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ABSTRACT
Objective  To predict the coast-wide risk of drowning 
along the surf beaches of Gironde, southwestern France.
Methods  Data on rescues and drownings were 
collected from the Medical Emergency Center of Gironde 
(SAMU 33). Seasonality, holidays, weekends, weather 
and metocean conditions were considered potentially 
predictive. Logistic regression models were fitted with 
data from 2011 to 2013 and used to predict 2015–2017 
events employing weather and ocean forecasts.
Results  Air temperature, wave parameters, seasonality 
and holidays were associated with drownings. 
Prospective validation was performed on 617 days, 
covering 232 events (rescues and drownings) reported 
on 104 different days. The area under the curve (AUC) 
of the daily risk prediction model (combined with 3-day 
forecasts) was 0.82 (95% CI 0.79 to 0.86). The AUC of 
the 3-hour step model was 0.85 (95% CI 0.81 to 0.88).
Conclusions  Drowning events along the Gironde 
surf coast can be anticipated up to 3 days in advance. 
Preventative messages and rescue preparations could be 
increased as the forecast risk increased, especially during 
the off-peak season, when the number of available 
rescuers is low.

INTRODUCTION
According to the 2017 Global Burden of Disease 
study, drowning is a major cause of non-intentional 
deaths from injury worldwide.1 In France, the 
national public health agency (Santé Publique 
France) performs a national study every 3 years, 
registering all cases of drowning leading to hospital-
isation or death between 1 June and 15 September 
of the studied year. In 2015, this study reported 
1266 drownings, with 637 (50.3%) occurring 
along the seashore.2 In a previous study on the 
surf beaches of Gironde, southwestern France, 576 
people required rescue over 6 years; there were 24 
fatalities due to drowning.3 In terms of the length of 
the coastline, the annual mean was 3.3 deaths/100 
km, a rate comparable to the highest recorded along 
the US coastline.4

The Gironde coast is a 126-km-long stretch of 
sandy beaches (figure  1) exposed to high-energy 
waves that drive intense, narrow seaward-flowing 
jets of water termed ‘rip currents’. A previous study 
showed5 that these currents cause 79% of drown-
ings. Rip currents are the leading causes of rescues 
and drownings off many surf coasts worldwide.4 6–9

Drowning is sudden; prevention is key when the 
aim is to reduce the incidence of drowning.10–12 
Primary prevention may modify beachgoer 
behaviour13; lifeguards can impart preventative 
messages,14 reducing the need for medical attention 
and cardiopulmonary resuscitation of drowning 
victims.15 16 When a drowning occurs, a fast response 
involving bystanders, lifeguards, paramedics and a 
medical team if necessary, is essential.17

Drowning prevention on the Gironde beaches 
features patrolled areas, signs at most beach 
entrances, and leaflets describing the rip current 
and shore-break hazards. However, the beaches 
are not patrolled during the entire bathing season, 
which extends from April to October. Most life-
guard stations are open only in July and August; the 
locations most frequented by tourists are patrolled 
from mid-June to mid-September. On weekends in 
May and June, some areas are watched, depending 
on local authorities. The mayor is responsible for 
beach supervision, which is regionally coordi-
nated by the departmental prefect in collaboration 
with the prehospital care department of Bordeaux 
University Hospital. During high season, rescue 
helicopters are on standby (figure  1). On low-
season weekends, one helicopter may be on duty, 
depending on the regional authority.

Models predicting the coast-wide life-risk of 
drowning would be useful if they enhanced the 
preventative measures taken to reduce risk. Predic-
tive models of rip currents have been implemented 
in Florida,18 Puerto Rico,19 Mexico,20 India8 and 
Great Britain.21 These models were based on 
physics, modelling the occurrence and the speed of 
rip currents flow. They have been evaluated both 
retrospectively and in the field using hindcasts. 
To the best of our knowledge, they have not been 
prospectively evaluated using forecasts, and model 
predictions have not been compared with actual 
drownings.

The number of people exposed to a rip hazard 
is directly related to the number of swimmers and 
other water users, and therefore linked to beach 
attendance. Attendance rises on holidays, week-
ends, and with increased air temperature and less 
cloud cover; the number of bathers reflects air and 
water temperatures and (possibly) wind speed. As 
the risk of drowning is a combination of the hazard 
per se and exposure to it, and as the latter is poorly 
quantified, we created a model including parame-
ters reflecting exposure to rip currents. We assessed 
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whether drownings off Gironde beaches could be anticipated 
using a coast-wide risk prediction model based on forecast 
metocean conditions.

MATERIALS AND METHODS
Study setting
We performed an observational study along the French Atlantic 
coastline of Gironde (figure 1). The coast is meso-macrotidal, 
with spring tide range reaching 5 m. Summer-averaged signifi-
cant wave height and peak period are approximately 1.3 m and 
9 s, respectively.22 Deep rip channels incise the inner intertidal 
bar, with an average spacing of c. 400 m, through which intense 
rip currents can flow. In typical summer wave conditions, rip 
current activity is maximised for long period waves and shore-
normal incidence between low-tide and mid-tide.23 Even for 
waves of approximately 1 m, mean rip current speed can reach 
1 m/s.23

We first developed a model based on medical emergency calls 
from beaches, along with observed metocean conditions, in 
2011, 2012 and 2013. We evaluated only the bathing season 
(April–October). We tested the model to assess whether it accu-
rately predicted events that occurred from April to October in 
2015, 2016 and 2017, using metocean forecasts. We used the 
RiGoR guidelines24 to address common sources of bias in risk-
prediction models, and we adhered to the Strengthening the 
Reporting of Observational Studies in Epidemiology statement 
for observational studies.25

Data sources
Medical emergency calls
In Gironde, medical emergency calls either from a bystander or 
a lifeguard are received by a single medical emergency call centre 
(Service d’Aide Médicale d’Urgence). During each call, a physi-
cian records all information given by the caller, paramedics and 
(when applicable) prehospital care teams. All calls dealing with 
rescue from water or drowning were included in the data for 
this study; these were the events of interest. ‘Rescue’ refers to a 
need for evacuation from the water,11 and ‘drowning’ refers to 
respiratory impairment caused by submersion or immersion, as 

defined by the WHO.26 Both events were considered as adverse 
water events. We excluded calls lacking victims, training calls 
and duplicates. As every instance of a need for medical advice or 
a prehospital care team triggered a call, we considered that all 
events of importance would be identified. Information on every 
call was carefully read to avoid errors. Intentional drownings 
and drownings associated with known diseases (eg, seizure) were 
excluded.

Environmental conditions
Hourly tidal data were modelled by the ‘Service Hydro-
graphique et Océanographique de la Marine’ (SHOM, authori-
sation no. 296/2014) using the Lacanau shore as the reference. 
Lacanau is located in the approximate centre of the study area; 
according to the SHOM, the maximum tide phase lag over the 
entire study area is approximately 15 min. Wave conditions were 
measured every 30 min by the Centre d’Archivage National de 
Données de Houle In-Situ buoy27 located at 044°39.150′N and 
001°26.800′W (figure  1). The wave propagation time from 
the buoy to the coast is about 1 hour. Observed and forecast 
meteorological and wave conditions were provided by Météo-
France, the French national meteorological service. We used data 
from the Cap Ferret weather station; Météo-France claims that 
these well-represent the weather along the entire Gironde coast. 
Retrospectively, forecasts were not available and observed data 
were used for 2011–2013. Forecast data, collected prospectively, 
were available for up to 3 days and at 3 hour steps (7:00 am UTC 
±00:00, 10:00 am, etc.). Weather and sea forecasts were Météo-
France expert data based on the AROME and WW3 models, 
respectively. We recorded sea height, the wave height, period 
and direction. We also recorded wind speed and direction, air 
and water temperatures, and cloud cover. Other factors influ-
encing beach attendance were the season and type of day. High 
season was defined as the period from 15 June to 15 September, 
when most lifeguard stations are open. We distinguished between 
weekdays, weekends and holidays.

Statistical methods
We fitted two logistic regression models: a ‘daily model’ 
predicting the overall coast-wide risk of at least one adverse 
water event on a given day, and a ‘3-h-step model’ predicting 
the risks at different times of the day (9:30 am−12:29 pm, 
12:30−3:29 pm, 3:30−6:29 pm and 6:30-9:30 pm; all local 
times). Given above mentioned differences in the environmental 
data collection modes between the training and validation 
periods, we checked data consistency both visually and using the 
Wilcoxon-Mann-Whitney and Student’s t-tests.

Days for which metocean data were lacking were removed 
from the analysis. Prospective cohort data (including variable 
selection) were not used during model development. We trans-
formed the wave parameters : the wave factor (Wf) is the product 
of significant wave height and peak wave period, and the wave 
incidence factor Df is defined by the equation (1), with θ the 
mean wave direction (in degrees):

	﻿‍ Df = cos4
(
θ − 278

)
‍� (1)

278° is the mean angle of the normal to the coastline of the 
studied area. Therefore, Df range is 0–1 and is maximal when 
the wave direction is perpendicular to the coast. This transfor-
mation emphasises on small variations around the shore normal 
and made Df log-linear. We categorised non-log-linear quan-
titative variables (temperatures, wave factor and sea height); 
these were first divided into quantiles and then reduced using 

Figure 1  Map of Gironde, France, with studied area for life-risk 
prediction, location of air rescue bases used during high season, and 
hospitals. Observed data came from the Cap Ferret weather station and 
a buoy located offshore. Adapted from Tellier et al.3
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the Akaike Information Criterion (AIC) in a multivariate 
context.28 Model selection used the AIC to perform interac-
tion checks; we tested all possible models.29 ORs with 95% CIs 
were computed as bootstrap estimates. We checked that residual 
autocorrelation was absent. Goodness of fit was assessed using 
the Le Cessie-Van Houwelingen test.30 Calibration was assessed 
graphically employing a locally weighted, least-square regression 
smoother31 and the Spiegelhalter Z-test. Discriminatory power 
was assessed using receiver operator characteristic (ROC) curves 
based in data from each cohort. Fit and validation accuracies 
were assessed via Brier scoring. We measured the importance of 
the selected predictors by their partial Wald χ2 statistics minus 
the predictors’ degree of freedom and their proportions.31 The 
outcomes derived using 1, 2 and 3-day forecasts were compared 
by drawing ROC curves using the Delong and Venkatraman 
method for paired data32–34; we applied Holm-Bonferroni 
corrections. We created a five-level risk scale using the quintiles 
of the fitted probabilities. All analyses employed R software35 
running the RMS31 and pROC packages.33

RESULTS
Retrospective data were lacking for 77 days because of a buoy 
failure, and for 26 prospective days (21 because of data-link 
loss and 5 because of server unavailability). We analysed 563 
days during 2011–2013; 242 adverse water events (136 rescues 
and 106 drownings) were reported on 108 different days. In 
2015–2017, data were available for 612 days; there were 232 
adverse water events (155 rescues and 77 drownings) on 104 
different days (table 1). Demographics were similar between the 
two periods, with a sex ratio of 0.61 F/M, and a median age of 
23 (quartiles (18–42)). All retrospective and prospective cohort 
data were consistent, except for wind speed, which differed 
significantly between prospective and retrospective data, and 
cloud cover, which was measured by different means over the 
retrospective and prospective periods. Both were excluded from 
prospective analyses.

The final, predictive, daily coast-wide life-risk model included 
wave and wave incidence factors, air temperature, type of day 
and season (table  2). Water temperature and tidal range were 
not retained in the model. The model predicting risk at 3-hour 
steps featured sea height, wave parameters, air temperature, 
time of day, type of day and season (see online supplemental 
appendix table A1). Variation in the daily model was attribut-
able principally to air temperature (proportion of the overall χ2 
value, 40.9%), wave factors (21.7%), and time of day (16.2%) 
(figure 2). The principal 3-hour-step model predictors were air 
temperature (28.9%), the time of day (17.8%), and wave factors 
(12.6%) (online supplemental appendix figure A1). The prob-
ability of a daily drowning occurrence according to the final 
model is given by the equation (2), with Df the wave incidence 
factor, Wf the wave factor and Tair the air temperature.

	﻿‍

γ̂ = −7.83 + 1.65[Tairϵ] + 2.91[Tair > 23.5]

+1.14[highseason]− 1.45[weekday]
+0.363[weekend] + 3.12×Df + 1.86[Wf ≤ 9.2]
+1.96[Wf > 9.2] ‍�

The daily model had areas under the curves (AUCs) of 0.88 
(95% CI 0.84 to 0.91) for 2011–2013 and 0.82 (95% CI 0.78 to 
0.86) for 2015–2017 (figure 3). The 3-hour risk model had AUCs 
of 0.89 (95% CI 0.87 to 0.92) for 2011–2013 and 0.85 (95% CI 
0.81 to 0.88) for 2015–2017 (figure 3). Model outcomes did not 
differ when forecasts for 1, 2 and 3 days were used (p>0.05). 
Both models were well calibrated in terms of retrospective data 
(goodness-of-fit test p=0.20 for the daily model, p=0.53 for the 
3-hour-step model). Both models exhibited significant p values 
on Spiegelhalter Z-testing of prospective data, evidencing a lack 
of calibration: the daily model tended to overpredict days with 
risks of drowning >0.5; the 3-hour step model overpredicted 
risks as low as 0.1.

Using prospective data with 3-day forecasts, we found that 
assessment of the coast-wide risk of water adverse event using 
the five-level scale missed 1 of 158 days featuring a rescue at 

Table 1  Description of days without and with adverse water events

2011–2013 2015–2017

Days without events* (n=455) Days with events (n=108) Days without events (n=513) Days with events (n=104)

Wave factor†, m×s 11.3 5.6–14.6 10.3 6.5–12.9 11.3 5.4–14.4 14.5 8.0–18.0

Wave incidence factor‡ 0.80 0.69–0.99 0.89 0.85–0.99 0.80 0.74–0.97 0.88 0.83–0.97

Cloud cover (0–4)§ 2.8 2.0–3.7 2.4 1.5–3.0 − −

Air temperature, °C 21.6 19.2–23.9 25.2 23.3–26.6 21.5 19.0–24.0 25.5 23.0–27.0

Water temperature, °C 19.0 17.6–20.9 21.3 20.3–22.5 18.0 16.0–20.0 20.3 20.0–21.0

Wind speed¶, m/s 7.0 5.3–8.2 6.6 5.3–7.3 4.9 2.7–5.5 4.2 2.7–5.5

Season**, n (%)

 � High 187 (41.1) 90 (83.3) 199 (38.8) 79 (76.0)

 � Low 268 (58.9) 18 (16.7) 314 (61.2) 25 (24.0)

Type of day, n (%)

 � Weekday 213 (46.8) 18 (16.7) 233 (45.4) 24 (23.1)

 � Weekend 82 (18.0) 12 (11.1) 88 (17.2) 17 (16.3)

 � Vacation 160 (35.1) 78 (72.2) 192 (37.4) 63 (60.6)

Meteorological and wave conditions (medians and quartiles) and the characteristics of days on which rescues and/or drownings occurred along the Gironde coast of 
southwestern France.
*Events include rescues and drownings.
†Wave factor: wave height (m) times wave period (s).
‡The wave incidence factor ranges from 0 to 1; see equation (1).
§Forecast values not shown because of differences in the modes of data measurement.
¶Significant differences between observed and forecast data.
**High season: 15 June to 15 September.
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the lowest risk level (0.6%). The missed case was a rescued man 
who presented without a cough and was discharged on site. The 
prospective data predicted 45.8% of days with rescue events at 
the highest risk level (table 3). Few differences between forecasts 
according to their delay and the risk level were observed (see 
online supplemental material table A2). The 3-hour step model 
missed 2 of 481 rescues, one at the lowest level (0.4%) and one 
at the highest (15.7%).

Observed rescues and drownings by predicted risk level 
derived using regression models exploiting 3-day forecasts; 
Gironde, southwestern France.

The missed case at the lowest risk level in the retrospective 
cohort occurred during moderate wave conditions (wave factor 
~8 m×s) and at low wave incidence factor (0.47), but the victim 
required only rescue, was asymptomatic on rescue, and was not 
evacuated. The second missed event occurred at the tip of the 
Cap Ferret sandspit, which lacks wave-driven rip currents. The 

last missed event occurred at La Salie Nord, adjacent to (south 
of) the Arcachon inlet, under moderate wave conditions.

The 3-hour step model missed two events in the prospective 
cohort, both in September 2017, and both occurring under 
strong wave conditions (wave factor>15 m×s). One was a 
surfer; the activity pursued by the other victim was not recorded. 
Both cases were minor and were treated in the local hospital.

DISCUSSION
While previous studies examined the association of ocean 
drowning risk with weather conditions,36–39 our study is the first 
to focus on the prediction of life-risk. Air temperature, wave 

Table 2  Factors associated with daily adverse water events along the Gironde coast
Crude OR (95% CI) Adj. OR (95% CI) χ2

Wave factor*, m×s 22.8

 � <5.2 Ref. Ref.

 � 5.2–9.2 3.89 (2.03 to 9.81) 6.41 (2.93 to 18.3)

 � >9.2 1.96 (1.01 to 4.50) 7.10 (3.09 to 22.7)

Wave incidence factor* 1.83 (1.40 to 2.62) 2.27 (1.58 to 3.70) 13.2

Cloud cover†‡ 0.52 (0.37 to 0.74) –

Air temperature*, °C 43.0

 � ≤21 Ref. Ref.

 � 21–23.5 6.58 (3.03 to 19.2) 4.79 (1.93 to 16.6)

 � >23.5 19.10 (9.62 to 61.8) 12.20 (4.69 to 52.3)

Water temperature*, °C

 � ≤19.5 Ref. –

 � 19.5–21.3 3.95 (2.13 to 9.14)

 � >21.3 13.18 (7.60 to 27.0)

Wind speed†, m/s

 � ≤4.3 Ref. –

 � 4.3–6.3 1.71 (1.00 to 3.14)

 � >6.3 0.84 (0.45 to 1.66)

Season 10.4

 � Low Ref. Ref.

 � High 7.17 (4.38 to 13.5) 3.98 (1.44 to 6.11)

Type of day 17.1

 � Weekday Ref. Ref.

 � Weekend 1.73 (0.71 to 3.62) 2.96 (1.06 to 7.98)

 � Holidays 5.77 (3.49 to 10.8) 4.25 (2.19 to 9.75)

Univariate and multivariate analyses performed with the aid of logistic regression models using retrospective data from 2011 to 2013.
*Daily maximal value.
†Daily mean value.
‡Not incorporated into multivariate analyses because of differences in measurement modes.

Figure 2  Importance of predictors in daily coast-wide life-risk along 
Gironde surf beaches. Importance of predictors is assessed using 
Wald statistics minus two df, with their 95% CI given by bootstrap 
estimations, multivariate logistic regression model.

Figure 3  Receiver operator characteristic curves of prediction models 
of water adverse event along Gironde coast. (A) Prediction model using 
daily data: area under the curve (AUC) of 0.88 (95% CI 0.84 to 0.91) for 
2011–2013 data and 0.82 (95% CI 0.78 to 0.86) for 2015–2017 data. 
(B) Model predicting coast-wide life-risk over 3-hour periods: AUC of 
0.89 (95% CI 0.87 to 0.92) and 0.85 (95% CI 0.81 to 0.88).
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direction and the wave factor were the primary environmental 
predictors; the type of day and the season were also significant, 
but less important, predictors. Given the availability of extensive 
metocean data used to infer rip current activity, we were able to 
build a tool that accurately predicted coast-wide life risk.

Warm weather increases sea exposure and therefore the risk of 
drowning, consistent with other studies.40 41 This finding, associ-
ated with the importance of the time of day, highlights the social 
dimension of the drowning risk. Actually, air temperature and 
time of the day may be the primary controls for the number of 
beach users and their behaviours.

Wave parameters influencing rip current flow velocity were 
significant predictors of drowning, consistent with the results 
of physical models.21 For instance, coast-wide life-risk was 
increased for more shore-normally incident waves.42 Here, the 
life-risk was found to systematically increase with the wave 
factor Wf, which is in line with Castelle et al, but contrast with 
Scott et al43 in UK where hazard was maximised for just below 
average Wf. In a previous study,44 it was qualitatively shown 
that the beach morphology, which has a profound impact on rip 
current hazard, was important to the number of drowning inci-
dents. Given the low number of studied seasons and events, and 
the likely contrasting beachgoer profiles between seasons, it was 
not possible to robustly address the influence of the bathymetry. 
A beach bathymetry proxy could be added to the model via the 
integration of beach state estimation model based on the equi-
librium concept.45

As the wind parameters differed between the retrospective 
and prospective periods, we could not use these parameters, 
although they might have further improved the models. Cloud 
cover was measured differently during the two periods and thus 
could not be incorporated into the models. Although univariate 
analysis showed that cloud cover was a significant predictor 
of drowning, it is strongly correlated with air temperature. 
Future models should integrate predicted rather than observed 
measures. Parameters such as cloud cover could be therefore 
studied.

Our models tend to overestimate the risk on days associated 
with moderate to high risks; some variables may thus be unknown, 
related to the beach morphology and the beach attendance. First, 
the summer beach morphology along the Gironde coast is very 
variable with rip channel exhibiting different morphologies from 
one summer to another,44 and even in space with more gently 
sloping and less channelized beaches northwards. Given that, for 

instance, the relative depth of the rip channels is critical to rip 
current flow speed,46 and thus physical hazard, and that beach 
type also influence attendance47 consideration of a constant 
beach morphology is limiting. Although the current version of 
our model does not account for beach attendance data, it can 
guide lifeguard/rescue decision makers who need to allocate 
resources. Moreover, drownings are certainly under-reported to 
the emergency call centre; reporting rates may vary over time. 
We could not directly estimate exposure, as beach attendance 
is not measured in Gironde. This findings might also be due to 
the consistency between the perception of the hazard by beach 
users and the computed risk.48 The timestamps for the calls are 
provided automatically by the emergency call centre database. It 
may be delayed by a few minutes from the event.

Turning to the missed events, two occurred in sectors adjacent 
to the Arcachon lagoon inlet, where local, strong tide-driven 
currents develop at low tide, constituting a major hazard. We 
hypothesise that the missed events were attributable to these 
currents. This highlights the need to carefully target preventative 
messages; the primary hazards vary locally.

Use of the 1, 2 and 3-day forecasts yielded similar results; 
this will aid in the efficient deployment of lifeguards and rescue 
equipment. Accurate local forecasts more than 3 days ahead are 
not available.

How may our findings save lives? This work can be used in two 
ways: the first as a trigger for targeted preventative messages, 
and the second as a decision aid for rescue services.

The use of a binary scale would trigger many false alarms; 
thus, we considered that a five-level scale was more appropriate, 
as such scales are used to predict other risks posed by natural 
hazards (such as snow avalanches). Our scale should be improved 
using a risk utility function, which remains to be specifically 
determined. We concede that our present levels are arbitrary; we 
must still explore what beachgoers and decision-makers consider 
to be ‘low’, ‘moderate’ or ‘acceptable’ risks. The study of social 
factors influencing beach attendance and water use might still be 
important to study to formulate preventative messages. This will 
be the object of a future study.

Any message suggested by our models must be consistent with 
‘messages’ imparted by beach flags. These flags can be ‘green’ (no 
or minor hazard, bathing supervised), ‘yellow’ (hazard, bathing 
supervised) or ‘red’ (major hazard, no bathing allowed). They 
are determined by lifeguards based on wave conditions, water 
temperature, and beach attendance, and may vary depending 
(for example) on lifeguard experience. Unpublished local reports 
indicate that green and red flags are rarely raised during the high 
season on the Gironde coast. The future integration of forecasts 
into drowning prevention strategies should therefore take into 
account the social dimension of rip current hazard.49

We are confident that our model can be adapted to similar 
beaches with rip currents, but complete generalisation of our 
findings is inappropriate in the absence of more data. Lifeguard 
knowledge and the physical parameters of natural hazards require 
attention: our model was built on lifeguard hypothesis for beach 
attendance and physics models of natural hazard. The next steps 
are forecast validation by lifeguards and automation of feed-
back; these will allow the model to be continuously improved. 
As more data become available, other modelling strategies may 
be appropriate, such as Bayesian or neural networks. In such 
strategies, the importance of the exposure would be of interest 
to identify environmental conditions prone to risky behaviour.

Predicting the need for rescue from water in a hazardous envi-
ronment is key to reducing the risk of drowning. Our predic-
tive models can be used to efficiently deploy medical teams and 

Table 3  Observed rescues versus predicted coast-wide risk of 
adverse water event

Risk level

2011–2013 2015–2017

Events* Total % Events Total %

Daily model†

 � 1 3 113 2.7 1 172 0.6

 � 2 1 112 0.9 8 105 7.1

 � 3 11 113 9.7 15 95 15.8

 � 4 23 112 20.5 23 88 26.1

 � 5 70 113 61.9 66 144 45.8

3-hour-step model‡

 � 1 0 395 0.0 2 481 0.4

 � 2 3 394 0.8 3 381 0.8

 � 3 6 394 1.5 10 309 3.2

 � 4 19 394 4.8 22 330 6.7

 � 5 103 394 26.1 58 369 15.7

*Events: rescues and drownings.
†Goodness of fit: p=0.20, calibration test p<0.001. Brier scores: 0.10 for 2011–2013, 0.12 for 2015–2017.
‡Goodness of fit: p=0.53, calibration test p=0.10. Brier scores: 0.05 for 2011–2013, 0.05 for 2015–2017.
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rescue helicopters. An interventional study (performed under 
real-world conditions) is planned. A utility function reflecting 
risk perception/acceptance is required. This would allow prior-
itised preventative messages to be broadcast during high-risk 
periods. The strategy must employ behavioural change theory to 
reduce the risk to beachgoers. Evaluation requires reliable data 
from both lifeguard stations and emergency call centre files.
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What is already known on the subject

	► Drownings along surf beaches are mainly caused by rip 
currents.

	► Rip currents activity is controlled by wave and beach 
morphology factors.

What this study adds

	► Along surf beaches of south western France, drownings can 
be anticipated using coast-wide wave and weather forecasts 
in combination with calendar factors.

	► Such methods could be adapted to other places with similar 
hazards.
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