation in mAbs may occur on disulfide bonds or peptides. Disulfide bond disruption results in full chain fragments (eg. “one-arm” mAb, free light chain). Peptide bond cleavage results in low molecular weight species of different nature and size, and may be caused by enzymatic or non-enzymatic mechanisms. Due to its flexibility and accessibility, the hinge region is especially susceptible to cleavage, even if the instability mechanisms are incompletely characterized. For example, Cordoba et al. studied mAb cleavage on the papain site in the hinge region, but found it to be unchanged by the addition of protease inhibitors, thus concluding to a non-enzymatic mechanism. Asparagine and aspartic acid residues seem to be particularly...
susceptible to spontaneous hydrolysis, possibly through the succinimide intermediate. However, this degradation pathway should only be observed in conditions not normally encountered during a therapeutic mAb product lifetime (highly acidic conditions and high temperature)28,31 and prevented by appropriate formulation31.

Sugars are used in mAb formulation as stabilizing excipients, as well as dilution solvent in IV bags (5% dextrose). Glycation, also known as Maillard reaction, occurs between reducing sugars and proteins, through the formation of a Schiff base that may undergo an Amadori rearrangement forming a stable ketoamine, affecting protein’s structure and function and responsible of a browning24,36. It may happen at several times during mAb’s lifetime, from cell culture production to administration37. As for excipients, non-reducing sugars are now mostly the only ones used. However, reducing sugars may still be found as degradation products from non-reducing sugars38.

The impact of chemical modifications in mAbs highly depends on their location28,39. For example, deamidation occurring in the Fc fragment may have only few effects, while if located in the CDR region of Fab fragments, it may cause a reduction in binding affinity and mAb potency39. Oxidation may have the same consequences, and may also reduce binding affinity to FcRn if located in the Fc fragment, reducing affinity for macrophages or increasing mAb clearance31,40. Also, several studies have shown that chemical instabilities can lead to conformational modifications and aggregation41. For example, Burkitt et al. showed that methionin oxidation was susceptible to destabilise secondary structure42.

Chemical modifications of mAbs can result in charge heterogeneity by changing their isoelectric pH (pl) values. An increase of overall negative charges (decreasing pl values), as seen with deamidation31, results in acidic variants, while an increase of overall positive charges (increasing pl value), as seen in oxidation or succinimide formation, results in basic variants. Major modifications in pl (one unit or more) may be responsible of an alteration of pharmacokinetics43. Interestingly, several studies have showed that an increase in pl may provoke a decrease in a mAb’s serum half-life, partly from an increase in tissue uptake, and seems to alter subcutaneous bioavailability44,45. On the other hand, a decrease in pl seemed to be responsible for an overall increase in mAb’s whole-body clearance45.

2.2 Physical instabilities

Protein denaturation refers to the loss of higher order structure through unfolding. It may result from previously described chemical instabilities, or from environmental conditions such as extreme temperatures or pH. The consequences of unfolding can be direct perturbation of the mAb’s function, for example a decrease in hinge flexibility, or promotion of aggregation28.
Aggregation is the main physical instability. It is the assembly from initially native and folded proteins into high molecular weight species (multimers), regardless of their size or the nature of bonds linking them together. Aggregates can be formed solely from weak non-specific bonds (Van der Waals interactions, hydrogen bonding, hydrophobic and electrostatic interactions) with no change in primary structure and the phenomenon is called physical aggregation or self-association, or contain covalent bonds, including disulfide bonds, and is then called covalent aggregation. Both mechanisms can lead to the formation of soluble aggregates or insoluble precipitating aggregates.

Aggregation is often irreversible, especially at later stages, and aggregates often contain high levels of proteins with a non-native conformation. Irreversible aggregation is a multistep process that can be described by the Lumry-Eyring model (equation 1), however other aggregation pathways exist such as described by Uchiyama.

Equation 1, Lumry-Eyring model (N : Native ; U : Unfolded ; D : Deactivated):

\[N \leftrightarrow U \rightarrow D \]

The native protein first undergoes a reversible conformational change to a transition state of higher free energy that can change back to the native protein or form an intermediate more susceptible to aggregation, due to a decrease of free energy after every new aggregate formed. Also, unfolding reveals the hydrophobic residues that are mostly hidden in the native conformation, reducing solubility in hydrophilic buffer and increasing subsequent self-association then aggregation. However, the unfolding of mAbs occurs one domain after the other, as a multistep process. The Lumry-Eyring model still applies, but there may be several intermediate states between native and unfolded state.

Aggregation is suspected to cause a stronger immunogenicity of protein therapeutics in patients. Two pathways have been proposed: presentation to T-helper cells (T-cell dependent response) and activation of cytokines (T-cell independent response), both by cross-linking with B-cell receptor, and both inducing B-cells proliferation and antibody production. The capability to create an immune response seems to increase with the aggregate size, but is also impacted by the degree of glycosylation, origin of the product and presence of contaminants. Immunogenicity can lead to the neutralization of the mAb, implying a loss of efficacy, but also to cross-reactions with an endogenous counterpart, leading to IgE-mediated immediate hypersensitivity and anaphylaxis. However, actual models are only in vitro or preclinical (mice) and only predictive of the risk of immunogenicity of protein aggregates in human, and the exact mechanism needs to be elucidated.
As we discussed above, in certain conditions aggregates may precipitate and form insoluble particles. These particles may consist of proteins alone, or be heterogeneous (containing excipients, leachables, contaminants). Parenteral drug solutions, mAbs or not, should be practically free from visible particles2,54, and limits for subvisible particles have been set for particles above 10 µm and 25 µm55.

As it will be discussed in the following sections, many factors can impact both physical and chemical stability, and formulation and usage of the right excipients (some protecting the mAb) is a tremendous challenge for manufacturers. Also, different mAbs may have different sensitivity to different stresses, some having globally low vulnerability compared to others56.

\section{Stability influencing factors}

\subsection{Protein structure}

All structure levels of proteins have their impact on its stability. The amino acid sequence (primary structure) gives an important clue on whether a protein will be prone or not to aggregation. For example, a low isoelectric point (pI) of CDR seems to promote soluble aggregates formation by enhancing electrostatic interactions between mAbs, whilst a high pI of CDR leads preferentially to insoluble aggregates, especially if in contact with negatively charged surfaces57.

Subtle variations in mAb sequence and structure can also greatly influence stability when exposed to stress conditions. Pisupati \textit{et al.} compared the behavior of infliximab reference product (Remicade®) and biosimilar (Remsima®) in a forced degradation study and found it to be similar, despite small differences in products' profiles and manufacturing processes, concluding that the primary sequence was the main factor impacting stability58. Moreover, Skamris \textit{et al.} showed that three model mAbs with identical variable regions, representative of IgG1, IgG2 and IgG4 subclasses, behaved differently after low pH treatment (pH = 3.3) and subsequent neutralization. Whilst IgG1 remained monomeric, IgG2 and IgG4 exhibited a two-phase oligomerization process, which lead to aggregation for IgG4 after return to normal pH59. Such a behavior could be linked to an increased flexibility of the hinge region, shielding access to the hydrophobic patches. IgG2 and IgG4 oligomerization was attributed to the initial unfolding in the Fc region induced by the acidic treatment, which causes the exposure of residues or patches that are otherwise covered. The results are in accordance with earlier findings which classified different subclasses of IgG according to their aggregation potential (IgG1 < IgG2 < IgG4) for a pH range of 4 to 760. In addition, attachments (such as glycans) to residues, especially the aggregation prone ones, may reduce the aggregation potential of the whole mAb61.

\section*{References}
Tertiary structure can have a tremendous influence on aggregation, depending on the degree of unfolding, since several studies showed that partially unfolded proteins are more prone to aggregation than both native and completely unfolded proteins24,47.

3.2 Protein concentration and self-association potential

High protein concentrations have been shown to impact aggregation. Higher protein concentrations also seem to increase the viscosity of solutions, which itself may increase the aggregation potential of proteins by enhancing protein-protein interactions and self-association27,62. This concentration-dependent tendency to aggregation is an increasing concern considering the extended use of subcutaneous administration of mAbs which require highly concentrated solutions. However, the real impact of high protein concentrations is complex, as can be seen, for example, in the work published by Hauptmann et al. where they showed that high concentrations increased smaller particles concentrations while decreasing bigger ones63, while Nicoud et al. showed an increase in aggregation rate with concentration64. However, other studies have reported more mitigated results, for example where increasing protein concentration decreased the rate of aggregation24.

A decrease in protein concentration can lead to dissociation of weakly bonded aggregates29,65. However, increasing the dilution without modifying the excipient to mAb ratio decreases the excipients concentration, including the protecting ones (such as for example surfactants, sugars and arginine (see infra)), and modifies the electrolytic composition (influencing pH and ionic strength), which may decrease the chemical stability17.

Independently from any other factor, proteins have a certain propensity to self-associate, which has been shown to be particularly implicated in aggregates growth66. This phenomenon seems to be governed by electrostatic interactions end by dipole moments between protein surfaces67, and might engage preferentially Fab-Fab interactions68. Self-association highly impacts solution viscosity and is dependent on the ionic strength of the solution68. Yadav et al. also showed that viscosity may be maximized at pH near the isoelectric point of the protein, as charges are then reduced and repulsive electrostatic interactions decreased69. Self-association potential may be predicted by the osmotic second virial coefficient (measure of the solution non-ideality) and by the diffusion interaction parameter (quantification of intermolecular interactions, component of the osmotic second virial coefficient), which can be determined by several techniques (including dynamic light scattering (DLS) and self-interaction chromatography)70. If strongly negative, the osmotic second virial coefficient may reflect a higher probability
for the protein to form multimers as negative values of this coefficient show the existence of net attractive forces between solute molecules present71,72. Likewise, zeta potential can be a good indicator of the surface charges that may lead to electrostatic and van der Waals interactions62.

3.3 Temperature

MAbs, like other therapeutic protein, can be exposed to temperature variations during their processing, storage and transportation24,49. High temperatures can perturb the native protein conformation to a sufficient degree to promote aggregation, but it starts at temperatures well below the equilibrium melting temperature (Tm) of the protein. The aggregation rate is increased at high temperature, as other protein reactions47. Heat induced unfolding usually leads to irreversible conformational changes29,49. High temperatures also accelerate chemical reactions, such as deamidation and oxidation24,29.

Each and every protein has a specific Tm, which is the temperature where 50% of proteins are unfolded. This temperature is in most cases between 40 and 80°C and manufacturers generally recommend storing biopharmaceuticals between 2 and 8°C, well below this Tm29.

Low temperatures can also induce protein denaturation, especially during freezing and freeze-thawing cycles, linked to the combination of multiple stress factors (drop of buffer pH due to crystallization, solute molecules cryoconcentration, water-ice interface formation...), affecting both colloidal and conformational stability of proteins73. Freezing mAbs solutions may happen willingly, for example for freeze-drying74 or bulk storage75, or accidentally during refrigerated storage. Cold caused unfolding and aggregation is usually reversible, as the mAb mostly stays in a native conformation24,49. However, the number of freeze-thaw cycles seems to have an impact on the aggregation potential of mAbs, as well as the mAb concentration76–80. For example, when 0.5 mg/mL bevacizumab solutions were subjected to 1 to 30 freeze-thaw cycles, the bevacizumab monomer peak (analysed by size exclusion chromatography (SEC)) decreased with an increasing number of cycles. In the same study, for a fixed number of freeze-thaw cycles (10 cycles), the monomer peak decreased with bevacizumab concentration, indicating an improved stability to freeze-thawing cycles at higher concentrations76. On the other hand, Rayfield et al. showed an opposite result with aggregation increasing with concentration. They also demonstrate the importance of formulation in preventing aggregation from freeze-thawing60 (among other factors, as will be presented in section 3.6).

Heating or cooling rate are also important factors, as extreme rates seeming to lead to instability74,79,81. However, mAbs have a good stability and resistance to moderate thermal stress, when compared to other proteins23,32. This fact is of crucial importance in case of accidental short-term temperature excursion, justifying a safe use of the exposed products. As another
example, lyophilisation processes with a high freezing temperatures (ie. near the equilibrium freezing point) seem to have a protective effect against further stresses when compared to lower freezing temperature, as the cooling rate is decreased82.

3.4 Interfaces

Proteins are surface active molecules, and have a tendency to adsorb to hydrophobic surfaces and interfaces. Throughout their life, they encounter those in many different forms83,84.

The adsorption phenomenon is especially relevant when the preparation is highly diluted and/or when the contact surface is important. Contact of the drug with various surfaces can affect stability and drug recovery and can lead to unacceptable product loss, decreased potency and potential under-dosing81,85. Adsorption has been shown to be concentration-dependent with saturation occurring at some point. It is function of various other parameters like the number of protein layers, pH and ionic strength, but when it occurs, desorption of adsorbed mAbs can lead to denaturation and aggregation86,87. Focusing on the hydrophobicity of surfaces, Couston \textit{et al.} demonstrated that mAbs predominantly adsorbed onto hydrophilic surfaces, but that their secondary structure was less altered than with hydrophobic surfaces88.

These interactions can be observed whatever the container material is. Type I glass, the most used primary packaging material in vials, and a relatively inert one, can adsorb relatively large amounts of proteins during the shelf life of a drug, mostly due to electrostatic interactions84. Glass and silica microparticles have also been shown to cause adsorption of humanized mAbs to their surface, in about 4 nm thick layers, as visualized by atomic force microscopy (AFM), but without mediating any changes in secondary structure89, which is consistent with earlier studies and studies with other proteins90,91. Interactions with glass can also cause analytical problems, as adsorption to the glass walls of certain chromatography vials has been shown to influence analytical reproducibility during size exclusion chromatography92. Interestingly, such a phenomenon seems to increase in importance with the concentration of the analyzed mAb solutions (minimum impact at concentrations lower than 5 mg/mL which is contrary to usual content-container interactions (higher impact for lower concentrations, as for a same amount of adsorption the higher the overall adsorption percentage will be), and also to the shape of glass vial used (and maybe the nature of the glass). The material used for the IV bag delivery can also impact concentration of the mAb monomer and particle formation. Kumru \textit{et al.} showed that incubating 1 mg/mL IgG4 solutions in either polyvinylchloride (PVC) or polyolefin IV-bags for 1 to 6 hours caused an up to 25% decrease of mAb concentration for the solutions stored in the PVC bags and increased sub-visible particle formation and overall turbidity, when compared to polyolefin bags. The addition of polysorbate 20 greatly reduced particles in both IV-bags, with a particle count near the negative control93. The same observation was made in
another study by Sreedhara et al.17. However, the effect of polysorbate 20 alone was not evaluated. Indeed, polysorbates are known to increase plasticizers leaching from PVC, which may interact with proteins to form heterogeneous particles94. In another study, repackaged bevacizumab solutions in plastic syringes (no precise data on the exact nature of the plastic is available) from three different American compounding pharmacies were compared to solutions obtained directly from the original vial. Total immunoglobulin content varied significantly between samples from the different compounding pharmacies and from the original solution, with the concentration from one sample have a 50% loss in detectable IgG content95. That sample also contained the highest amount of particles, the biggest reaching a diameter of nearly 19 µm. These phenomena are particularly important in drug delivery systems, but can also be observed during the manufacturing process or during the analysis time, for example onto chromatographic columns of multiple natures87. Lastly, Zhang et al. quite recently showed the interaction of a mAb’s Fab fragment with a rarely studied material, polystyrene, forming a single protein layer at the surface96.

Proteins may adsorb at the air-water interface, forming layers, because of the relative hydrophobicity of air compared to water24. It has been shown than a rupture of these layers leads to the formation of protein aggregates in the solution, linked to surface tension forces at the interfaces perturbing the protein structure83. Also, Sreedhara et al. showed that removing headspace from IV-bags decreased agitation-induced aggregates formation independently of polysorbate concentration17.

Organic substances are often used in pharmaceutical compounding and material manufacturing. There are a lot of publications reporting interactions between those substances and proteins. An example of an organic product that may interact with the solution is silicone oil, used as a lubricant for syringe plungers and vial stoppers. The adsorption of proteins onto the silicone oil phase can lead to the formation of viscoelastic gel layers stabilized by many noncovalent interactions. This phenomenon has been shown to be faster with the protein concentration increasing. If the gel is ruptured by mechanical stresses, aggregates and sub-visible particles are to be released in the solution. Those particles are of irregular morphologies and sizes and generally insoluble83,97. Thirumangalathu et al. observed that silicone oil was responsible of monolayer adsorption of mAbs at the interface, but principally as an enhancing factor, needing another destabilization parameter (e.g. agitation or unoptimal pH) for a significant loss of monomer to occur. Also the addition of surfactant suppressed agitation-induced monomer loss with silicone oil98. In another study, Lubiniecki et al. only detected a small raise in particles over 10 µm in silicone oil lubricated prefilled syringes when compared to in vial product99. However, depending on the container material, silicone oil coverage can be a protection towards adsorption to highly reactive surfaces100.

MAbs solutions may interact with in-line filters in several ways. If aggregates of sufficient size are present in solution, they will be trapped in the filter, decreasing the dose administered to the patient, and possibly clogging the filter101, but overall adsorption to filters should not be a problem, except in some cases specified by manufacturers101. However, Besheer showed that
several mAbs adsorbed to positively charged polyethersulfone and positively charged polyamide when diluted to 0.01 mg/mL in 0.9% sodium chloride. Interestingly, the use of 5% glucose reduced protein adsorption to the previously cited filters, and with only the neutral PES filters tending to adsorb the proteins under the investigated conditions. It must be however noted that the high dilution factor applied (of 2500 to 15000) makes extrapolation to clinical conditions very difficult.

In a drug formulation, mAbs are not the only substance that may undergo ad- or absorption. This phenomenon may affect excipients (function of their physicochemical characteristics and therefore their affinity for the surfaces), and depending on their role in the formulation (buffer, surfactant, preservative, other stabilizers,...), a loss in their concentration may lead to a condition where requirements for mAbs’ stability are not met anymore.

Beside the adsorption phenomenon, every surface the solution gets in contact with is highly susceptible to release foreign substances or even particles into the solution, especially when subjected to a mechanical coercion. Other stress conditions (eg. temperature variations, photodegradation) may favour leaching from materials. In addition to the potential toxicity of such leachable for patients, this causes an increase of adsorption-competent surface.

A recent development in preventing protein interactions with surfaces has been coating those surfaces, also called surface passivation. Several polymers (eg. Oligo(ethylene glycol) and poly(ethylene oxide)), techniques and architectures have been used. Coatings can be divided into two groups: monolayer coatings (the most studied) and multilayer coatings (less controllable). Also, it seems that using polymers that have a reduced number of hydrogen bond donors and an increased number of hydrogen bond acceptors, and that are polar and neutrally charged leads to a decrease in protein adsorption.

3.5 Light

Protein medications are exposed to light at many points during their life. For example, during production they are generally purified by column chromatography and then are exposed (briefly) to the ultraviolet (UV) light of the detector, but the main exposure to light occurs during storage and during administration to patients with IV bags. The exposition may be even more important if the primary container isn’t stored within an opaque secondary container. Proteins, especially their aromatic residues, are very sensible to light, inducing photodegradation, mainly through photooxidation and formation of oxygenated radicals, but also fragmentation and crosslinking. Antibodies, containing a large number of aromatic
residues (especially tryptophan residues), are particularly sensible to this phenomenon, confirming the greater impact of UV light when compared to white light. On the other hand, light exposure doesn’t seem to directly alter mAbs secondary and tertiary structures107. Liquid forms also seem to be more sensible than lyophilized forms108.

When exposing high concentration (100 mg/mL) IgG solutions to intense light (30 to 78 hours under 8000 lux white fluorescent light, or under International Council for Harmonisation (ICH) Q1B conditions), a yellow coloration appeared, increasing with exposure time, and which wasn’t present when only the formulation buffer was exposed. Overall, photoexposition decreased purity, reduced monomer proportions, oxidized multiples amino acids and in the worst cases reduced biological activity to 30% of reference standard activity109. However, these light exposure conditions are very harsh and do not reflect the reality of mAb exposure to light during manufacturing and use110. Recently, Sreedhara et al. confirmed the photoinstability of 5 different mAb formulations after exposure to ICH lighting conditions, reporting solution coloration, formation of high molecular weight species in proportions superior to 10% and photooxidation of amino acids (generally Trp and Met) in the Fc or Fab regions. When exposed to milder conditions, similar to the ambient lighting encountered during the mAb formulation process, 2 of the tested mAb formulations showed only limited modifications, whilst the other 3 formulations remained unchanged and stable. As such, the authors conclude that ambient light stability studies would be more relevant stress models than ICH conditions for mAb photostability testing111. Luis et al. assessed the photostability of two mAbs through both the ICH Q1B recommendations (1.32 million lux hours) and custom ambient light exposure assays (0.24 million lux hours), and exhibited drastic differences concerning mAbs degradation. They also showed that mAbs photostability depends on the overall amount of light exposure rather than light intensity112.

Eventually, it is not to be forgotten that not only the mAb, but also the excipients in formulation may undergo light induced degradation. Photodegradation of polysorbates occurs through autoxidation and can lead to the formation of peroxides that intensify oxidation processes112–115. Photo-oxidized histidine may crosslink with a non-oxidized histidine residue, forming a protein-buffer adducts106.

Concerns about photodegradation might however decrease due to the spread of light-emitting diode lighting. Indeed, the intensity of the UV radiation emitted by this kind of lighting is far weaker that what is observed with fluorescent lights. Associated with UV-blocking on windows, this may enhance security regarding drugs light exposure, especially for mAbs116.
3.6 Excipients

Proteins are often stable against aggregation over narrow pH ranges and may aggregate rapidly in solutions with pH outside these ranges. Solution pH (controlled by the use of pH buffers) determines the type (positive or negative) and total charge on the protein, thereby affecting electrostatic interactions\(^{24,29,47}\). Lower pH may lead to protein cleavage and isomerization when higher pH may favour deamidation and oxidation reactions, both increasing the aggregation potential\(^{29,117,118}\). Brummitt et al. studied the aggregation mechanism of an IgG1 (pI = 9) with different buffer pH. They found aggregation to be mostly caused by monomer addition at low pH, but to evolve as the pH increases to become more of a condensation of the previously formed aggregates, leading to phase separation\(^{119}\). Concerning mAb fragmentation, it has been noticed that certain pH ranges (pH = 5-6) are generally more protective against fragmentation than higher pH ranges (pH = 7-8), but can also depend on the type of residue involved in the fragmentation process (for example Asp residue fragmentation will occur principally for a pH lower than 5)\(^{120}\). Also, some domains of mAbs seem to be more sensitive to certain pH ranges (e.g. C\(_H\)2 domain more sensitive to low pH)\(^{121}\).

Electrolytes have a complex effect on protein physical stability by modifying conformational stability, equilibrium solubility, intermolecular repulsion, and rate of formation of non-native aggregates. Salts bind to proteins, as the ions can interact with unpaired charged side chains on the protein surface. Binding of multivalent ions to these side chains can cross-link charged residues on the protein surface, leading to the stabilization of the protein native state. The net effect of salts on protein stability is protein-dependent and is a complex balance of the multiple mechanisms by which the ionic salt interacts with protein molecules, shielding charged solvent exposed residues and then potentially decreasing protein-protein long range electrostatic interactions\(^{47,81,122}\). This charge shielding may be responsible for a decrease in formulation viscosity, improving global colloidal stability. However, it may also favor short-range hydrophobic interactions at high protein concentration, reducing solubility\(^{122}\). The effect of salts depends on their nature and concentration, and may be divided between salting-in (stabilization) and salting-out (precipitation), high salt concentration (high ionic strength) being more in favor of aggregation salting-out\(^{123,124}\). The unchanged secondary structure analyses were however in favor of the retention of a native-like secondary structure even in the precipitated state, and mAb aggregation may be at least partially reversible by salt dilution. The type of salt also greatly influences the aggregation kinetics, with Na\(^+\) being the ion causing the smallest increase in aggregation formation (when compared to Ca\(^{2+}\) or K\(^+\), at pH 4), but in certain cases the addition of the correct anion (sulfate) restored an IgG2 to native configuration, at pH 3\(^{125}\).

While the reconstitution solvent for powdered in vial mAb formulations is often water for injections or specific solvent provided along, further dilution use several different solvents, nature of which is of great importance for protein stability, as it can impact several parameters like solution pH. The dilution of excipients that stabilize the protein (e.g., surfactants) and the use of
destabilizing vehicle solutions (e.g., dextrose solution that may lead to protein glycosylation) can result in protein instability, especially when the drug formulation is added to an infusion bag17,29,85,126. For example, bevacizumab and trastuzumab diluted in 5% dextrose were shown to undergo rapid aggregation when mixed in-vitro to human plasma. However, the aggregation mechanisms involved seemed to be linked to pH-dependent precipitation of plasma proteins, secondarily causing antibody aggregation127.

Preservatives can induce aggregation, through an incompletely understood mechanism. However, it has been observed that addition of benzyl alcohol perturbed the tertiary structure of some proteins without affecting their secondary structure, and the rate of protein aggregation increased as the molar ratio of benzyl alcohol to protein increased47. Recently, Arora \textit{et al.} studied four phenolic preservatives and showed them to promote thermal instability, aggregation and flexibility alteration128.

Surfactants are generally added in mAbs formulations in order to reduce the exposure of hydrophobic regions and so decreasing protein-protein interactions and interface-induced aggregation, also prevented by competition for adsorption sites129,130. Frequently used nonionic surfactants in mAb drug formulation are polysorbate 20 and polysorbate 8017,83, with poloxamers being a potential alternative131. Indeed, polysorbate 80 seems to be one of the most protecting surfactant against mechanical stress induced aggregation when compared to some other nonionic and anionic surfactants at the same concentration130, and also seems to be less perturbing towards mAb higher structure stability when compared to polysorbate 20132. This protection also depends on the protein to surfactant ratio29,93,130. In addition, surfactants have been shown to act as chemical chaperones, increasing rates of protein refolding and thus reducing aggregation46,47. For example, Gerhardt \textit{et al.} reported that addition of polysorbate 20 to a solution containing various concentrations of a humanized IgG1 antibody reduced particle formation during incubation or agitation with siliconized glass syringes, but noted a lack of correlation between the critical micelle concentration of the surfactant and its protective effect against aggregation. The authors therefore speculated that polysorbate 20 binding to the protein interferes with protein-protein interactions required for protein gelation at the silicone oil-water interface. An application in drug formulation is the presence of a coating solution of polysorbate 80 in Blincyto® (Blinatumomab, a bispecific antibody) for the infusion bag before drug dilution, in order to avoid unacceptable protein adsorption. However, surfactants can in some cases reduce mAb stability, for example by binding preferentially to the unfolded state, resulting in a decrease in the native protein state stability47. Also, a decrease in chemical and thermal photostability of an IgG1 with polysorbate 80 when exposed to intense light (1,200,000 lx-h and 200 W/h of near UV light) has been shown by Agarkhed \textit{et al.}, probably due to high amounts of peroxides resulting from the autooxidation of polysorbate (which would oxidize the methionine and tryptophan residues, but without modifying the tertiary structure). But this was only observed at a polysorbate 80 concentration of 1% w/v, i.e. at least 10 folds over usual concentrations133. Another issue with polysorbates comes from potential contamination of final formulations with residual host cell proteins, especially lipases, due to a bad
separation from therapeutic proteins during purification steps134. Lipases, like lipoprotein lipase, have been shown to hydrolyze polysorbates, resulting in a decrease of polysorbate concentration, but also potentially in formation of free fatty acids particles from the polysorbate itself135,136. As a lead for formulation improvements, Yarbrough \textit{et al.} exhibited a potential protection of edetate disodium towards polysorbate oxidation, hypothetically by chelating calcium and then inhibiting the activity of lipase remaining from mAb production137. Singh \textit{et al.} demonstrated that polysorbates provoke an inversion in aggregation propensity between Fab and Fc regions. Indeed, they showed that without surfactants, the Fc region is more prone to aggregation than the Fab region, but, as polysorbates preferentially bind to the Fab region, they introduce a denaturation risk that counterbalances their protective effect, whilst protection toward the Fc region is almost total. Overall protection is however still increased132.

Close to surfactants, cyclodextrins may be an alternative as they could present a good toxicological profile, no peroxide generation and be less disturb towards proteins138. In 1992, Ressing \textit{et al.} showed that hydroxypropyl-\(\beta\)-cyclodextrin can protect mAbs from aggregation due to lyophilization139. It also showed potential to suppress agitation-induced aggregation of an IgG in aqueous solution, even at relatively low concentrations, probably by efficiently competing with the mAb for the air-water interface140, but with a different mechanism than non-ionic surfactants138. Callahan \textit{et al.} observed a decrease of aggregates count with 10 mM of hydroxypropyl-\(\beta\)-cyclodextrin, but to a lesser extent than 0.0016% polysorbate 80141.

Sugars and polyols can also be used as excipients, as they interact with proteins, being preferentially exclude from their surface, what increases the protein-water potential, which may increase protein thermodynamic stability against unfolding and aggregation142. They also have a role in the stabilization of lyophilized protein formulations143, as they replace water molecules as a shell surrounding proteins when dried, involving hydrogen bonds144. Sucrose is often used, but it may be hydrolyzed into glucose and fructose (e.g. at low pH), which can lead to glycation of proteins38. Non reducing sugars, such as trehalose, are preferred as they don’t participate in Maillard reaction with proteins. The effectiveness of sugars as lyoprotectants requires them to stay in an amorphous state all along the process of freeze-drying. Trehalose crystallization, especially, has been observed and studied, and is highly influenced by co-solute crystallization potential145,146, while sucrose doesn’t crystallize during this process147. Formulations containing melibiose (a reducing disaccharide) seem to be more protected against aggregation. Indeed, formulations of rituximab containing melibiose suffered less pronounced changes than formulation without (secondary structure alteration and non-covalent aggregation), when stored in atmospheres with a residual humidity ranging from 5\% to 23\%, supposedly due to a lower molecular mobility in melibiose/water mixtures. However, this disaccharide has yet to be registered as a useable excipient before being actually used in human drugs148. Among polyols, mannitol is used as a bulking agent for the stabilization of freeze-
dried formulations. It has a crystallization potential that may either be desired or unwanted. Bulking agents in crystalline state are required for an adequate structure of the lyophilized form145,146,149. However, mannitol then loses its protection capacity towards protein aggregation and may induce other co-solute crystallization (especially trehalose)150.

Added as excipients, some amino acids have also been reported to influence mAbs stability. Arginine is often used as an aggregation protecting excipient, as it is known to have several benefits in mAbs formulations. It increases protein solubility and could protect it from photo-induced and thermal-induced aggregation, as well as preventing unfolding151. The mechanism behind arginine stabilizing effect could be its strong tendency to bind to specific mAb surfaces (like carboxylate groups and cation-\pi interactions with aromatic side chains) and strengthen the electrostatic repulsion between the positive charged antibody molecules. However, Zhang \textit{et al.} showed that its effect on thermal stability was strongly anion dependent, and that whilst being generally better than sodium salts, acetate and glutamate arginine salts improved stability of an IgG1 mAb and reduced aggregation kinetics, whilst chloride and sodium sulfate arginine salts reduced its stability and increased aggregation kinetics152. Furthermore, Toth \textit{et al.} described arginine monohydrochloride as being able to reduce thermal stability while decreasing stir stress aggregation153. Also, Shah \textit{et al.} exhibited that depending on the binding site on protein, arginine may as well induce aggregation154. Histidine is often used as buffer for mAbs formulations. Baek \textit{et al.} studied its effect and tried to bring an explanation to contradictory results, as some studies have shown that it could possess protective properties against aggregation, while other studies exhibited an increase in aggregation imputed to histidine. They showed that histidine concentration modifies the mAbs’ hydrodynamic diameter in an unproportioned way, potentially explaining differences between results, destabilization being observed with a histidine concentration near the ones inducing a maximum hydrodynamic radius155. Proline is a cyclic amino acid that is also claimed to enhance mAb solubilization, by binding to aromatic residues and exposed hydrophobic regions and thus decreasing protein-protein interactions and solution viscosity, reducing aggregation at pH near their pI156,157. Glycine is used as a bulking agent in freeze-dried formulations147. Like mannitol, even if used for mechanical properties of the lyophilized formulations, it may also possess stabilization properties towards protein aggregation if remaining in amorphous state, being then more protective158. Shah \textit{et al.} showed that methionine may protect mAbs from photodegradation, while tryptophan is itself subject to photodegradation, generating reactive oxygen species that may induce photodegradation107.

Metallic ions have also shown to be a possible cause of mAb fragmentation and free radicals formation. They can react directly with proteins to produce radicals or with oxygen to produce reactive oxygen species that may cleave proteins159. Ouellette \textit{et al.} studied the effect of several metal ions on fragmentation and found copper and iron ions to be the most deleterious for the mAb used, while no difference from control was observed with zinc, magnesium, nickel, cobalt, and manganese ions. They also observed fragmentation only when the light chain was of
lambda subtype and not with kappa. Site specific hinge fragmentation in presence of copper ions binding to a specific pocket of a IgG1 mAb was observed several times. The observed fragmentation was increased for higher copper ions concentrations, but was reduced when the solvent was histidine acetate compared to sodium acetate. Copper is a redox active transition metal that can mediate hydrolytic cleavage, when binding conditions are present. Also, some studies have described that tungsten residues from syringes manufacture as being a cause of protein (mAbs or not) unfolding and aggregation. Protection from metal induced instability may come from the addition of chelators (e.g. ethylenediaminetetraacetic acid) to the formulation.

In addition to the nature of the excipients, their quality and potential impurities have a major impact on drug product stability. Impurities and contaminants may result from manufacturing process, excipient degradation and/or drug storage. For example, traces of reducing sugars may be found in mannitol or sucrose, organic acids may be found in polysorbates, metals may contaminate any substance during its production. Peroxides especially may arise from a variety of excipients. Excipient packaging may also be more or less protective and a potential source of contamination, for example through oxygen entrainment or container-content interactions (leaching and permeation). The subject of excipients quality and contaminations, and protein drugs contaminations in general, have been extensively reviewed and we refer readers to these reviews for more details.

3.7 Mechanical stress

During its life, a mAb drug can be subjected to significant mechanical stress during transport (shipping from manufacturer to user, diluted IV-bags sent through pneumatic tube systems) and manipulations (IV-bag preparation, mishandling). The two main mechanical stresses described here are agitation (or shaking) and shearing.

Agitation is used to ensure mAb solution homogeneity but leads to cavitation (creation of void and bubbles increasing streams and pressure modifications) thus creating and constantly renewing air-water interfaces. Jayaraman et al. investigated the mechanisms of agitation-induced particle formation in protein solutions. The analysis of agitated samples showed a rapid (in less than 4 hours) and clear increase in the number of sub-visible particles, with sizes ranging from 1.5 to 80 µm, with the most abundant particles being the smaller ones (size 1.5 and 2 µm). The proposed mechanism explaining the increased particle formation was the increase in exposed hydrophobic surfaces as a result of the agitation stress. This idea is reinforced by Dobson et al. who found an increase in exposed sulfhydryl residues after being exposed to an extensional flow. It has also been demonstrated that an exponential relationship links the aggregation level to the air-liquid interfacial surface, as a resultant of agitation by stirring cetuximab solutions for up to 24 hours. Cavitation bubbles have been shown to form within 30 µs.
after contact after a 1 m drop of a 1 mg/ml mAb formulation in glass vials, thus raising questions about the mAb’s stability after such accidents. These shock induced cavities are associated with extreme and very localized increases in temperature and pressure, as well as free radicals formations, all factors potentially leading to mAb instability169. The impact of the formulation (absence or presence of polysorbate 80) also influenced the results after stirring, as the presences of the surfactant reduced particle formation in size and quantity. However, Kiese et al. also showed that certain concentrations of surfactants may lead to even higher aggregation rates170. Koepf et al. studied the formation of an IgG film at the air-liquid interface, and found it to be inhomogeneous in thickness but mainly composed of native structures of the mAbs171, thickness and particle leaching depending on the pH value of the solution172. Removing the headspace from vials may prevent shaking-related aggregation170.

For mAbs formulations stored in solid state, agitation can induce in-vial friction between powder and walls, leading in worst cases to localized heating and therefore thermal stress, which can be another explanation of agitation-induced aggregation. This may be why it has been shown that lyophilized powders may be more sensitive to mechanical stress than liquid states of mAb formulations, with an increased number of subvisible particles (size over 1 µm)82,173.

Shearing occurs from the differences of fluid velocity (velocity gradients) in moving liquids, for example between solution and surface (e.g. solution going through syringes and infusion tubes). It has been demonstrated that shearing does not lead to aggregation by itself (even though believed otherwise before), but rather through shear-related effects174–176. Shearing does promote interfacial interactions, for solid-liquid (adsorption and leaching), gas-liquid (air-bubble entrainment, cavitation) and oil-water (silicon oil as lubricant)174,177, which were discussed earlier in this review (section 3.4). Several production processes may expose mAbs to shearing. For example, stirring results in shearing, but aggregation due to solution stirring can also result from friction of the stirring bar against the container leading to heat production, forming small particles (<2 µm), even when an optimal surfactant formulation is used28,170,178. Pabari et al. found that sonication did not have a significant influence on mAbs aggregation56. They also studied the effect of spray-drying, exploring the possibility of mAb nanoparticle encapsulation, and came to the same conclusion, despite the high operating temperature. During spray-drying, Batens et al. showed that especially polysorbate 20, but also basic amino acids, reduced even more this low risk179. Pumping provokes shearing and cavitation in tubing and has been shown to decrease bioactivity and increase particle count177,180,181. Filtration can also be associated to shearing. Shear-thinning behavior (decrease of viscosity under shear strain) has been reported for high concentration mAb solutions, perhaps linked to the dissociation of self-associating of mAb clusters182, but it is unclear if shear forces during by filtration induced other modifications. In a study mimicking an IV administration setup, Pardeshi et al. showed that in-line filtering (1.2 and 0.2 µm filter) considerably reduced the number of subvisible particles, but that even after the filter the amount of particles of all sizes was 2 to 10 times greater
than with a blank saline solution, the particles being possibly generated downstream of the filter183. It is therefore difficult to conclude on the effect of any specific filters like the ones used for the intraocular administration of certain antibodies on mAb stability.

4 Methods for investigating mAb stability

MAb drugs stability is a more complex subject than for small molecules drugs and cannot be defined solely on the basis of a stable concentration or absence of degradation products, and must include a complete evaluation of instability critical points184. Three main axes should be developed: an evaluation of the physical stability study should investigate aggregation and fragmentation, as well as mAb structure, a chemical stability study should look for chemical degradations (as described before) and a biological stability study should corroborate the conservation of mAb’s activity towards its target with its physicochemical stability. It is a challenging venture, especially as different methods may lead to inconsistent results, as it can sometimes happen for example for aggregation determination, notably due to the different ranges of measures of the different techniques29.

The ICH guidelines on stability assessment of biotechnological products include assays on biological activity, analysis of the molecular entity and purity (with quantitative detection of degradation products). Other parameters should also be monitored (e.g. visual appearance, pH...). Drug product evaluation should be performed on at least 3 different batches185. An European consensus has been published about stability studies of anticancer drugs, with a particular point about protein pharmaceuticals, including mAbs186. To study physical instability, several orthogonal techniques should be used, including at least turbidimetry and SEC, but other techniques, as for example circular dichroism, are also recommended. To study chemical instability, at least three separative techniques should be used, with ion-exchange chromatography (IEC), SEC and peptide mapping being recommended. Biological stability should be assessed, using be immunological or cytotoxic assays, but only as a complementary test and the results should never be considered as a self-sufficient proof for overall stability, as a conserved biological activity does not imply that the whole structure is unchanged186. However, this consensus is an improvement in the analytic rigor of studies, but the meaningful acceptance criteria are often undefined and reference standards absent, making method validation a challenge85. In complement to this consensus, British recommendations indicate that one should at least assess visual aspect, pH, particulates, physical stability, chemical stability, and biological activity. Freshly reconstituted drug formulation should be used as the reference material, and set acceptance criteria as a 5% maximum loss in active protein and a maximum increase of secondary species of 2%187.
Analysis of physicochemical stability during simulated administration is also warranted, given that additional surfaces come into contact with the protein, the drug product formulation may be diluted, including dilution of critical excipients required for protein stability, and environmental stressors may be present during use. U.S. Pharmacopeia described a series of analytical techniques to be used in the analysis of monoclonal antibodies, including SEC, CE-SDS and HPLC with fluorescence detection. A wide panel of techniques used in physicochemical stability studies is presented in Table 1. The following analytical methods and techniques are organized regarding their potential use in mAb stability studies, along with the advantages and disadvantages one could encounter when using them. We did not evaluate the cost of each technique, neither in terms of base equipment nor in terms of laboratory supplies, but this parameter shouldn’t be sidestepped when considering the execution of a mAb stability study.

5 Current monoclonal antibodies’ physicochemical stability data

Mab drug development is a procedure where manufacturers have to identify and prevent any factor susceptible to lower the quality of the final product. The quality by design approach has been promoted by FDA and ICH and includes the understanding and management of risks and the development of a control strategy to ensure process performance and product quality. For marketing approval, manufacturers perform stability studies in order to set an expiry date that ensures a safe use for patients. However, a prolongation of this stability limit or the assessment of stability in other situations than those specified in the summary of product characteristics may be interesting for both manufacturers and users. In practice, those stability studies may be performed by university and/or hospital researchers, on request of manufacturers or not, and should follow at least the same degree of exigency than those initially performed. Table 2 summarizes the data from different mAb stability studies that have been published about commercially available diluted mAb solutions and proposes an evaluation of them. Three parameters were taken into account. First, and most importantly, criterion I represents the compliance with the European consensus published by Bardin et al., the scoring algorithm being presented in Table 3. Criterion II is the meaning of the established limit of stability, i.e. does this limit derive from an observed instability at the following analytical time, or from the absence of further data, in what case one can wonder if instability was in fact absent or was missed. Finally, criterion III tags the independence of the study from the manufacturer of the tested drug, even though this fact doesn’t necessarily impact the quality of a study. This evaluation remains the authors’ interpretation of criteria required by recommendations. Readers are invited to reach for the original publications for personal interpretation. It is also to be noted that microbiological evaluation, although a major concern, wasn’t taken into account here nor discussed.
Out of the 25 studies referenced, 11 have a C or a D for criterion I, suggesting a potential lack in performed assays and a potential failure to evaluate all aspects of mAbs stability. However, it is to be noted that a satisfactory result to this score doesn’t guarantee the quality of assays, which was not evaluated here. Also, an issue in mAbs stability studies is the difficulty of method validation, especially the analytical variability and significance threshold. A solution would be the evaluation of inter-batch variability to estimate these parameters, but this implies an increase of mAb consumption, so of overall cost.

In any case, the remaining data is of sufficient quality to suggest that most of the studied antibody medications are a lot more stable once diluted that what is generally noted in the summary of product characteristics. However, more studies are still needed to evaluated stability of the drugs in some specific conditions, for example after accidental freezing or during pneumatic tube transport.

6 Conclusion

Many stability studies about commercially available mAbs have been published, independently or requested by the manufacturers. Those studies tend to show a prolonged physicochemical stability when compared to manufacturer recommendations, but many of them are limited in the performed assays. MAbs' physicochemical stability is linked to numerous factors such as formulation, environment, manipulations as well as their own structure. It must be thoroughly investigated using several complementary analytical assays, each of which allowing specific characterization information to be harvested, including but not limited to biologic potency assays, as inefficacy is not the only consequence of aggregation and degradation. Biological stability (preservation of the mAb's efficacy) should be assessed (protein activity assay), even though by nature a higher variability of response is to be expected, questioning its relevance for the detection of small alterations or sub-visible aggregates formation that are possibly responsible of increased immunogenicity. In parallel to potential physicochemical limitations, other long-term stability limitations must be analysed. Microbiological stability (linked to container systems) and contamination risks should be assessed before usage.

7 Acknowledgements

The authors gratefully thank and acknowledge the unknown reviewers whose comments and insights helped greatly improve the quality of this work.
References

Figure 1: Antibody general structure (CDR = complementary determining region; Fc = crystallisable fragment; Fab = antigen binding fragment; V = variable domain; C = constant domain; L = light chain; H = heavy chain; S-S = disulfide bond)
Table 1: Analytical techniques used in mAbs stability studies

<table>
<thead>
<tr>
<th>Technique</th>
<th>Analytical procedure</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical stability assays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opalescence measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephelometry</td>
<td>Measure of the perpendicularly (compared to incident beam) diffused light (Tyndall effect)</td>
<td>Simple to implement. Especially reliable for low turbidity measures</td>
<td>Only suitable for slightly opalescent solutions. Need for a calibration curve for higher turbidity levels. Case-by-case analysis, as many other factors may influence opalescence (should only be used for comparative measurements).</td>
<td>29,189</td>
</tr>
<tr>
<td>Turbidimetry</td>
<td>Measure of transmitted light</td>
<td>Simple to implement</td>
<td>Identical to nephelometry</td>
<td>29,189</td>
</tr>
<tr>
<td>Size-related variants: Visible particles detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual method</td>
<td>Observation of agitated solution in front of 2 panels (black and white)</td>
<td>Simple to implement</td>
<td>Dependent on operator’s skills and experience. Needs a comparator.</td>
<td>190</td>
</tr>
<tr>
<td>Size-related variants: Sub-visible and sub-micron particles detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscopic methods</td>
<td>Eg. Optical microscopy, Electronic microscopy or Atomic force microscopy (AFM)</td>
<td>Visual characterization of aggregates. AFM allows examining the morphology of mAb aggregates and its intermediates</td>
<td>Analysis only of small samples (few microliters).</td>
<td>29,55,191</td>
</tr>
<tr>
<td>Light obscuration</td>
<td>Measure of the amount of light blocked when a particle gets in front of the beam, as particles pass as a single file through the detector. Range: 1 – 150 µm</td>
<td>Allows determination in large range of particle size</td>
<td>Bad resolution of particles of refractive index close to solution’s Pertinence of the method if an in-line 0.22 µm filter is used. May need a relatively high volume of solution Sensitive to contaminations.</td>
<td>29,55</td>
</tr>
<tr>
<td>Micro-flow imaging</td>
<td>Detection of particles in a sample stream from successive frames with real-time software analysis. Range: larger than 1 µm</td>
<td>More accurate than light obscuration. Detects translucid particles Distinction between particles subpopulations (proteins and contaminants) Small sample required</td>
<td>Pertinence of the method if an in-line 0.22 µm filter is used Samples submitted to shear forces</td>
<td>83,192,193</td>
</tr>
<tr>
<td>Method</td>
<td>Measurement</td>
<td>Range</td>
<td>Advantages</td>
<td>Limitations</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Dynamic light scattering (DLS)</td>
<td>Measure of the size of particles using the Stockes-Einstein equation to infer particle movement induced scattered light intensity fluctuations into size</td>
<td>0.3 nm – 10 µm</td>
<td>Large range of particle size and concentration, Low volume required, Non destructive, Can be used as detector coupled to SEC-HPLC, Fast</td>
<td>Important sensitivity to temperature and viscosity, Matrix refractive index often unknown, but required for accurate measurements, Bad resolution of particles of close size, Underestimation at high particle concentrations, Overestimation at low particle concentrations, Interference of large particles</td>
</tr>
<tr>
<td>Nanoparticle tracking analysis</td>
<td>Measure of the size of particles from their Brownian movements using the Stockes-Einstein equation</td>
<td>30 nm – 1 µm</td>
<td>Compared to DLS, better peak resolution and no interference of larger particles, Gives an approximate particle counts, Possibility to heat samples and follow subsequent variations</td>
<td>Mandatory dilutions to a narrow range of particles concentration => only semiquantitative and lengthened process (up to 1h per sample), May not detect monomers and smaller size molecules</td>
</tr>
<tr>
<td>Resonant mass measurement</td>
<td>Measure of the shift in specific resonating frequency when a particle goes through a resonator, dependent of its size</td>
<td>50 nm – 5 µm</td>
<td>Better resolution of particles of close size than DLS</td>
<td>Of 2 particles entering the resonator at the same time, only the bigger one shall be detected</td>
</tr>
<tr>
<td>Size-related variants: Aggregates detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size-exclusion chromatography</td>
<td>Species separation according to their molecular weight, high molecular weight species being eluting first</td>
<td></td>
<td>Separative method, can be mAb specific, Detection of small high and low molecular weight species, Compatible with numbers of detectors</td>
<td>Not suitable for large aggregates, usually filtered before, Lack of accuracy for non-spherical particles (function of the detector(s)), Possible analytical aggregation</td>
</tr>
<tr>
<td>Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis</td>
<td>Molecules are separated according to the length of the polypeptide chain and its charge. SDS denatures proteins and gives them an overall similar negative charge, so separation is mostly due to size differences.</td>
<td></td>
<td>Separative method, Identification, size measurement and purity assessment, Bond strength in aggregates, Better separation with SDS-CGE than with SDS-PAGE</td>
<td>SDS may dissociate aggregates, SDS-PAGE: time consuming preparation</td>
</tr>
<tr>
<td>Sodium Dodecyl Sulfate Capillary Gel Electrophoresis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical ultracentrifugation</td>
<td>Direct measurement of the protein aggregates through sedimentation characteristics, especially sedimentation velocity</td>
<td>Reduced sample preparation Decreased contact surface during the analysis Important size range detection by varying the operating speed</td>
<td>Lower sensitivity, precision and reproducibility than with SEC</td>
<td></td>
</tr>
<tr>
<td>Asymmetrical flow field flow fractionation</td>
<td>Use of a parabolic flow associated with an asymmetrical crossfield flow created by a semi-permeable membrane to separate proteins regarding their size but regardless of their density</td>
<td>Separative method Quantitative determination of each form in solution</td>
<td>Quality of the separation strongly linked to specific formulations of the running buffer Adsorption hazard to the channel membrane</td>
<td></td>
</tr>
</tbody>
</table>

Size-related variants: Aggregation prediction

Self-interaction chromatography	Determination of the propensity of proteins to form oligomers, through the preparation of a stationary phase composed of the protein to study	Separative method Fast (1 to 2 days for a complete study) Requires low quantity of protein	Only predictive Contradictory studies Need to immobilize every protein of interest
Cross-interaction chromatography	Retention based on the interactions of mAbs with a stationary phase composed of a polyclonal antibody	Same as self-interaction chromatography No need to immobilize every protein of interest	Only predictive Indirect estimation of second virial coefficient B22 from B23
Isothermal calorimetry	Measure of the rate of heat variations caused by a spontaneous process at a given temperature	Direct observation of processes May be faster than SEC	Sensitivity Only predictive

Structural variants: Primary structure characterization

| Peptide mapping | Enzymatic clivage of biomolecules into specific peptides then separated by liquid chromatography | Separative method Can be coupled with MS (then called Peptide Mass Fingerprinting) Monitors oxidation and deamidation | Very sensible to environmental variations Spectrum complexity for protein mixtures Analytical length (preparation and analysis itself) |

Structural variants: Secondary structure characterization

<p>| Fourier transform infrared spectroscopy | Explores bonds vibrations in order to provide a second derivative spectrum inside the amide I region, then permitting identification and quantification of secondary structures in proteins | Fast No limitation in molecular weight | Water interference, implying working concentrations higher than usually studied Spectrum complexity Lack of sensitivity when compared to chromatographic techniques for stability studies |</p>
<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular dichroism</td>
<td>Based on the property of optically active molecules to absorb differently left circular polarized light and right circular polarized light at a given wavelength. Far-UV CD (180-240 nm) is the reflection of peptide bond absorption, thus of secondary structure, while near-UV CD (260-320 nm) corresponds to side chains, giving indications about the tertiary structure.</td>
<td>Fast Study of both secondary and tertiary structures depending on wavelength range studied.</td>
<td>Lack of sensitivity when compared to chromatographic techniques for stability studies.</td>
<td>49,210,214–216</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>As FT-IR, detects molecular vibrations but is more sensitive to non-polar bindings. Also use the amide I region. Doesn’t follow Lambert-Beer law.</td>
<td>Less interference with water than FT-IR Can be used with solid, liquid or gaseous samples</td>
<td>Spectrum complexity Less precise than FT-IR</td>
<td>143,217,218</td>
</tr>
<tr>
<td>Structural variants: Tertiary structure characterization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second derivative UV spectroscopy</td>
<td>Use UV spectroscopy in the interval of 250 – 320 nm to obtain a second derivative spectrum.</td>
<td>Easy to perform Non-destructive technique Sensitive</td>
<td>Interference of excipients May be limited by higher concentrations, due to excessive light absorption</td>
<td>32,65,81,219,220</td>
</tr>
<tr>
<td>Fluorimetry</td>
<td>Use of noncovalent extrinsic fluorescent dyes that can interact with hydrophobic sites of proteins formed from partial unfolding or aggregation. May exhibit specific instabilities (eg. amyloid-like structures, modification of tertiary structure).</td>
<td>May exhibit unhidden residues from unfolding Can be used as a detection coupled with other techniques</td>
<td>Interference of excipients (surfactants)</td>
<td>29,49,126</td>
</tr>
<tr>
<td>Differential scanning calorimetry</td>
<td>Determination of the melting point of the mAb, shifts being the reflection of modifications of intra- or intermolecular interactions as well as alteration of structural integrity. Based on measuring the enthalpy caused by thermally induced processes.</td>
<td>Universal method for studying thermal denaturation No reliance on changes in spectroscopic signal More capable of resolving multiple overlapping processes</td>
<td>Time per sample analysis around 90 min Influence of excipients (properties modification)</td>
<td>221–225</td>
</tr>
<tr>
<td>Differential scanning fluorimetry</td>
<td>Determination of the melting point of the mAb Based on measuring the increase of extrinsic or intrinsic fluorescence caused by unfolding.</td>
<td>Wide range of temperatures for scanning Fast Low quantity of mAb required</td>
<td>Dependent on the affinity for the fluorescent dye or the number of aromatic residues Influence of excipients (properties modification)</td>
<td>224,225</td>
</tr>
<tr>
<td>Technique</td>
<td>Description</td>
<td>Advantages</td>
<td>Disadvantages</td>
<td>References</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Isothermal chemical denaturation</td>
<td>Determination of the concentration of a given denaturant for which 50% of proteins are unfolded and of Gibbs free energy of unfolding</td>
<td>Not based on temperature, Reversible denaturation</td>
<td>High sample consumption, Slow (sufficient incubation time needed), Need to know the unfolding process of the studied mAb</td>
<td>121,225,226</td>
</tr>
<tr>
<td>Reverse-phase liquid chromatography</td>
<td>Separation according to hydrophobicity</td>
<td>Separative method, can be mAb specific, Suitable for quantification</td>
<td>Use at high temperature => unpredictably cause the denaturation of proteins, The use of organic solvents as mobile phase may denature proteins</td>
<td>24,227–229</td>
</tr>
<tr>
<td>Protein conformational array</td>
<td>Detection of accessible residues due to unfolding based on immunologic reaction (ELISA method or other)</td>
<td>Provides specific regional structure information, No need of protein purification</td>
<td>Low throughput unless combined with other preparation methods</td>
<td>230</td>
</tr>
<tr>
<td>Structural variants: Higher order structure characterization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen-deuterium exchange</td>
<td>Based on the property of solvent-exposed amide groups to exchange their hydrogen atom with the solvent at a higher rate than when hidden</td>
<td>Fast, Evaluation of local flexibility, Evaluation of consequences of chemical alterations</td>
<td>Results depend on the degradation pathway => may be too specific for a stability study, Only predictive</td>
<td>153,231–233</td>
</tr>
<tr>
<td>Quinary structure analysis</td>
<td>High order species characterization using dilution-injection SEC fast protein liquid chromatography and one dimensional 1H nuclear magnetic resonance spectroscopy treated with multivariate analysis</td>
<td>Differentiation of mAbs of close Fc structures</td>
<td>Presence of excipients can render the analyses more complicated to interpret</td>
<td>234</td>
</tr>
<tr>
<td>Chemical stability assays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion exchange chromatography</td>
<td>Detects different charge-related variants of mAbs. Species are eluted according to their apparent pl, as acidic (lower apparent pl than main peak) or basic (higher apparent pl) species. Mostly cationic exchange chromatography (acidic eluted first)</td>
<td>Separative method, Separation and identification of charge variants, Non denaturing technique</td>
<td>Lack of compatibility with mass spectrometry (may be solved by using 2-dimensionnal liquid chromatography), Highly diluted samples in mobile phase, On-line buffer exchange</td>
<td>17,39,229,235–240</td>
</tr>
<tr>
<td>Capillary zone electrophoresis</td>
<td>Separates molecules based on the difference of mobility of the analytes in an electric field which result from the different ratios of charge and hydrodynamic radius</td>
<td>Separative method, High separation efficiency</td>
<td>Limited sample injection volume, implying very high concentrations</td>
<td>241–243</td>
</tr>
<tr>
<td>Isoelectric focusing</td>
<td>Separation according to pI</td>
<td>Separative method</td>
<td>May not be suitable for large (over 150 kDa) or hydrophobic proteins</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isolate fragments from intact form and from each other</td>
<td>Longer and slightly less sensitive than cIEF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Close reactivity of different peptides with detection methods</td>
<td></td>
</tr>
<tr>
<td>Capillary isoelectric focusing</td>
<td>Separates molecules based on their pIs in a capillary format by formation of a pH gradient</td>
<td>Separative method</td>
<td>May not be suitable for large (over 150 kDa) or hydrophobic proteins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isolate fragments from intact form and from each other</td>
<td>With UV detection, concentration may need to be over 1 mg/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Samples less diluted than in IEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protein initial environment partially conserved</td>
<td></td>
</tr>
<tr>
<td>Fluorogenic derivatization</td>
<td>Derivatization of chemically modified residues to gain fluorescence</td>
<td>Fast and possibility to evaluate multiple samples at the same time</td>
<td>Too specific of a certain chemical degradation for a stability study</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non separative method</td>
<td></td>
</tr>
</tbody>
</table>

Quantitative assays

- **UV spectroscopy**
 - Measure of the absorbance at 280 nm
 - Polyvalent and time saving
 - Possible overestimation due to aggregates

Chromatographic techniques

- Size exclusion chromatography
- Reverse phase liquid chromatography
 - Can be mAb specific
 - Polyvalent and time saving

Other analytical techniques

- **UV spectroscopy**
 - Attenuation of incident beam due to light scattering by suspended particles
 - Measure of optical density at 280 nm and 350 nm in order to get the aggregation index
 - Simple
 - Non destructive
 - Overall view
 - Potential interference of excipients

- **pH measurement**
 - Potential difference between 2 electrodes, generally a glass electrode and a calomel electrode, measured with a voltmeter graduated in pH units
 - Easy to perform
 - Non-destructive technique
Table 2: Summary of different published mAbs stability studies (I: Compliance with European consensus (A=6 points, B=4-5 points, C=2-3 points, D=0-1 points, see Table 3 for scoring; concerned assays in bold letters); II: Stability limit because of A: Instability detected on later samples, or B: Lack of further data; III: Link to the manufacturer (A: No, B: Yes or undetermined))

<table>
<thead>
<tr>
<th>Drug</th>
<th>Pharmaceutical form</th>
<th>Container</th>
<th>Tested Concentration(s)</th>
<th>Assays</th>
<th>Conclusion of the stability study</th>
<th>Evaluation of the study</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemtuzumab</td>
<td>Intravenous solution</td>
<td>Polypropylene bags</td>
<td>0.28 mg/mL</td>
<td>Size Exclusion Chromatography</td>
<td>14 days at 6°C or 25°C</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Bevacizumab (Avastin®)</td>
<td></td>
<td>Latex-free Syringes</td>
<td>25 mg/mL</td>
<td>Immunoassay</td>
<td>6 months storage at 4°C with a maximum activity loss of 15.9%</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Bevacizumab (Avastin®)</td>
<td>Intravitreal solution</td>
<td>1 mL polypropylene syringes</td>
<td>25 mg/mL</td>
<td>Turbidity Second derivative UV spectroscopy Dynamic Light Scattering Derivative FTIR spectroscopy Cation Exchange Chromatography Size Exclusion Chromatography Peptide mapping Thermal aggregation curves Microscopic examination</td>
<td>3 months at 4°C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Bevacizumab (Avastin®)</td>
<td>Intravitreal solution</td>
<td>1 mL polypropylene syringes and 1 mL polycarbonate syringes</td>
<td>25 mg/mL</td>
<td>SDS-PAGE Size Exclusion Chromatography Dynamic Light Scattering Surface Plasmon Resonnance</td>
<td>6 months at 4°C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Bevacizumab (Avastin®)</td>
<td>Intravitreal solution</td>
<td>1 mL polypropylene syringes</td>
<td>3.75 and 25 mg/mL</td>
<td>pH Osmolarity mAb concentration (Cation Exchange Chromatography) RP-HPLC Light Obscuration</td>
<td>3 days at 4°C</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>Cetuximab (Erbitux®)</td>
<td>Intravenous solution</td>
<td>Original vial Polyvinylchloride bags</td>
<td>2 mg/mL</td>
<td>ELISA</td>
<td>14 days at 4°C</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Infliximab (Remicade®)</td>
<td>Intravitreal solution</td>
<td>Original vial</td>
<td>Stock solution: 50 mg/mL at 2-8°C Assayed solutions: 69-50000 pg/mL</td>
<td>Microsphere immunoassay</td>
<td>6 week with stock solution stored at 2-8°C</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>---</td>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Infliximab (Remicade®)</td>
<td>Intravenous solution</td>
<td>Polyvinylchloride bags</td>
<td>0.4 mg/mL</td>
<td>ELISA</td>
<td>14 days at 4°C</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Infliximab (Remicade®)</td>
<td>Eye drop</td>
<td>Eye drop bottles</td>
<td>10 mg/mL</td>
<td>Visual observation pH Turbidity Light scattering (fluorimetry) Gel electrophoresis ELISA Cytotoxicity assay (safety)</td>
<td>After preparation: 9 days at 4°C and 45 days at -20°C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Infliximab (Remsima®)</td>
<td>Intravenous solution</td>
<td>Polyolefin bags</td>
<td>0.6, 0.84 and 1.88 mg/mL</td>
<td>Visual observation Particle imaging Size Exclusion Chromatography Gel electrophoresis Dynamic Light Scattering Circular Dichroism HPLC-MS Cytotoxicity assay</td>
<td>7 days at 2-8°C or 25°C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Infliximab (Remsima®)</td>
<td>Intravenous solution</td>
<td>Polypropylene bags</td>
<td>0.7 mg/mL 1.6 mg/mL</td>
<td>Turbidity Second derivative UV spectroscopy Dynamic Light Scattering Thermal aggregation curve Size Exclusion Chromatography Cation Exchange Chromatography Optical microscopy</td>
<td>7 days at 4°C or 25°C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Infliximab (Inflectra®)</td>
<td>Intravenous solution</td>
<td>Original vial Polypropylene/SIS-polypropylene/Styrene-ethylene-butadiene bags</td>
<td>10 mg/mL 0.4 mg/mL 2 mg/mL</td>
<td>Visual inspection Turbidity Light obscuration Dynamic Light Scattering Size Exclusion Chromatography Cation Exchange Chromatography Peptide mapping Derivative FTIR spectroscopy Second derivative UV spectroscopy MAb concentration (UV Vials: Bags:</td>
<td>7 days at 25°C or 14 days at 5°C</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Vials: 30 days at 25°C 90 days at 5°C After 60h at -20°C: instability exhibited
<table>
<thead>
<tr>
<th>Drug</th>
<th>Formulation</th>
<th>Storage Conditions</th>
<th>Stability Testing</th>
<th>Reference</th>
</tr>
</thead>
</table>
| **Infliximab (Flixabi®)** | Intravenous solution | Original vials Polyethylene bags | Visual inspection
 Light obscuration
 Size Exclusion Chromatography
 SDS-Capillary electrophoresis
 Image capillary isoelectrofocusing
 MAb concentration (UV spectroscopy)
 pH
 Osmolality
 Biological activity assays | Vials: 7 days at 25°C
 60 days at 5°C
 Bags: 7 days at 5°C or 25°C | B B B 262 |
| **Ipilimumab (Yervoy®)** | Intravenous solution | Original vial 5 mg/mL | Turbidity
 Second derivative UV spectroscopy
 Dynamic Light Scattering
 Thermal aggregation curve
 Cation Exchange Chromatography
 Size Exclusion Chromatography
 Immunoassay | 4 weeks at 4°C or 25°C | B B A 263 |
| **Panitumumab (Vectibix®)** | Intravenous solution | Original vial Polyvinylchloride bags 20 mg/mL
 Polyolefin bags 2.5 mg/mL | ELISA | 14 days at 4°C | D B A 266 |
| **Pertuzumab (Perjeta®) / Trastuzumab (Herceptin®)** | Intravenous solution | Polyvinylchloride bags Polyolefin bags 3 mg/mL each
 5 mg/mL each | Visual observation
 MAb concentration (UV spectroscopy)
 Turbidity
 Light obscuration
 Size Exclusion Chromatography
 SDS-Capillary electrophoresis
 Analytical ultracentrifugation
 Cation Exchange Chromatography
 Capillary zone electrophoresis
 Image capillary isoelectrofocusing
 Biological assay | 24 hours at 5°C or 30°C | B B B 264 |
<table>
<thead>
<tr>
<th>Product</th>
<th>Route of Administration</th>
<th>Container</th>
<th>Concentration</th>
<th>Testing Methods</th>
<th>Stability Conditions</th>
<th>Code(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab (Mabthera*)</td>
<td>Intravenous</td>
<td>Polyolefin bags</td>
<td>1 mg/mL</td>
<td>Turbidity
Second derivative UV spectroscopy
Dynamic Light Scattering
Derivative FTIR spectroscopy
Cation Exchange Chromatography
Size Exclusion Chromatography
Peptide mapping
Direct cytotoxicity assay (activity)
Thermal aggregation curves</td>
<td>6 months at 4°C after dilution</td>
<td>A B B</td>
</tr>
<tr>
<td>Rituximab (Mabthera*)</td>
<td>Subcutaneous</td>
<td>Polypropylene syringes</td>
<td>120 mg/mL</td>
<td>Visible particles
Turbidity
pH
Light Obscuration
Color
Osmolality
mAb content
Cytotoxicity assay (activity)
Hyaluronidase activity assay
Size Exclusion Chromatography
Cation Exchange Chromatography</td>
<td>24 hours at 30°C after a 4-week storage at 2-8°C</td>
<td>B B B</td>
</tr>
<tr>
<td>Rituximab (Truxima*)</td>
<td>Intravenous</td>
<td>Polyvinylchloride bags/Polyethylene bags</td>
<td>1 and 4 mg/mL</td>
<td>Visible particles
UV spectroscopy (total protein quantification)
Micro-Flow Imaging
Size Exclusion Chromatography
Ion Exchange Chromatography
Capillary Electrophoresis-SDS
pH
Osmolality
Complement ELISA
Cytotoxicity assay</td>
<td>6 weeks at 2-8°C + 1 day at 25±2°C, away from light
Bags reconstituted from vials in their 36th month of conservation</td>
<td>B B B</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>Intravenous solution</td>
<td>Polypropylene bags</td>
<td>0.4 mg/mL</td>
<td>Visual examination pH Size Exclusion Chromatography SDS-PAGE UV spectroscopy (total protein quantification)</td>
<td>28 days at 2-8°C or 25°C, with or without light protection</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Trastuzumab (Herceptin®)</td>
<td>Intravenous solution</td>
<td>As specified by manufacturer’s instructions (using a 0.9% saline solution)</td>
<td>0.4-4 mg/mL</td>
<td>Visual examination pH Dynamic Light Scattering Size Exclusion Chromatography SDS-PAGE Circular dichroism</td>
<td>28 days at 2-8°C</td>
<td></td>
</tr>
<tr>
<td>Trastuzumab (Herceptin®)</td>
<td>Intravenous solution</td>
<td>Polypropylene bags</td>
<td>0.8 and 2.4 mg/mL</td>
<td>Size Exclusion Chromatography Cation Exchange Chromatography Peptide mapping Dynamic Light Scattering Turbidity at 350 nm Second derivative UV spectroscopy Second derivative FTIR spectroscopy Thermal aggregation curves</td>
<td>6 months at 2-8°C or 20°C</td>
<td></td>
</tr>
<tr>
<td>Trastuzumab (Herceptin®)</td>
<td>Intravenous solution</td>
<td>Polyvinylchloride bags Polyolefin/Polyethylene/Polypropylene bags</td>
<td>0.24 and 3.84 mg/mL</td>
<td>Visual examination Turbidity Light Obscuration Size Exclusion Chromatography Ion Exchange Chromatography UV spectroscopy (total protein quantification) pH Osmolality Biological assay</td>
<td>Bags from a 2 day-old reconstituted vial stored at 2-8°C Stable after 7 days at 5°C then 1 day at 30°C and then simulated administration</td>
<td></td>
</tr>
<tr>
<td>Trastuzumab (Herzuma®) Intravenous solution</td>
<td>Polypropylene bags Polyvinylchloride bags</td>
<td>Visual examination UV spectroscopy (total protein quantification) Light Obscuration Micro-Flow Imaging Size Exclusion Chromatography SDS-Capillary electrophoresis Peptide mapping pH Biological assay</td>
<td>1 month at 2-8°C + 1 day at 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trastuzumab (Herzuma®) Intravenous solution</td>
<td>Original vial Polyolefin bags</td>
<td>Vial: 21 mg/mL Bags: 0.8 and 2.4 mg/mL</td>
<td>Turbidity Second derivative UV spectroscopy Fluorescence spectroscopy Cation Exchange Chromatography Size Exclusion Chromatography Dynamic Light Scattering Thermal aggregation curves Optical microscopy pH Osmolarity</td>
<td>90 days at 4°C (bags and vials, both concentrations)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Scoring for the I criterion of Table 2, i.e. compliance with European consensus (\(^*\): only counted once)

<table>
<thead>
<tr>
<th>Stability evaluated</th>
<th>Technique</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opalescence</td>
<td>Turbidimetry</td>
<td>1</td>
</tr>
<tr>
<td>Soluble aggregates</td>
<td>Size Exclusion Chromatography</td>
<td>1</td>
</tr>
<tr>
<td>Particles</td>
<td>Supplementary technique(s) (eg. Dynamic</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Light Scattering, Light obscuration,...)</td>
<td></td>
</tr>
<tr>
<td>Chemical stability</td>
<td>Ion-exchange chromatography or Capillary</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>electrophoresis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peptide mapping</td>
<td>1</td>
</tr>
<tr>
<td>Biological stability</td>
<td>Immunological of Cytotoxic evaluation</td>
<td>1(^*)</td>
</tr>
</tbody>
</table>