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This work deals with the modeling of sound wave propagation in anisotropic and1

heterogeneous media. The scattering problem considered in this work involves an2

infinite layer of finite thickness containing an anisotropic fluid whose properties can3

vary along the depth of the layer. The specular transmission and reflection of an4

acoustic plane wave by such a layer is modeled through the state vector formalism5

for the acoustic fields. This is solved using three different numerical techniques,6

namely the transfer matrix method, Peano series and the transfer Green’s function.7

These three methods are compared to demonstrate the convergence of the numerical8

solutions. Moreover, the implemented numerical procedures allow to retrieve the9

internal acoustic fields and show their dependency along with the fluid’s anisotropic10

properties. Results are then presented to illustrate the changes in absorption that11

can be achieved by tuning the anisotropy of the fluid as well as the variation of12

these properties across the depth of the layer. The results presented are in very13

good agreement across the different methods. Given that many porous materials14

can be modeled as equivalent fluids, the results presented show the potential offered15

by such numerical techniques, and can further give more insight on inhomogeneous16

anisotropic porous materials.17

Keywords: acoustic control, anisotropic fluid, heterogeneous fluid, graded porous

layer, absorption
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I. INTRODUCTION18

Acoustic treatments involving porous materials are commonly used for sound absorption19

purposes. The recent development of additive manufacturing provides more control on the20

micro-structures of these porous materials. Hence, the anisotropic and graded properties of21

such microstructures influence the wave propagation in the medium, which is numerically22

described. A rigid-frame porous medium is usually modeled as an equivalent fluid, that can23

display anisotropic and heterogeneous frequency dependent effective properties. One way24

to describe these effective properties is the well-known Johnson–Champoux–Allard–Lafarge25

(JCAL) model1 which provides the thermal and viscous dynamic permeabilities of the prop-26

agation medium. For a periodic porous material, formed by a repetition of a unit cell,27

the JCAL model can rely on homogenized properties of this unit cell calculated using the28

method of multiple scales2. Since the viscous dissipation has been shown to be direction-29

dependent3–5 in anisotropic media, the same considerations are used in the current paper.30

Recent work6 have shown that anisotropic materials can have different apparent sound speed31

depending on the direction of propagation, coupling viscous and inertial regimes. This is32

especially visible at grazing angles of incidence, and can be exploited for absorption consid-33

ering a diffuse field where all incidences are accounted for. The derivation of the equations34

has been done recently to retrieve the effective properties of an anisotropic homogeneous35

material7, and is recalled in the section regarding wave propagation.36

The present work focuses on the modeling and analysis of inhomogeneous anisotropic37

materials. The scattering problem considered here involves an infinite layer of finite thickness38
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containing an anisotropic fluid whose properties can vary across the depth of the layer. The39

transmission and reflection of an acoustic plane wave by such a layer is modeled through40

the state vector formalism, which is solved using three different techniques. First, the41

layer is assumed piece-wise constant and the standard transfer matrix method (TMM)8
42

is employed. The other two methods are applicable to continuously graded media. The43

Peano Series (PS) has previously been used for graded9–11 and anisotropic materials12, and44

wave-splitting techniques for continuously graded media13–18. In addition, the internal fields45

and dissipation rate of energy are estimated19 and shown to be dependent on the fluid’s46

effective properties. Other solution procedures can however be applied to approximate such47

propagation problem, as Euler or Runge-Kutta iterative schemes, which are commonly used48

for linear systems14.49

The article is organized as follows, we first introduce the equivalent fluid model and50

the propagation problem considered in this work. The different numerical approaches are51

then presented, so as to solve for the acoustic fields inside the layer. Numerical results52

of the scattering coefficients on such anisotropic graded material are presented for all the53

methods considered, which show good agreement. Finally, further insight is provided into54

the dissipation rate within the anisotropic material and in the role played by the orientation55

of the micro-structure.56

II. PROPAGATION IN GRADED ANISOTROPIC FLUID LAYERS57

In this section the propagation of a plane wave through an anisotropic, heterogeneous

equivalent fluid is described. We set the reference in the Cartesian coordinate system R0 =
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(O, e1, e2, e3) with the associated spatial coordinates vector x = (x1, x2, x3) ∈ R3. The fluid

layer, denoted Ω, is a slab of finite thickness L and infinite extent in the (0,x⊥) plane, as

illustrated in Fig. 1. The subscript ⊥ denotes the restriction of a vector to the (O,x⊥) plane

with x⊥ = {x1, x2}. The domain Ω is delimited by the plane boundaries at x3 = 0 and

x3 = L denoted Γ0 and ΓL respectively. We solve for the sound field in this layer Ω in the

linear harmonic regime using the time convention e−iωt where ω is the angular frequency.

The effective bulk modulus and density of the anisotropic heterogeneous fluid are denoted

B(x3, ω) and ρ(x3, ω). Note that these quantities are complex-valued, frequency dependent

and can vary along the x3 direction, moreover, while the bulk modulus of the medium is

scalar, the density is a second order tensor accounting for anisotropic phenomena. The

pressure p and velocity v induced by the acoustic field in Ω are governed by the following

linear equations for mass conservation and momentum conservation

iωρ(x3, ω)v(x, ω) = ∇p(x, ω) , (1a)

iωB−1(x3, ω)p(x, ω) = ∇ · v(x, ω) . (1b)

58

The exterior of the domain Ω is denoted Ω0 and contains an homogeneous isotropic fluid,

taken to be air in this case. The density of air is ρ0 = 1.213 kg.m−3 and its bulk modulus

B0 = γP0 with γ = 1.4 the ratio of specific heat and P0 = 101 325 Pa the atmospheric

pressure. The sound field in the exterior domain Ω0 satisfies

iωρ0v(x, ω) = ∇p(x, ω) , (2a)

iωB−1
0 p(x, ω) = ∇ · v(x, ω) . (2b)
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While the density of the isotropic fluid in Ω0 is described by the scalar ρ0, the anisotropy60

of the fluid in the layer Ω is described by the tensor density ρ. This tensor accounts for61

the fact that the properties of the waves in Ω depend on the direction of propagation. The62

density tensor ρ is diagonal in the special case where its principal directions are aligned with63

the coordinate system R0. But in the general case it is full, symmetric and can be written64

ρ = R



ρ11 0 0

0 ρ22 0

0 0 ρ33


RΩ

RT , (3)

with R the complete rotation matrix accounting for the yaw, pitch and roll angles, respec-65

tively (u1, u2, u3) along (e1, e2, e3). For the sake of simplicity and since the particle velocity66

depends on the inverse of the density tensor, the second-order tensor H = ρ−1 remains67

symmetric and will be used instead of ρ in the remainder of this work.68

In the upper region of Ω0, x3 ≥ L, we define an incident plane wave with unit amplitude:

pi(x, ω) = eik1x1+ik2x2−ik3(x3−L),

where the components of the wave-vector ki are given by

k1 = −k0 cos(θ) cos(ψ), (4)

k2 = −k0 cos(θ) sin(ψ), (5)

k3 = k0 sin(θ), (6)

with ψ and θ the polar and elevation angles, respectively. k0 = ω/c0 is the free-field acoustic69

wave-number.70

6



The presence of the anisotropic layer Ω gives rise to a reflected wave pr in the upper

region of Ω0 and to a transmitted wave pt in the lower region of Ω0, x3 ≤ 0. These are

written

pr(x, ω) = R̃eik⊥·x⊥+ik3(x3−L) , (7)

pt(x, ω) = T̃ eik⊥·x⊥−ik3x3 , (8)

where R̃ and T̃ are the specular coefficients of reflection and transmission and k⊥ = {k1, k2}71

and x⊥ = {x1, x2}. As the incident wave could physically come from x3 < 0, it is important72

to be explicit about the scattering coefficients which are R̃± and T̃±, depending on the73

sign of wave incidence. The system being reciprocal we reach T̃ = T̃+ = T̃−, whereas the74

distinction has to be made for the reflection since the heterogeneity of the medium can be75

non-symmetric. Without any specific considerations about the effective properties of the76

medium, R̃+ 6= R̃− in the inhomogeneous case. For the sake of simplicity and as reversing77

the layer Ω between its interfaces is equivalent to propagating in the opposite direction, we78

use the notation R̃ = R̃+ when the incident waves comes from the upper region x3 ≥ L.79

However, the solution procedures developed further are valuable for all scattering coefficients.80

8182

The incident plane wave pi also induces a sound field in the anisotropic and graded layer

Ω. Given that (i) the properties of this layer are independent of x1 and x2 and (ii) the

incident field has an harmonic spatial dependence eik⊥·x⊥ , it is clear that the wave field in
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FIG. 1. [Color online] Schematic representation of the propagation problem in Ω0 and Ω. A fluid

layer of finite thickness L along x3, with infinite dimension in the (O,x⊥) plane and interfaces Γ0

and ΓL . Incident, reflected and transmitted wave-vectors are represented with red arrows. The

elevation and azimuthal angles θ and ψ are shown respectively in purple and cyan.

the layer Ω retains the same harmonic spatial dependence:

p(x, ω) = p(x3)eik⊥·x⊥ , (9a)

v(x, ω) = v(x3)eik⊥·x⊥ . (9b)

(9c)

83

The derivation of the governing equations Eqs. (1) has recently been done for retrieval

techniques and applied to fully-anisotropic porous materials7. The process is recalled as

follows, and leads to the state-vector equation for pressure and normal particle velocity.

From the conservation equations Eqs. (1), the transverse and normal components of the
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fields are expanded,

iωv⊥ = iH⊥ · k⊥p+H33q
∂p

∂x3

, (10a)

iωH−1
33 v3 = ik⊥ · q p+

∂p

∂x3

, (10b)

iωB−1p = ik⊥ · v⊥ +
∂v3

∂x3

, (10c)

where we have again used the notation v⊥ = {v1, v2}. We have also introduced the coupling84

vector q = {H13/H33 , H23/H33} and the 2 × 2 matrix H⊥ = Hmn ∀ (m,n) ∈ {1, 2}2. From85

Eqs. (10a) and (10c) we get86

iωB−1p = ik⊥ ·
[
i(H⊥ · k⊥)

p

iω
+
H33

iω
q
∂p

∂x3

]
+
∂v3

∂x3

. (11)

Together with the momentum conservation in Eq. (10b), leads to87

iωB−1p = H33(k⊥ · q)2 p

iω
− k⊥ · (H⊥ · k⊥)

p

iω
+ i(k⊥ · q)v3 +

∂v3

∂x3

, (12)

where after rearranging the pressure terms, emerges the equivalent bulk modulus:88

B−1
eq = B−1 +

[
H33 (k⊥ · q)2 − k⊥ · (H⊥ · k⊥)

]
/ω2 . (13)

Yields the following equation of mass conservation, where Beq relates the compressibility89

effects of the equivalent fluid, accounting for anisotropic dependencies and oblique consid-90

erations,91

iωB−1
eq p = ik⊥ · qv3 +

∂v3

∂x3

, (14)

and with Eq. 10b, they characterize the sound field in the layer Ω, with equivalent density92

H−1
33 and bulk modulus Beq. They can be written using a state-vector formulation93

dW

dx3

= A(x3)W , (15)
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where we have introduced the state vector W = {p, v3}T (with T the non-conjugate trans-94

pose), and the matrix95

A(x3) =


−ik⊥ · q iωH−1

33

iωB−1
eq −ik⊥ · q

 . (16)

At the interfaces Γ0 and ΓL between the anisotropic layer and the surrounding fluid, the96

continuity of pressure and normal velocity is imposed as boundary conditions. As a conse-97

quence, the state vector at both interfaces reads98

WL =


1 + R̃

Z−1
e (R̃− 1)

 and W0 =


T̃

−Z−1
e T̃

 , (17)

with Ze = Z0/ sin(θ) the apparent impedance of the air in domain Ω0 with respect to the99

unit outward normal vector n = e3 at interface ΓL. Note that in the case where the layer is100

rigidly backed (absorption problem), the boundary term at Γ0 simplifies to W0 = {p(0), 0}T101

since the Neumann condition involves zero normal velocity on the rigid layer backing.102

III. SOLUTION PROCEDURES103

The state-vector Eq. (15) can be solved using a variety of numerical techniques. In this104

section three different methods are presented. The well-known TMM is first described, then105

two other approaches are presented for continuously graded media.106
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A. Transfer matrix method107

The heterogeneous fluid layer Ω can be approximated by a succession of N homogeneous108

layers. The propagation of the waves through each homogeneous layer can be solved exactly109

using the TMM8. This approximation is accurate provided that the thickness of each homo-110

geneous layer is small compared to the wavelength. We introduce the start- and end-points111

of the successive homogeneous layers as x
(i)
3 so that x

(0)
3 = 0 and x

(N)
3 = L. The state vectors112

on either sides of the ith homogeneous layer can be related as follows113

W
(
x

(i+1)
3

)
= M

(
x

(i+1)
3 , x

(i)
3

)
W
(
x

(i)
3

)
, (18)

where M is the matricant which can be written in terms of the constant matrix Ai associated114

with the ith homogeneous layer:115

Ai = A

(
x

(i+1)
3 + x

(i)
3

2

)
. (19)

To do so we first diagonalize this matrix by writing Ai = V−1
i λiVi with λi the diagonal116

matrix of eigenvalues and Vi the matrix of eigenvectors. The state-vector formulation Eq.117

(15) in the ith layer can be transformed into two decoupled ordinary differential equations:118

d

dx3

(ViW) = λi (ViW) . (20)

These can be readily solved to obtain the matricant:119

M
(
x

(i+1)
3 , x

(i)
3

)
= V−1

i


eλ1li 0

0 eλ2li

Vi , (21)

with li = x
(i+1)
3 − x(i)

3 . This expression can be directly written as a matrix exponential20:120

M
(
x

(i+1)
3 , x

(i)
3

)
= exp(Aili) . (22)
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The overall transfer matrix M relating the state vectors at the two interfaces Γ0 and ΓL is121

defined as the product of the matricants of all the homogeneous layers:122

WL = MW0 , M =
N−1∏
i=0

eAili . (23)

The discretization of domain Ω is chosen to be linear across N = 40 positions, and will serve123

as comparison with two different methods which follow.124

B. Peano Series125

Another approach to solve Eq. (15) is to use the PS which have previously been used for126

continuously graded isotropic materials9. In the homogeneous case, i.e. when A is constant,127

the PS can be shown to be equivalent to the product of matrix exponentials in Eq. (23). In128

the present case of x3 dependent properties, the matrix A does not commute with itself for129

different values of x3, so ∀(x′3, x′′3) ∈ [0, L]2, x′3 6= x′′3, [A(x′3)A(x′′3) − A(x′′3)A(x′3)] 6= 0 and130

the matricant is no longer defined by matrix exponentials, but rather by the Peano series.131

Using this formalism, the matricant M defined by Eq. (23) is written as an infinite series132

of integrals18,20:133

M(0, x3) = Id +

∫ x3

0

A(ξ)dξ +

∫ x3

0

A(ξ)

∫ ξ

0

A(ξ1)dξdξ1 + . . . . (24)

In practice this is calculated through the use of the following recurrence relations11,134 
M{0}(0, L) = Id

M{n}(0, L) = Id +

∫ L

0

A(x3)M{n−1}(x3)dx3

(25)
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and the state vector relation at both interfaces now reads,135

WL = lim
n→∞

M{n}(0, L)W0 . (26)

136

An approximate solution is obtained by truncating this infinite series. In fact, unlike137

the TMM where the matricant of the system is assembled piece by piece, each term of the138

integral series accounts for the whole domain 0 < x3 < L. The integral itself is estimated139

by the trapezoidal method at each iteration, using the same unit spacing L/N . Hence, any140

additional term of the truncated series tends to refine the solution given by this method.141

The recurrence relation is chosen to be expanded up to 50 terms, a sufficient number for the142

series to converge.143

C. Wave-Splitting, Transfer Green Functions144

The wave-splitting method relies on the separation of the overall acoustic field into for-145

ward and backward propagative waves14,18. Since the effective properties of the medium are146

inhomogeneous along x3, the wave-splitting applied in the current paper is not related to Ω,147

but rather with respect to the domain Ω0
15,16. The wave-splitting matrix is independent of148

the graded parameters (tensorial density ρ and equivalent bulk modulus Beq), which ensures149

the split fields to be continuous across any x3-plane in the medium Ω17. These are defined150

as s± = (p± Zev · n)/2 where the ± sign indicates the direction of propagation relative to151

the unit vector n. Although they only have a physical sense in Ω0 according to the wave-152

splitting transformation, the associated change of basis remains valid. It is then possible to153
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introduce a new vector S = {s+, s−}T which is related to the original vector W by,154

S(x3, ω) = ZW(x3, ω) , with Z =
1

2


1 Ze

1 −Ze

 . (27)

Introducing this definition in the state vector formulation Eq. (15), it is straightforward to155

obtain:156

d

dx3

S = B(x3)S , (28)

with157

B(x3) = ZA(x3)Z−1 =


U+ U−

−U− −U+

− i(k⊥ · q)Id , (29)

Id being the identity matrix, and

U±(x3, ω) =
iω

2

[
ZeB

−1
eq (x3, ω)±H−1

33 (x3, ω)Z−1
e

]
.

The differential equations Eq. (28) can be solved using the transfer Green’s functions

(TGF)19 method by writing the forward and backward internal fields in terms of the trans-

mitted wave s−(0, ω) as follows:

s±(x3, ω) = G±(x3, ω)s−(0, ω) ,

where G± denote the two Green’s functions. They are solutions of the following differential158

equations159

dG

dx3

= BG , (30)

with G = {G+, G−}.160
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In the case of an absorption problem (rigid backing at Γ0) the boundary condition for the161

Green functions Eq. (30) reads G0 = {1, 1} as a total specular reflection. In the case of a162

transmission problem, we must have a total transmission at the interface Γ0, corresponding163

to G0 = {1, 0}. The fluid layer heterogeneity being of macroscopic scale (the order of L),164

the spatial discretization is easily achieved. The continuous graded properties along x3 in165

the domain Ω are split linearly into N = 40 positions. The differential system of equations,166

Eq. (30) is solved numerically.167

IV. RESULTS AND DISCUSSIONS168

This section deals with the numerical validation of the proposed models. The scattering169

coefficients are retrieved with all three different methods and applied to an heterogeneous170

anisotropic porous material.171

A. Scattering coefficients172

With the TMM and the PS the reflection and transmission coefficients are readily avail-

able as part of the solution procedures. From the relation WL = MW0 from Eq. (23) one

can derive the following expressions for these coefficients:

T̃ = 2Z−1
e [Z−1

e Tr(M)− Z−2
e M12 −M21]−1 , (31a)

R̃ = M11T̃ − Z−1
e M12T̃ − 1 , (31b)

15



where Tr(M) is the trace of the square matrix M and Mij are the coefficients of the matrix.173

Note that R̃ and T̃ are functions of the angular frequency ω and the incidence angles (the174

polar and elevation angles ψ and θ, respectively).175

For the wave-splitting method, the reflection and transmission coefficients are recovered

from the solutions for the Green’s functions G+ and G− as follows14,17,18:

T̃ = 1/G−(0) , (32a)

R̃ = G+(L)/G−(L) . (32b)

To quantify the acoustic dissipation inside the layer Ω we calculate the absorption co-

efficient. As mentioned earlier, as the scattering coefficients depend from the direction of

incidence, the absorption coefficient follows the same dependency,

α±(ω) = 1− |R̃±(ω)|2 − |T̃ (ω)|2 .

It will vary between 0 and 1 and can also be calculated when the layer is rigidly backed176

so T̃ = 0. The different computing methods have been compared to the transfer matrix177

method. For a similar spatial sampling (linear with N = 40) the relative error between each178

method is below 0.2% and the average computation time per frequency is ttgf ≈ 0.21s for179

Green’s functions (and mainly depends on absolute and relative tolerances of the numerical180

integration), while tps ≈ 0.05s for 50 terms of Peano Series and ttmm ≤ 0.01s for TMM.181

These results are obtained by averaging the computing time over 100 frequency points, the182

overall comparison for the three different methods can also be done in parallel. Moreover,183

other numerical differentiation procedures can be set up to reach the scattering coefficients,184

such as Runge-Kutta schemes14.185
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TABLE I. Homogenized JCAL parameters for the anisotropic unit cell with characteristic size `c

in the coordinate system R0.

φ (1) Λ′ (m) K′0 (m2) τ∞ (1) Λ (m) K0(m2)

Ω 0.7210 0.533 `c 0.0214 `2c - - -

e1 - - - 2.987 0.129 `c 5.74 10−4`2c

e2 - - - 1.089 0.448 `c 1.56 10−2`2c

e3 - - - 1.487 0.273 `c 4.83 10−3`2c

B. Porous material186

The anisotropic fluid layer considered as an example in the present work is a periodic187

porous material. The unit cell that is periodically distributed to form this periodic material188

is a rigid cube of length `c from which an ellipsoid with semi-axes of different lengths is189

carved out, see Fig 2(c). The effective properties of this unit cell are obtained using the190

multiple-scale method outlined in Ref. 2 and 7. The resulting parameters of the JCAL191

model1 are listed in Table I as functions of the unit cell size `c and in the coordinate system192

R0. Some of these parameters are scalar quantities (porosity φ, characteristic thermal length193

Λ′ and static thermal permeability K′0) while others are tensorial (high-frequency tortuosity194

τ∞, characteristic viscous length Λ and static viscous permeability K0).195196

To obtain an inhomogeneous material the unit cell size `c is varied along the x3 direction.197

As a consequence the effective JCAL parameters will also vary along this direction. The198
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profile chosen as an example in this work is the ‘ramp’ shown in Fig. 2(a). The unit cell size199

`c is varied continuously from 0.1 mm at the base of the layer (x3 = 0) to 2 mm at the top of200

the layer (x3 = L). This profile was chosen to achieve an impedance matching between the201

exterior domain and the porous material. The layer thickness is L = 50 mm and achieves202

perfect absorption at the frequency f0 = 2500 Hz.203

FIG. 2. [Color online] (a) Variation of the unit cell size `c along the depth of the porous material

layer between Γ0 and ΓL. (b) Cartesian coordinate systemR0 with its associated orthonormal basis

(e1, e2, e3) and the rotation angles (u1, u2, u3). (c) Unit cell for the periodic anisotropic porous

material. Shown here is the rigid skeleton and a fluid region formed by a body-centered ellipsoid

with semi-axes r1 = 0.51`c, r2 = 0.7`c and r3 = 0.55`c.
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FIG. 3. [Color online] Absorption coefficient at oblique incidence, on the frequency range

100Hz − 5kHz and for elevation angle θ from 0 to π, with ψ = 0 (a) and ψ = π/2 (b). (c)

Absorption coefficient at normal incidence, on the same frequency range, using the TMM, PS and

TGF methods. (d) Magnitude of the split fields in the porous layer S, for perfect absorption fre-

quency f0 at normal incidence. Absorption coefficient at grazing incidence, on the frequency range

100Hz− 5kHz and for elevation angle θ = π/20, with ψ = 0 (e) and ψ = π/2 (f).

C. Influence of wave incidence204

We begin by considering the case of a plane wave at oblique incidence with ki =205

(k1, k2, k3). Results are shown for an absorption problem, when the layer is rigidly backed206
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at Γ0. Fig. 3(a) shows the absorption coefficient as a function of frequency between 100 Hz207

and 5 kHz. The second axis spans the values of elevation angle, while the polar angle of208

incidence is ψ = 0 in Fig.3(a) and ψ = π/2 in Fig.3(b). While the absorption is limited at209

low frequency, this material is able to achieve a perfect absorption (α = 1) for a frequency210

close to f0 = 2500 Hz. However, we can observe a notable change in the absorption depend-211

ing on the polar angle of incidence. Fig.3(c) also shows that the three solution procedures212

presented here (namely the TMM, PS and TGF) are in excellent agreement over the whole213

range of frequencies. Fig.3(d) shows the evolution of the forward and backward components214

s±(x3) in the layer Ω for the frequency where the perfect absorption f0 is achieved. It is215

clear that the magnitude of the backward wave s+(x3, ω) = (p + Zev3)/2 vanishes on the216

upper side of the layer (x3 = L), which is consistent with the fact that there are no reflected217

wave at this frequency. Also visible in Fig.3(d) is the strong absorption of the forward218

propagating component s− when it reaches the more resistive part of the porous layer (i.e.219

where `c is small). Concerning the dependence of α with the elevation angle θ, the system220

tends towards total reflection for grazing incidences and the anisotropic properties of the221

fluid layer are clearly visible, as shown in Figs. 3(e) and 3(f).222

D. Effects of anisotropic coupling223

In the results above the unit cell has been aligned with the coordinate system, as shown in224

Fig.3. To illustrate the effects of the anisotropy of the material, one can rotate the unit cell225

using the expression given in Eq. (3). This is shown in Fig.4 for the absorption coefficient226
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α. Depending on the rotation components (u1, u2, u3) involved in the density tensor, the227

acoustic behavior of the fluid layer is significantly impacted, especially at high frequencies.228

To provide further insight into the losses occurring within the layer, we derive the balance

of acoustic energy in an anisotropic fluid. From the governing Eq. (1) in Ω, one can derive,

iωv∗ρv − v∗ · ∇p = 0 , (33a)

iωB−1|p|2 − p̄∇ · v = 0 , (33b)

where we have introduced the conjugated transposed velocity v∗ and the conjugated pressure229

p̄. As depicted in Eq.(3), the density tensor is complex and symmetric and emerges from the230

dynamic viscous permeability of the medium Ω. It can be split into its complex components231

from the Toeplitz decomposition21 so, ρ = ρR + iρI with ρR = (ρ + ρ∗)/2 and ρI =232

(ρ− ρ∗)/2i. In the general case of a non-symmetric ρ tensor, both Hermitian matrices ρR233

and ρI remain complex-valued, however, in our case of symmetric tensor density, ρR and ρI234

are real. Taking the sum of both of the equations (33) yields,235

1

2
(iω)

(
v∗(ρR + iρI)v +B−1|p|2

)
=

1

2
(v∗ · ∇p+ p̄∇ · v) , (34)

which after expansion of the complex terms and reads,236

1

2
ω
(
iv∗ρRv − v∗ρIv + iB−1|p|2

)
=

1

2
(v∗ · ∇p+ p̄∇ · v) . (35)

Now considering the real part of this equality, it yields to the time average of the acoustic237

instantaneous intensity22, as the products v∗ρRv and v∗ρIv are real-valued,238

1

2
ω
(
v∗ρIv + Im{B−1}|p|2

)
= −1

2
Re {v∗ · ∇p+ p̄∇ · v} , (36)
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where from the product rule of the divergence we now reach,239

∇ ·
(

1

2
Re{P}

)
= −1

2
ω
(
v∗ρIv + Im{B−1}|p|2

)
. (37)

The left-hand side of this equation is the divergence of the Poynting vector P = pv∗, since240

the porous layer is purely lossy, we expect this term to be strictly negative. This quantity241

is homogeneous to the dissipation rate of acoustic energy at each infinitesimal point x3 ∈ Ω242

and is expressed in W.m−3. Although, it is estimated as only dependent of the normal243

direction x3 since the acoustic fields in Eq. (9) show an harmonic spatial dependence.244

It highlights the role of the coupling vector q and its effect on the fully-anisotropic245

behavior of such medium. The total energy lost in the system can be retrieved by spatial246

integration between boundaries Γ0 and ΓL. As all three components of the particle velocity247

are involved, the transverse part of v is derived from Eqs. (10a) and (10b).248

Inside the domain Ω, the transverse components of particle velocity read249

v⊥ = (H⊥ · k⊥ −H33q(k⊥ · q)) p/ω + v3q. (38)

It is worth noting that even at normal incidence, with k⊥ = (0, 0), the coupling still occurs250

from the term v3q. In order to illustrate this effect, Fig.4 shows the absorption coefficient251

when the fluid is taken out of its principal directions. Also considering normal incidence252

and with R0 ≡ RΩ, a sole rotation around e3 cannot impact the acoustic properties of the253

fluid. First, the dependence on the rotation angle around e1 is shown in Fig.4(a), which is254

π-periodic. Then on Fig.4(b) the absorption coefficient varies as the cell is rotated around255

the e2 unit vector.256
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FIG. 4. [Color online] Absorption coefficient at normal incidence as a function of the circular

frequency ω, the rotation angle u1 in (a) and u2 in (b). Energy dissipation rate at normal incidence

between x3 = 0 and L for rotation angles u1 (c) and u2 (d), from 0 to π at the perfect absorption

frequency f0.

As depicted in Eq. (35), the estimated dissipation rate directly depend on the rotations257

applied to the density tensor. Figures 4(c) and 4(d) display the estimated dissipation inside258

the domain Ω, at frequency f0. As previously, the dependence on the rotation angles (u1, u2)259

affects the losses in the fluid, hence on the absorption properties. We notice that most of260
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the energy losses in the domain are localized where the pore size becomes small, which is261

correlated to the total pressure profile in Fig.3(d).262

E. Diffuse field absorption263

Instead of a single wave with a specific incidence angle, one can also consider a diffuse264

field where all wave directions are present, but uncorrelated with the same intensity. The265

corresponding absorption coefficient accounts for the absorption averaged over all possible266

angles of incidence:267

αdif (ω) =
1

2π

∫ π

0

∫ π

0

α(ω, θ, ψ) cos(θ) dθdψ , (39)

with (θ, ψ) ∈ [0, π]2 and frequency ω. The averaging process is done accounting for the solid268

angle associated to each direction of incidence, which induces the weight cos(θ). This diffuse269

field absorption coefficient is shown in Fig.5 as a function of frequency using 400 plane wave270

direction to compute the average. As pictured in Fig.5, the graded anisotropic materials271272

is able to provide good diffuse absorption over a wide range of frequencies. However its273

absorption is limited at low frequencies. Unlike the absorption of the plane wave at normal274

incidence which is perfect around 2500Hz (see Fig.3), the diffuse field case is unable to reach275

a perfect absorption. This is explained by the contributions of the plane waves with grazing276

incidence which can only be partially absorbed. But as oblique incidences weight a lot277

in this considerations, the anisotropic properties firmly impact the diffuse field absorption278

coefficient.279
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FIG. 5. Diffuse field absorption coefficient as a function of frequency.

V. CONCLUSIONS280

In this work, the propagation of acoustic waves through a graded layer of anisotropic fluid281

has been modeled to calculate the transmission and reflection coefficients. This approach282

is applicable to a wide range of porous materials that are described by their effective bulk283

modulus and density tensor, and in this case is developed for non-symmetric heterogeneous284

systems. Three different numerical techniques have been presented and compared to solve285

for the sound field in such a layer. Two of the solution procedures account for the contin-286

uous macro-modulated effective properties of the anisotropic medium, and altogether show287

excellent agreement with the more traditional TMM approach. In addition, the knowledge288

of the pressure and velocity fields inside the anisotropic fluid provides useful insight into the289

losses occurring within the layer.290

The dependence of the absorption coefficient with frequency (over the range 100Hz −291

5kHz), angles of incidence and orientation of the micro-structure has been discussed in292
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detail. All the results demonstrates the complex interplay between these parameters and293

the fact that the anisotropy plays a significant role in the absorption achieved by this kind294

of materials. The absorption of a diffuse field was also considered.295

The use of anisotropic and heterogeneous materials drastically enhances the potential for296

efficient acoustic control in scattering and absorption problems. The next step on this topic297

would be to perform a full optimization of both the anisotropy and the heterogeneity of a298

porous layer, so as to maximize the acoustic absorption in specific applications.299
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