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ON L∞ STABILIZATION OF DIAGONAL SEMILINEAR HYPERBOLIC SYSTEMS BY

SATURATED BOUNDARY CONTROL

Mathias Dus1, Francesco Ferrante2 and Christophe Prieur2

Abstract. This paper considers a diagonal semilinear system of hyperbolic partial differential equations with
positive and constant velocities coupled with a nonlinear source term. The boundary condition is composed of an
unstable linear term and a saturated feedback control. Weak solutions with initial data in L2([0, 1]) are considered
and well-posedness of the system is proven using nonlinear semigroup techniques. Local L∞ exponential stability
is tackled by a Lyapunov analysis and convergence of semigroups. Moreover, an explicit estimation of the region
of attraction is given.
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1. Introduction

1.1. Literature Review

The problem of saturated control has gained interest in the last few years because of the increasing need of precision
for modeling real actuators. Physical controllers cannot provide infinite energy and sometimes, they saturate rendering
classical unsaturated models obsolete. To avoid such situations, engineers choose controllers powerful enough to avoid
saturation when the system operates in standard conditions. However, over-dimensioning actuators is not optimal in term
of mass and cost of operation for many sophisticated systems as satellites for example. Moreover, in some exceptional
configurations, actuators could saturate and lead to very dangerous situations; unpredictable via linear theory.

In fact, disregarding nonlinearities coming from saturation in the input can be source of undesirable and even cat-
astrophic behaviors for the closed-loop system. In [7], authors showed that in presence of magnitude saturation, the
closed-loop system can become unstable if the initial data is too “large” for a certain norm. As a consequence, it is
important to determine a precise estimation of the region of attraction.

In this article, we are interested in infinite-dimensional systems involving hyperbolic 1-D partial differential equations
(PDEs). To the best of our knowledge, the first work analyzing the effect of saturation in infinite-dimensional systems
is [18]. In particular, in [18] the author focuses on the case of compact and bounded control operators, with an a priori
constraint. Recently, in [17] the case of distributed saturating control has been considered. The results in [13] suggest
the use of an observability condition for the analysis of systems modeled by PDEs controlled via closed-loop saturating
controllers. In particular, the contraction semigroup obtained from the saturating closed-loop system is compared with
the corresponding saturation-free semigroup.

In this paper, we focus on feedback boundary control of a diagonal system of semilinear hyperbolic PDEs. The lit-
erature on unsaturated linear boundary control for semilinear hyperbolic systems is rich; see, e.g., [3] or [12], just to
mention a few. However, when input saturation comes into play, the inherent nonlinear nature of the problem renders the
analysis much harder. As such, only a few papers focused on saturated boundary control of systems modeled via PDEs.
For example, in [14], the authors prove that two-dimensional quasilinear hyperbolic systems with opposite velocities are
stabilizable with bounded C1 boundary control inputs. Nevertheless, the method mainly relies on characteristics and
does not seem to be generalizable to system with a larger number of PDEs. The results in [17] are tailored to the wave
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equation ztt = zxx subject to a nonlinear saturated boundary condition; which is a special second-order hyperbolic PDE.
In particular, inspired by [1], the authors in [17] relies on the theory of nonlinear semigroups to prove well-posedness and
global H1 exponential stability for the wave equation, in the presence of distributed or boundary saturated controllers.
The main idea consists of using a sector bounded approach inspired by the literature of finite dimensional systems [19],
to ensure exponential decay of an H1-Lyapunov functional.

In this manuscript, as opposed to [17] and [14], we directly consider the following system of semilinear hyperbolic PDEs
of arbitrary dimension d ∈ N







Rt + ΛRx=g ◦R
R(0, t) =HR(1, t) +Bu(t)
R(., 0) =R0

where Λ is a diagonal positive definite matrix, H and B are d × d real matrices, and g ∈ C1(Rd) is a globally Lip-
schitz function, with Lipschitz constant Lg, such that g(0) = 0. Moreover, g is diagonal in the sense that for all
R ∈ R

d, gi(R) = gi(Ri).

The open-loop system may turn out to be unstable if the matrix H is too “large” (in the sense of a certain norm). The
source term g has also its impact on the stability. According to its form, it could make the open-loop system more or
less stable. In [3] chapter 1, typical examples of systems modeled by hyperbolic PDEs with feedback boundary conditions
are cited; the telegrapher equations for electrical lines, the shallow water (Saint-Venant) equations for open channels, the
isothermal Euler equations for gas flow in pipelines or even the Aw-Rascle equations for road traffic.

In [4], authors found a sufficient condition on matrix K ∈ Md(R) such that the linear control u(t) = KR(1, t) ensures
C1 exponential stability of the following “unsaturated” closed-loop system:







Rt + ΛRx=0
R(0, .) =(H +BK)R(1, .)
R(., 0) =R0 ∈ C1([0, 1]).

(1)

In particular, defining for all matrices M ∈ Md(R), R∞(M) = maxi=1..d

∑d
j=1 |Mi,j|, [4, Theorem 3.3] established

that if:
ρ∞(H +BK) := inf∆∈D+

d
(R)R∞

(

∆(H +BK)∆−1
)

< 1

then the unsaturated system (1) is C1 exponentially stable for the canonical norm of C1([0, 1]). Note that [4, Theorem
3.3] was proven for small initial data and for quasilinear systems.

1.2. Definition of the system and contribution

In this paper, it is assumed that there exists a matrix gain K such that ρ∞(H + BK) < 1 and we will study the L∞

stability of the saturated closed-loop system:







Rt + ΛRx=g ◦R
R(0, .) =HR(1, .) +Bσ(KR(1, .))
R(., 0) =R0 ∈ L∞([0, 1])

(2)

with σ defined as a saturation by component i.e. there exists a σs > 0 such that for all i ∈ J1, dK, x ∈ R,

{

σi(x) = x if |x| ≤ σs

σi(x) = sign(x)σs otherwise.

Remark 1. For simplicity, we take σ such that the value of the saturation level σs is identical for each component. This
is not a restriction with respect to the general case

{

σi(x) = x if |x| ≤ σs,i

σi(x) = sign(x)σs,i otherwise

where (σs,i)i∈J1,dK ∈ (R+)d, under a suitable change of variables.

The initial data R0 being in L∞([0, 1]), solutions of (2) has to be understood in a weak sense. The main contribution
of this paper is to answer the two following problems:

Problem 1. Define the sense of a weak solution to system (2) and prove a well-posedness theorem.
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Problem 2. Prove the L∞ local exponential stability of this system with an estimation of the region of attraction.

Problem 1 will be solved using a smooth approximation of the system (2) coming from a smoothed sequence of satura-
tions. Convergence of semigroups allows to define weak solutions to (2) and prove the well-posedness. Problem 2 will be
tackled using an approximation of the L∞([0, 1]) norm by Lp([0, 1]) norms (p ∈ N).

The rest of this paper is organized as follows. In Section 2, all main results are formulated by two theorems; the first
one states the well-posedness and the other, the exponential stability. In the same section, an estimation of the region
of attraction is given. In Section 3, the estimated region of attraction for systems taken from the literature is compared
with the region of non-saturation. Some concluding remarks and further orientations are given in Section 4.

Notation: For any integers n and m, the set Jm,nK := {m,m + 1, . . . , n}. Unless specified, spaces of vector valued
functions in Lp([0, 1]), Cp([0, 1]) (p ∈ J1,∞K) are equipped, respectively, with the canonical norms || · ||Lp([0,1]) and || ·
||Cp([0,1]). The symbolD+

d (R) designates the set of d×d positive definite diagonal matrices. Let R = (R1, R2, . . . , Rd) ∈ R
d,

|R| denotes the Euclidean norm of R while |R|max = max
i∈ J1,dK

|Ri|. Given M ∈Md(R), we denote |M | = sup
|R|∈Rd, |R|=1

|MR|,

R∞(M) = max
i=1..d

(

d
∑

j=1

|Mi,j |
)

, ρ∞(M) = inf
∆∈D+

d
(R)
R∞

(

∆M∆−1
)

. Given a function (x, t) 7→ f(x, t), ft and fx denote,

respectively, the partial derivative of f with respect to t and x. When unspecified, T stands for an arbitrary positive real
used to define spaces of the form Cq([0, T ], X) where q ∈ N and X is a Banach space.

2. Main results

In this section, results for well-posedness and exponential stability are stated.

2.1. Problem 1

To properly define a weak solution to system (2), we need to give a precise sense to the trace of this solution on the
lines s 7→ (x = 0, t = s) and s 7→ (x = 1, t = s). To do so, smoothed solutions subject to smoothed saturations are used.
Such smoothed saturations approximate σ in the sense of Definition 1.

Definition 1. (σn)n is a smooth approximation of σ if it is in C1(R) and converges uniformly to σ on R.

Remark 2. An example of smoothed saturation (σn)n (with n an integer) approximation of σ is defined by:















σ′
n,i(x) = 1 if x ∈ [−σs, σs]

σ′
n,i(x) = 1

2 + cos(n(x−σs))
2 if x ∈ [σs, σs + π/n]

σ′
n,i(x) = 1

2 + cos(n(x+σs))
2 if x ∈ [−σs,−σs − π/n]

σ′
n,i(x) = 0 otherwise

and σn which is a primitive of σ′
n, is chosen as:















σn,i(x) = x if x ∈ [−σs, σs]

σn,i(x) = x+σs

2 + sin(n(x−σs))
2n if x ∈ [σs, σs + π/n]

σn,i(x) = x−σs

2 + sin(n(x+σs))
2n if x ∈ [−σs,−σs − π/n]

σn,i(x) = σs +
π
n otherwise .

It is easy to show that (σn)n tends uniformly towards σ on R. We represent both sequences (σn)n and (σ′
n)n in Figure 1.

Remark 3. In this paper and for every approximation of σ, the maximum of σn will be denoted σs,n for all integers n.

Now, taking a smooth approximation (σn)n of σ and an integer n, we define another system “smoother” than (2). The
system subject to the saturation σn is defined by:







Rn,t + ΛRn,x=g ◦Rn

Rn(0, .) =HRn(1, .) +Bσn(KRn(1, .))
Rn(., 0) =R0,n ∈ H2([0, 1]).

(3)

Thanks to Theorem A.1 given in Appendix, we will show that if the initial data is H2([0, 1]) and satisfies com-
patibility conditions of order 1 (4) then the previous system of PDEs has a unique solution in C0([0, T ], H1([0, 1])) ∩
C1([0, T ], L2([0, 1])) for any T > 0. Hence, traces of this unique solution Rn(0, .) and Rn(1, .) are well-defined on almost
everywhere sense.
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Figure 1. Functions σ′
n and σn for n = 20 and σs = 1

Remark 4. Note that compatibility conditions of order 1 depends on the chosen σn. They are expressed as follows

{

R0(0) = HR0(1) +Bσn(KR0(1))

R0,x(0) = Λ−1
(

[H +Bσ′
n(R0(1))](ΛR0,x(1)− g(R0(1))) + g(R0(0))

)

.
(4)

The definition of weak solutions is given here.

Definition 2. For all T > 0, R ∈ C0([0, T ], L2([0, 1])) is a weak solution to the problem:







Rt + ΛRx=g ◦R
R(0, .) =HR(1, .) +Bσ(KR(1, .))
R(., 0) =R0 ∈ L2([0, 1]),

(5)

if there exists a sequence (σn)n, smooth approximation of σ, and a sequence (R0,n)n in H2([0, 1]) satisfying the compatibility
conditions of order 1 (4) (which depend on the saturation σn chosen) tending towards R0 in L2([0, 1]), such that the
sequence of solutions (Rn)n to (3) converges towards R in C0([0, T ], L2([0, 1])).

Remark 5. This definition is different from the common definition of a weak L2 solution [3, Definition A.3]. The adjoint
(for the usual L2([0, T ]) scalar product) of the boundary operator f 7→ Hf + Bσ(Kf) may not exist. As a consequence,
it is impossible to define a boundary condition on test functions. Therefore, we cannot use the common notion of weak
solutions. In [2], authors proved the well-posedness of quasilinear scalar problems subject to L∞ boundary conditions.
They used the method of vanishing viscosity to prove the existence and the uniqueness of the weak solution. The method
consists of using a regularized system with additional viscosity and pass to the limit in the weak formulation of the PDE
considered. Here, we use the same idea: a regularized system is considered and by a passage to the limit, the weak solution
is defined.

It turns out that this problem is well-posed in the sense of Hadamard:

Theorem 1 (Well-Posedness). There exists a unique weak solution to problem (5). Moreover, the flow operator defined
by:

UT :

{

L2([0, 1]) → C0([0, T ], L2([0, 1]))
R0 7→ R

is continuous for all T > 0.

This theorem is proven in Appendix A.

Remark 6. Theorem 1 holds for whatever σ bounded and continuous such that there exists a smooth approximation of
σ in the sense of Definition 1. Moreover, Theorem 1 is also valid for a nondiagonal (but Lipschitz) source term. ◦

2.2. Problem 2

For exponential stability, we introduce the Lipschitz constants Lg,i such that

∀R ∈ R
d, i ∈ J1, dK, |gi(Ri)| ≤ Lg,i|Ri|. (6)

Maeva Boistel
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Hence, for all integers i, the scalar function R 7→ gi(R) is a scalar function from R to R which is Lg,i Lipschitz. Then
defining

∀f ∈ L∞([0, 1]), V (f) := max
i∈J1,dK

|δifie−µx|L∞([0,1]) (7)

where ∆ = diag(δi) is selected such that R∞(∆(H + BK)∆−1) ≤ 1 (possible because ρ∞(H + BK) < 1 is assumed all
along this article). One gets the following result:

Theorem 2 (Exponential Stability). Suppose ρ∞(H+BK) < 1. For all ∆ ∈ D+
d (R) satisfying R∞(∆(H+BK)∆−1) < 1,

all positive µ < − log(R∞(∆(H +BK)∆−1)) and for all initial data R0 ∈ L∞([0, 1]), if

µλmin − Lg,max ≥ 0

where Lg,max := maxi∈J1,dK Lg,i,

and

V (R0) < e−µ R∞(∆B∆−1)σs

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ| , (8)

then the weak solution to (5) verifies:

∀t ≥ 0, V (R(., t)) ≤ e−(µλmin−Lg,max)tV (R0).

This theorem is proven in Appendix B.

Remark 7. As

∀R ∈ L∞([0, 1]), min
i
{δi} e−µ||R||L∞([0,1]) ≤ V (R) ≤ max

i
{δi} ||R||L∞([0,1]),

Theorem 2 gives the classical local exponential stability of system (5) with respect to the usual L∞([0, 1]) norm.

Remark 8. Concerning the estimation of the region of attraction, we will see in the proof of Theorem 2 (Remark 11) that
such an estimation (8) comes from a sector bounded condition imposed on the dead-zone function; the difference between
the linear and the saturated control.

3. Numerical example

In this section, we analyze a typical example of diagonal semilinear systems taken from [16]; an article considering the
same kind of systems plus a disturbance; discarded here for our purposes. Matrices are defined as:

Λ =

(

1 0

0
√
2

)

, H =

(

0 1.1
1 0

)

, B = I2.

In [16], authors consider a system of transport PDEs with positive velocities and without source term. They give a
method to find a gain matrix K such that the equivalent linear system subject to the control R(0, t) = (H +BK)R(1, t)
be L2 exponentially stable and robust. Three gain matrices K were compared with an increasing rate (or at least an
estimation of this rate) of exponential decay for the L2 norm:

K1 =

(

0 −0.1050
−0.1045 0

)

K2 =

(

0 −0.4777
−0.4651 0

)

.

The last gain is taken from [10]:

K3 =

(

0 −0.7
−1 0

)

.

For all these matrix gains, we evaluate the region of attraction thanks to the estimation given in Theorem 2 and evaluate
if it is larger than the domain where the saturation does not apply.

We take µ = 0 in (8) and approximate the stability region of Theorem 2 by:

Maeva Boistel
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V (R0) <
R∞(∆B∆−1)σs

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− 1| (9)

equivalent to:

∀i ∈ J1, dK, |R0,i|L∞([0,1]) < |R0,i|L∞,lim

where |R0,i|L∞,lim := 1
δi

R∞(∆B∆−1)σs

|R∞(∆(H+BK)∆−1)+R∞(∆B∆−1)R∞(∆K∆−1)−1| .

Taking ∆ ∈ D+
d (R) minimizing R∞(∆(H+BK)∆−1) and a saturation such that σs = 1, one gets the numerical results

from Table 1 for the estimation of the region of attraction:

K K1 K2 K3

ρ∞(H +BK) 0.95 0.58 ≃ 0
|R0,1|L∞,lim 17.5 11.0 ≃ 0
|R0,2|L∞,lim 16.6 10.1 ≃ 0
|(KR0)1|lim 1.84 5.61 ≃ 0
|(KR0)2|lim 1.93 5.91 ≃ 0

Table 1. The estimation of the region of attraction

where |(KR0)1|lim := sup
{

|(KR)1| | |Ri| < |R0,i|L∞,lim, ∀i ∈ J1, 2K
}

and |(KR0)2|lim := sup
{

|(KR)2| | |Ri| <

|R0,i|L∞,lim, ∀i ∈ J1, 2K
}

.

We added a row giving the values of ρ∞(H +BK) as it gives an estimation of the rate of convergence µλmin − Lg,max

of the L∞ norm of the solution R. This can be seen from the condition “µ < − log(R∞(∆(H+BK)∆−1))” of Theorem 2.

We remark that for K1 and K2, |(KR0)1|lim and |(KR0)2|lim are both larger than the saturation σs = 1 and hence,
the estimated region of attraction is larger than the linear unsaturated region. Then, we also remark that there exists a
balance between the rate of convergence of the saturated system estimated by ρ∞(H +BK) and the region of attraction.
Keep in mind that the smaller ρ∞(H + BK), the larger the estimation of the rate of exponential convergence of the
saturated system. From this and results presented in Table 1, if one wants a vast region of attraction, the estimation of
the rate of convergence will not be important. On the contrary, if one wants a strong rate of convergence, then the region
of attraction will be limited.

Another comment has to be made on the case K = K3. Here the matrix gain K3 is chosen such that ρ∞(H +BK) ≃ 0
which means that the system is exponentially stable with a very large rate of convergence. From Table 1, the estimation
of the region of attraction gives bad results. This is mainly because R∞(∆B+K+∆−1) ≃ +∞. This last analysis tends to
confirm the link between the estimation of the rate of convergence and the estimation of the region of attraction underlined
earlier.

4. Conclusion

The well-posedness and the local L∞ exponential stability of a wide class of diagonal semilinear systems was established.
The PDEs under consideration resulted from a transport with constant velocities coupled with a nonlinear source term
and a nonlinear boundary condition. The saturated control was applied at the boundary in order to stabilize the open-
loop system. The well-posedness was tackled using nonlinear semigroup techniques. The stability has been proven using
convergence of semigroups and Lyapunov theory. This work let some questions open. The case of mixed positive and
negative velocities is not treated; the method of [8] which differentiates the Lyapunov functional for components with
positive and negative velocities seems to be a promising idea. The case of space varying velocities (with constant sign) is
also interesting and already solved in [3, Chapter 3.5] for unsaturated systems. The generalization to non-diagonal source
terms would be an important improvement. The article [11], where a specific space dependent Lyapunov functional is
introduced, would be a good starting point to tackle the problem. Finally, the L∞ (or even Lp) stability for systems of
nonlinear d scalar conservation laws remains an open question even for unsaturated controllers. In [5], a feedback control
was found for a single scalar conservation law whose flux is either convex or concave. Additionally, authors of [9] study
the stabilization of a nonlocal one-dimensional conservation law. Starting from a linearized system, they find a sufficient
condition for stability and adapt the proof to the full nonlinear PDE. However, to our knowledge, nothing seems to be
generalizable to conservation laws of arbitrary dimension.
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Appendix A. Proof of Theorem 1

Let X = L2([0, 1]) be the base space; the scalar product on X was introduced by [8] and is defined by:

∀u, v ∈ X, (u, v) :=

∫ 1

0

uTveν(x−1)dx. (10)

A.1. Existence and uniqueness of solution with a smoothed saturation

Take an arbitrary smooth approximation (σn)n of σ in the sense of Definition 1. For all integers n, we define the
operator An by:

{

AnR = −ΛRx

D(An) =
{

R ∈ H1([0, 1]);R(0) = HR(1) +Bσn(KR(1))
}

.

Moreover, the operator G can be defined as follows:

{

GR = g ◦R
D(G) = L2([0, 1])

The following theorem states the well-posedness for the closed-loop system whose control is smoothly saturated.

Theorem A.1. There exists ζ > 0 dependent on σs, H,B and K such that for all integers n, the operator An + G
is ζ dissipative. Moreover, An + G generates a semigroup Tn of type ζ and for all R0,n ∈ D(An), Tn(.)R0,n is the
C0([0, T ], L2([0, 1])) solution to the Cauchy problem:







Rn,t = −ΛRn,x + g ◦Rn

Rn(t = 0) = R0,n

Rn(t) ∈ D(An)
(11)

where Rn,t is defined as the Fréchet derivative with respect to t in the L2 space:

∣

∣

∣

∣

∣

∣

∣

∣

Rn(., t+ dt)−Rn(., t)

dt
−Rn,t(., t)

∣

∣

∣

∣

∣

∣

∣

∣

L2([0,1])

→dt→0 0

Finally, if R0,n is H2([0, 1]) and satisfies compatibility conditions of order 1 (4) then the solution Rn belongs to
C1([0, T ], L2([0, 1])) ∩ C0([0, T ], H1([0, 1])).

Remark 9. A definition of the ζ dissipativity can be found in [15]. Moreover, in the following proof, we do not use the
form of σn but the fact that it is bounded in C1 (n fixed). Hence, conclusions of Theorem A.1 are valid for whatever
bounded σn ∈ C1(R).

Let n be an integer. To get the conclusions of Theorem A.1, we need to prove some properties on the operators An+G.
They are listed below:

• An +G is ζ dissipative with ζ independent on n.
• It satisfies the range condition: Rg(I − ρ(An +G)) ⊃ D(An +G) for all positive ρ sufficiently small.
• An +G is closed

Having done that, we use [15, Theorem 5.12] to prove that An +G generates the expected semigroup.

Proof. Let n be an integer fixed all along the proof. Constants may depend on n but, in the following, this dependence is
skipped when it is useless.

(1) An +G is ζ dissipative:

Let u and v in D(An +G) = D(An). Recalling the definition of the scalar product (10), one has

((An +G)u − (An +G)v, u − v) = −
∫ 1

0

(ux − vx)
TΛ(u− v)eν(x−1)dx+

∫ 1

0

(g ◦ u− g ◦ v)T (u− v)eν(x−1)dx (12)

By an integration by parts, one has:
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((An +G)u− (An +G)v, u− v) =− [(u− v)TΛ(u− v)eν(x−1)]10 +

∫ 1

0

(u− v)TΛ(ux − vx)e
ν(x−1)dx

+ ν

∫ 1

0

(u − v)TΛ(u− v)eν(x−1)dx+

∫ 1

0

(g ◦ u− g ◦ v)T (u− v)eν(x−1)dx.

From (12), one gets :

((An +G)u − (An +G)v, u − v) =− [(u− v)TΛ(u− v)eν(x−1)]10 − ((An +G)u− (An +G)v, u − v)

+ ν

∫ 1

0

(u− v)TΛ(u− v)eν(x−1)dx+ 2Re

∫ 1

0

(g ◦ u− g ◦ v)T (u − v)eν(x−1)dx.

It implies necessarily that:

2Re((An +G)u − (An +G)v, u− v) =− [(u− v)TΛ(u− v)eν(x−1)]10 + ν

∫ 1

0

(u − v)TΛ(u− v)eν(x−1)dx

+ 2Re

∫ 1

0

(g ◦ u− g ◦ v)T (u− v)eν(x−1)dx

and taking the real part in last equation:

2Re((An +G)u− (An +G)v, u − v) =− Re
(

[(u− v)TΛ(u− v)eν(x−1)]10

)

+ ν Re

∫ 1

0

(u− v)TΛ(u− v)eν(x−1)dx

+ 2Re

∫ 1

0

(g ◦ u− g ◦ v)T (u − v)eν(x−1)dx.

Using the fact that velocities are bounded from above,

2Re((An +G)u − (An +G)v, u − v) ≤− Re
(

[(u− v)TΛ(u− v)eν(x−1)]10

)

+ νλmaxRe(u− v, u− v)

+ 2Re

∫ 1

0

(g ◦ u− g ◦ v)T (u− v)eν(x−1)dx.

Using the fact that g is Lipschitz, there exists a constant ς > 0 depending on Lg such that:

2Re((An +G)u− (An +G)v, u− v) ≤ −Re[(u− v)TΛ(u− v)eν(x−1)]10 + (νλmax + ς)Re(u− v, u − v). (13)

To simplify the notation, u(1) and v(1) will be denoted, respectively, by u1 and v1 in following computations. Boundary
terms can be rewritten as follows:

Re
(

[(u− v)TΛ(u− v)eν(x−1)]10
)

= Re(u1 − v1)
TΛRe(u1 − v1)

−e−νRe[H(u1 − v1) +B(σn(Ku1)− σn(Kv1))]
TΛRe[H(u1 − v1) +B(σn(Ku1)− σn(Kv1))]

+Im(u1 − v1)
TΛIm(u1 − v1)

−e−νIm[H(u1 − v1) +B(σn(Ku1)− σn(Kv1))]
TΛIm[H(u1 − v1) +B(σn(Ku1)− σn(Kv1))].

For ν = νn large enough compared to the norm of H,B and σs,n, we deduce that

Re
(

[(u− v)TΛ(u− v)eνn(x−1)]10

)

≥ 1

2
(Re(u1 − v1)

TΛRe(u1 − v1) + Im(u1 − v1)
TΛIm(u1 − v1)) ≥ 0

which implies with (13) that:

2Re

(

(An +G− λmaxνn + ς

2
I)u− (An +G− λmaxνn + ς

2
I)v, u− v

)

≤ −Re[(u− v)TΛ(u− v)eνn(x−1)]10 ≤ 0
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and therefore An +G is λmaxνn+ς
2 dissipative.

Recall that, νn was taken large enough compared to the norms of H,B and σs,n. As (σs,n)n is a bounded sequence, we

can take a sequence (νn)n bounded from above by a positive real ν. As An + G is νnλmax+ς
2 dissipative and νnλmax+ς

2 ≤
νλmax+ς

2 , An +G is νλmax+ς
2 = ζ dissipative with ζ independent on n.

(2) An +G satisfies the range condition:

Let us now prove the following range condition:

∃ρsup > 0; ∀ρ ∈ (0, ρsup), Rg(I − ρ(An +G)) ⊃ D(An). (14)

It is equivalent to prove that for all v in D(An), there exists an element u in D(An) such that:

{

u+ ρΛux − ρg(u)=v
u(0) =Hu(1) +Bσn(Ku(1))

This property is the most difficult to prove. It consists of proving the existence of a solution to a nonlinear ODE with a
nonlinear boundary condition. To prove the existence, first, we will deal with the nonlinear boundary condition and then,
using a fixed point theorem, the nonlinear source term will be taken into account; the method being inspired from [17]
and [20].

(2.1) Taking into account the nonlinear boundary condition

Let us now prove the following range condition:

∀(v1, v2) ∈ D(An +G) = D(An), v1 + ρGv2 ∈ Rg(I − ρAn). (15)

To do so, take v1, v2 both in C0([0, 1]). To prove assertion (15), we have to find an element u in D(An) solution of:

{

u+ ρΛux=v1 + ρ(g ◦ v2)
u(0) =Hu(1) +Bσn(Ku(1))

equivalent to:
{

ux + Λ−1

ρ u=Λ−1
(

v1
ρ + g ◦ v2

)

u(0) =Hu(1) +Bσn(Ku(1)).
(16)

We define T : C0([0, 1])→ C1([0, 1])

T : C0([0, 1]) → C1([0, 1])
y 7→ u solution of the following system

{

ux + Λ−1

ρ u=Λ−1
(

v1
ρ + g ◦ v2

)

u(0) =Hu(1) +Bσn(Ky(1)).
(17)

If we prove that T is well-defined and admits a fixed point in D(An), then assertion (15) is proven.

For all y in C0([0, 1]), solutions u to the ODE in (17) are C1([0, 1]) (because v1, g(v2) ∈ C0([0, 1])) and can be expressed
as follow:

∀x ∈ [0, 1], u(x) = e−
Λ−1x

ρ Z(y) +

∫ x

0

e−
Λ−1

ρ
(x−s) × Λ−1

(

v1
ρ

+ g ◦ v2
)

ds

where Z(y) is a constant of Rd. Thus, for all y in C0([0, 1]), u is a solution to system (17) if and only if Z(y) satisfies the
following equation:

Z(y) = He−
Λ−1

ρ Z(y) +H

∫ 1

0

e−
Λ−1

ρ
(1−s) × Λ−1

(

v1
ρ

+ g ◦ v2
)

ds+Bσn(Ky(1))

equivalent to:

(Id −He−
Λ−1

ρ )Z(y) = H

∫ 1

0

e−
Λ−1

ρ
(1−s) × Λ−1

(

v1
ρ

+ g ◦ v2
)

ds+Bσn(Ky(1))
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and for ρ sufficiently small, say ρ < δ(H,Λ) with δ(H,Λ) > 0, one can invert the last relation:

∀y ∈ C0([0, 1]), Z(y) = (Id −He−
Λ−1

ρ )−1

(

H

∫ 1

0

e−
Λ−1

ρ
(1−s) × Λ−1

(

v1
ρ

+ g ◦ v2
)

ds+Bσn(Ky(1))

)

. (18)

Last equation ensures that for ρ < δ(H,Λ), T is well defined and

∀x ∈ [0, 1], T (y)(x) = e−
Λ−1x

ρ Z(y) +

∫ x

0

e−
Λ−1

ρ
(x−s) × Λ−1

(

v1
ρ

+ g ◦ v2
)

ds

with Z(y) defined in (18).

The operator T being well-defined, we can focus on the fixed point argument. As σn is bounded, Z(y) is bounded when
y scans C0([0, 1]). Hence, T (C0([0, 1])) is a bounded set of C1([0, 1]) and there exists a set
K =

{

w ∈ C1([0, 1]); ||w||C0([0,1]) ≤M and ||w′||C0([0,1]) ≤M
}

where M is a constant such that T (C0([0, 1])) ⊂ K.

As K is bounded in C1([0, 1]), K is compact in C0([0, 1]) by Ascoli-Arzela’s theorem. Moreover, T is continuous and
K is closed and convex allowing to use Schauder fixed point theorem to conclude that:

∃u ∈ K : T (u) = u.

Hence, u ∈ D(An) = D(An +G) and the assertion (15) is proven.

(2.2) Taking into account the source term

Let v be in D(An +G) = D(An), ρ ≤ δ(H,Λ) and H : C0([0, 1]) 7→ C0([0, 1]) be such that for all w in C0([0, 1]), H(w)
is solution of:

{

ux + Λ−1

ρ u=Λ−1(vρ + g ◦ w)
u(0) =Hu(1) +Bσn(Ku(1)).

By assertion (15), H is well defined (take v1 ← v and v2 ← w). We will prove that H has a fixed point in D(An) which
implies that the range condition (14) is verified.

To do so, we will prove that there exists a ball of C0; Br of radius r such that Br is invariant under H and H(Br)
precompact in C0([0, 1]).

(2.2.1) There exists a ball of C0([0, 1]), Br, invariant under H

Let w be in C0([0, 1]) and let recall the definition of the usual C0([0, 1]) norm:

||w||C0([0,1]) := max
x∈[0,1]

|w(x)| = max
x∈[0,1]

√

√

√

√

d
∑

i=1

wi(x)2. (19)

The continuous function H(w) can be expressed as:

∀w ∈ C0([0, 1]), ∀x ∈ [0, 1], H(w)(x) = e−
Λ−1x

ρ Z(w) +

∫ x

0

e−
Λ−1

ρ
(x−s) × Λ−1

(

v

ρ
+ g ◦ w

)

ds (20)

where:

∀w ∈ C0([0, 1]), Z(w) = (Id −He−
Λ−1

ρ )−1

(

H

∫ 1

0

e−
Λ−1

ρ
(1−s) × Λ−1

(

v

ρ
+ g ◦ w

)

ds+Bσn(KH(w)(1))
)

. (21)

Fixing an w in C0([0, 1]), we focus on a term present in both expressions of Z(w) and of H(w):

∀x ∈ [0, 1],

∫ x

0

e−
Λ−1

ρ
(x−s) × Λ−1

ρ
v ds = v(x) − e−

Λ−1

ρ
xv(0)−

∫ x

0

e−
Λ−1

ρ
(x−s)vx ds.
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Hence,

∀x ∈ [0, 1],

∣

∣

∣

∣

∫ x

0

e−
Λ−1

ρ
(x−s) × Λ−1

ρ
v ds

∣

∣

∣

∣

=

√

√

√

√

d
∑

i=1

(
∫ x

0

e−
λ
−1
i
ρ

(x−s) × λ−1
i

ρ
vi ds

)2

=

√

√

√

√

d
∑

i=1

(

vi(x)− e−
λ
−1
i
ρ

xvi(0)−
∫ x

0

e−
λ
−1
i
ρ

(x−s)vi,x ds

)2

≤

√

√

√

√

d
∑

i=1

vi(x)2 +

√

√

√

√

d
∑

i=1

e−
2λ

−1
i
ρ

xv2i (0) +

√

√

√

√

d
∑

i=1

(
∫ x

0

e−
λ
−1
i
ρ

(x−s)vi,x ds

)2

and because e−
Λ−1

ρ
(x−s) ≤ Id when s ≤ x:

∀x ∈ [0, 1],

∣

∣

∣

∣

∫ x

0

e−
Λ−1

ρ
(x−s) × Λ−1

ρ
v ds

∣

∣

∣

∣

≤ 2||v||C0([0,1]) + ||v||H1([0,1]) =: C(v). (22)

Remark that C(v) is independent on ρ, w.

The second term to study is:

∀x ∈ [0, 1],

∣

∣

∣

∣

∫ x

0

e−
Λ−1

ρ
(x−s) × Λ−1(g ◦ w) ds

∣

∣

∣

∣

2

=

d
∑

i=1

(
∫ x

0

e−
λ
−1
i
ρ

(x−s) × λ−1
i (gi ◦ w) ds

)2

≤
d
∑

i=1

|gi ◦ w|2L2([0,1])

ρ

2λi
(1− e−2

λ
−1
i
ρ

x)

≤
d
∑

i=1

ρ

2λi
|gi ◦ w|2L2([0,1]) ≤

ρ

2mini λi
||g ◦ w||2C0([0,1])

where we have used Cauchy-Schwarz inequality to get first inequality.

Using the fact that g(0) = 0 and g Lipschitz as a function from R
d 7→ R

d for the canonical Rd norm, one gets:

∀w ∈ C0([0, 1]), ||g ◦ w||C0([0,1]) ≤ max
x∈[0,1]

|(g ◦ w)(x)) − g(0)|+ |g(0)| ≤ Lg max
x∈[0,1]

|w(x)|.

Hence,

∀w ∈ C0([0, 1]), ||g ◦ w||C0([0,1]) ≤ Lg||w||C0([0,1])

and as a consequence:

∀w ∈ C0([0, 1]), x ∈ [0, 1],

∣

∣

∣

∣

∫ x

0

e−
Λ−1

ρ
(x−s) × Λ−1(g ◦ w) ds

∣

∣

∣

∣

≤
√

ρ

2mini λi
Lg||w||C0([0,1]). (23)

Finally, using the boundedness of σn, one gets the existence of a constant C3 (only dependent on σs, H,B) such that
∀ρ > 0 :

|(Id −He−
Λ−1

ρ )−1Bσn(KH(w)(1))| ≤ C3. (24)

Injecting inequalities (22), (23) and (24) in the definition of Z(w) (21), one gets the existence of C1(v), C2, C3 indepen-
dent on ρ, w such that:

∀w ∈ C0([0, 1]), |Z(w)| ≤ C1(v) + C2
√
ρ||w||C0([0,1]) + C3. (25)

Putting all together inequalities (22), (23) and (25) in the expression of H(w) (20), there exists three positive constants
C̃1(v), C̃2, C̃3 independent on ρ, w such that:

∀w ∈ C0([0, 1]), ||H(w)||C0([0,1]) ≤ C̃1(v) + C̃2
√
ρ||w||C0([0,1]) + C̃3. (26)
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Taking ρ < 1

C̃2
2 (note that this bound is independent on v), it is possible to choose a strict positive r such that

C̃1(v) + C̃2
√
ρr + C̃3 ≤ r and:

∀w ∈ Br, ||H(w)||C0([0,1]) ≤ r.

which is no more than Br is invariant under H.

(2.2.2) The set H(Br) is precompact in C0([0,1])

The following claim allows to get compactness:

Claim 1. The set H(Br) is uniformly bounded in C1([0, 1]).

Proof of Claim 1. Let w ∈ Br. Denoting u = H(w), we have

ux = −Λ−1

ρ
u+ Λ−1

(v

ρ
+ g ◦ w

)

.

As u, v, w are all continuous, ux is also continuous. By previous section, u ∈ Br and as a consequence

||ux||C0([0,1]) ≤ C

where C may depend on (r, ρ, λ, Lg, v) but not on w.

This ends the proof of Claim 1. �

To conclude, using Ascoli-Arzela’s theorem, H(Br) is relatively compact in C0([0, 1]) and by Schauder fixed point
theorem, H admits a fixed point which ends the proof of the range condition (14).

(3) An +G is a closed operator:

To prove this, we first prove that An is closed. Then, using the continuity of G, we conclude on the closedness of the
operator An +G.

(3.1) An is a closed operator:

Take a sequence (uk)k of elements of D(An) such that lim
k→∞

uk =: u in L2([0, 1]) and lim
k→∞

Anuk =: ũ in L2([0, 1]). We

have to show that u belongs to D(An) and that ũ = Anu. Let us define for all integers k, ũk := Anuk →L2([0,1]) ũ which
can also be written as:

∀k ∈ N, uk,x = −Λ−1ũk →L2([0,1]) −Λ−1ũ. (27)

As a consequence,

∀k ∈ N, ∀x ∈ [0, 1], uk(x) = uk(0)−
∫ x

0

Λ−1ũk(s)ds = Huk(1) +Bσn(Kuk(1))−
∫ x

0

Λ−1ũk(s)ds.

Let x be in [0, 1], we have |
∫ x

0 Λ−1(ũk(s) − ũ(s))ds| ≤ C × ||ũk − ũ||L2([0,1]) which tends to zero as k tends towards
infinity. Hence,

∀x ∈ [0, 1],

∫ x

0

Λ−1ũk(s)ds −−−−→
k→∞

∫ x

0

Λ−1ũ(s)ds. (28)

Then as H1([0, 1]) ⊂ C0([0, 1]) continuously :

∀k,m ∈ N, |uk(1)− um(1)| ≤ C × ||uk − um||H1([0,1])

where C is the constant of the continuous injection H1([0, 1]) ⊂ C0([0, 1]).

Moreover, by (27), ||uk − um||2H1([0,1]) = ||uk − um||2L2([0,1]) + ||Λ−1ũk − Λ−1ũm||2L2([0,1]) which tends to zero as (k,m)

tends towards infinity. Hence, (uk(1))k is Cauchy and tends towards a real u1. From this and the pointwise convergence
stated in (28), Huk(1)+Bσn(Kuk(1))−

∫ x

0
Λ−1ũk(s)ds converges pointwise towards a function denoted w (which can be

different from u because the convergence of w is just pointwise) and:

∀x ∈ [0, 1], w(x) = Hu1 +Bσn(Ku1)−
∫ x

0

Λ−1ũ(s)ds. (29)

Obviously, w is in H1([0, 1]) and wx = Λ−1ũ. The convergence of (uk)k towards w is also in L2([0, 1]):
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∫ 1

0

(w(x) − uk(x))
2dx =

∫ 1

0

{

H(u1 − uk(1)) +Bσn(Ku1)−Bσn(Kuk(1)) +

∫ x

0

Λ−1(ũ(s)− ũk(s))ds

}2

dx

≤ 2× (H(u1 − uk(1)) +Bσn(Ku1)−Bσn(Kuk(1)))
2
+ 2×

∫ 1

0

(
∫ x

0

Λ−1(ũ(s)− ũk(s))ds

)2

dx

≤ C × (|uk(1)− u1|2 + ||ũk − ũ||2L2([0,1]))

where we have used the identity (a+b)2 ≤ 2a2+2b2 to get first inequality and C is a constant depending onH,B, σs,n and Λ.

The right-hand side of last equation tending towards zero as k tends to infinity, we have proven that (uk)k tends towards
w in L2([0, 1]) and by the uniqueness of the limit w = u in L2([0, 1]). Note that as w is continuous, we can take w = u
in the sense of C0([0, 1]). Moreover, as uk(1) tends towards w(1) = u(1) (because (uk)k tends towards w pointwise) and
towards u1 (by definition of u1) at the same time, we have that u(1) = u1. Injecting this last equality in (29), we have:

∀x ∈ [0, 1], u(x) = Hu(1) +Bσn(Ku(1))−
∫ x

0

Λ−1ũ(s)ds.

Thus, u ∈ D(An) and ũ = Anu.

(3.2) An +G is a closed operator

As An is closed by previous paragraph and G is continuous as an operator from L2([0, 1]) into L2([0, 1]) (because g is
Lipschitz), An +G is closed.

(4) First conclusions on the proof of Theorem A.1

As An+G satisfies the range condition and is ζ dissipative; by [15, Theorem 5.12], An+G generates a unique semigroup
Tn of type ζ. By Remark 2 p. 148 (and Theorem 4.10 (ii)) of the same book, the additional facts that An +G is closed
and L2([0, 1]) is reflexive; if R0,n ∈ D(An) then t 7→ Tn(t)R0,n is the unique solution of the Cauchy problem:







Rn,t = (An +G)Rn

Rn(t = 0) = R0,n

Rn(t) ∈ D(An)

in the sense that for almost every t ≥ 0, Tn(t)R0,n is in D(An), time-Fréchet differentiable in L2([0, 1]) and verifies the
system presented just above.

As Tn is a semigroup of type ζ in L2([0, 1]), we have:

t 7→ Tn(t)R0,n ∈ C0([0, T ], L2([0, 1])).

(5) Regularity of the solution

Here we use the C1 regularity assumptions on g and σn. The augmented system satisfied by Un := (Rn, Rn,x) writes











Un,t + diag(Λ,Λ)Un,x = g2 ◦ U
Rn(0) = HRn(1) +Bσn(KRn(1))

Rn,x(0) = Λ−1
(

[H +Bσ′
n(Rn(1))](ΛRn,x(1)− g(Rn(1))) + g(Rn(0))

)
(30)

where

{

g2 : R2d 7→ R
2d

U := (U1, U2) → (g(U1), g
′(U1)U2)

In substance, this augmented system is very similar to system (11). The transport part is identical and the source
term is Lipschitz (g′ is bounded by assumption). For the boundary condition of Rn,x, it is linear in the variable Rn,x.
Knowing this, we can easily adapt the reasoning used for the system (11) for the variable Rn alone to the system (30),
the unbounded operator being now defined as
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









D(A2,n) =
{

(U1, U2) ∈ H1([0, 1])2 |
U1(0) = HU1(1) +Bσn(KU1(1)),

U2(0) = Λ−1
(

[H +Bσ′
n(U1(1))](ΛU2(1)− g(U1(1))) + g(U1(0))

)

}

A2,n(U1, U2) = −(ΛU1,x,ΛU2,x)

and the source term

{

D(G2) = (L2([0, 1]))2

G2(U1, U2) = g2(U1, U2).

Recall that to apply the theory of nonlinear semigroups from [15], we need to prove the three following statements;
A2,n +G2 is ζ dissipative for some ζ ∈ R, satisfies the range condition and is closed. As these proofs are very similar to
what was done in the parts (1) (2) and (3) for the operator An +G, we will just give a sketch of the proof and insist on
crucial hypothesis.

• For ζ dissipativity, it is a comparison between boundary terms. The fact that σ′
n is bounded (n fixed) is the key

hypothesis to show this ζ dissipativity.

• For range condition, we need to solve (I − ρ(A2,n + G2))(u1, u2) = (v1, v2) where (u1, u2) is the unknown,
(v1, v2) ∈ D(A2,n) and ρ belonging to [0, ρ0] with ρ0 independent on (v1, v2) to determine. We find u1 using
the fact that An +G satisfies the range condition. For u2, it suffices to remark that the ODE to solve is linear in
u2 (even for the boundary condition) with a bounded linear source term (g′ is bounded as g is Lispchitz).

• Finally, for the closedness one can proceed using same techniques as in previous sections and the closedness of
An +G.

Hence (Rn, Rn,x) is C
0([0, T ], L2([0, 1])). As a consequence, Rn ∈ C0([0, T ], H1([0, 1])) and as Rn,t = g(Rn) − ΛRn,x,

we also have Rn,t ∈ C0([0, T ], L2([0, 1])). To conclude, Rn ∈ C0([0, T ], H1([0, 1])) ∩ C1([0, T ], L2([0, 1])).

All points of Theorem A.1 are now proven. �

A.2. Convergence of solutions with smoothed saturations in L2([0,1])

We define the operator A by:

{

AR = −ΛRx

D(A) =
{

R ∈ H1([0, 1]);R(0) = HR(1) +Bσ(KR(1))
}

.

Note that D(A) = L2([0, 1]) because C∞
c ((0, 1)) ⊆ D(A) and C∞

c ((0, 1)) is a dense subset of L2([0, 1]) by [6, Corollary
4.23] 1. The following lemma will be useful to prove the convergence of semigroups (Tn)n.

Lemma A.2. It holds A ⊂ limn→∞ An which means that every element of the graph of A is the limit of a sequence
{(xn, Anxn)}n (in L2([0, 1])× L2([0, 1])) where xn ∈ D(An).

Proof. Let R ∈ D(A). Let us define the sequence (Rn)n in H1([0, 1]) by:

∀n ∈ N, ∀x ∈ [0, 1], Rn(x) := (1− x2)B[σn(KR(1))− σ(KR(1))] +R(x).

For all integers n, we have Rn(0) = HR(1) + Bσn(KR(1)) (use the fact that R ∈ D(A)) and Rn(1) = R(1). Hence,
for all integers n,Rn ∈ D(An) and by the pointwise convergence of (σn)n, we have Rn →H1([0,1]) R which is equivalent to
(Rn, AnRn)→L2([0,1])×L2([0,1]) (R,AR).

�

The convergence of semigroups (Tn)n is given by the following theorem:

Theorem A.3. The operator A + G generates a semigroup T of type ζ. Moreover, for all initial data R0 in D(A) =
L2([0, 1]) and sequence (R0,n)n such that R0,n ∈ D(An) for all integers n and converging to R0 in L2([0, 1]):

∀T > 0, lim
n→∞

Tn(·)R0,n = T (·)R0 ∈ C0([0, T ], L2([0, 1]). (31)

1In fact, it is shown that C∞

c (Ω) is dense in L2(Ω) for Ω open of RN (N ∈ N)) but the proof can be easily adapted to our context.
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Proof. After Lemma A.1, all the An +G are ζ dissipative. Moreover, A+G satisfies the range condition, the proof being
identical to the proof of “An + G satisfies the range condition (14)” (because the argument only uses the boundedness
and the continuity of the saturation operator). Hence, it satisfies the distance condition:

∀Q ∈ D(A), lim infρ→0+ρ
−1d(Rg(I − ρ(A+G)), Q) = 0. (32)

Finally, A ⊂ limn→∞ An by previous lemma. As a consequence, by the continuity of G as an operator from L2([0, 1])
to L2([0, 1]), A+G ⊂ limn→∞ An +G.

Take R0 ∈ D(A) and a sequence (R0,n)n of elements from D(An) for all n converging to R0 in L2([0, 1]). From [15,
Theorem 6.8], A+G generates a semigroup T and

lim
n→+∞

Tn(t)R0,n = T (t)R0 in L2([0, 1])

for all time t ≥ 0.

Moreover, the equality above holds uniformly on every bounded interval of [0,∞) which proves Theorem A.3. �

A.3. Conclusion of the proof of Theorem 1

(1) Existence

Let R0 be the initial data in D(A) = L2([0, 1]). Take a smooth approximation (σn)n of σ and (R0,n)n a sequence
of C∞((0, 1)) satisfying compatibility conditions of order 1 converging towards R0 in L2([0, 1]). Note that there exists
at least one sequence (R0,n)n of such initial data. Indeed, C∞

c ((0, 1)) is dense in L2([0, 1]) and functions of C∞
c ((0, 1))

obviously satisfy compatibility conditions of order 1.

By Theorem A.1, for all integers n, the operator An + G generates a semigroup Tn and Rn := Tn(.)R0 is the unique
solution to (3).

After Theorem A.3, (Rn)n converges in C0([0, T ], L2([0, 1])) towards an element R ∈ C0([0, T ], L2([0, 1])). R satisfies
all requirements for being a weak solution to system (5).

(2) Uniqueness

The limit R neither depends on the smooth approximation (σn)n nor on the sequence of initial data (R0,n)n chosen.
To prove this, we take an arbitrary sequence of smooth approximations (σ̃n)n and define the corresponding sequence of

operators (Ãn)n. Then, take an arbitrary sequence (R̃0,n)n of elements of D(Ãn)∩H2([0, 1]) converging to R0 in L2([0, 1]).

For all integers n, we define R̃n as the solution of:







Rn,t + ΛRn,x=g ◦Rn

Rn(0, .) =HRn(1, .) +Bσ̃n(KRn(1, .))

Rn(., 0) =R̃0,n.

We note R̃, the limit in C0([0, T ], L2([0, 1])) of (R̃n)n. We define (σn)n as equal to σn if n is even and equal to σ̃n

otherwise. In the same way, we define (R0,n)n as equal to R0,n if n is even and equal to R̃0,n otherwise. Obviously, (σn)n
is a smooth approximation of σ and (R0,n)n is a sequence of H2 function satisfying compatibility conditions of order 1

and converging to R0 in L2([0, 1]). Hence, we can apply what was done before to prove that there exists a limit R in

C0([0, T ], L2([0, 1])) of the sequence (Rn)n. As a consequence R = R = R̃ and the limit is unique.

(3) Continuity of UT

Let R0, R̃0 be two initial data in L2([0, 1]) and R, R̃ the associated weak solutions.

Take an arbitrary smooth approximation (σn)n of σ and sequences of approximation (R0,n)n and (R̃0,n)n of R0 and

R̃0 respectively. Using the ζ dissipativity of the An +G proven in Theorem A.1 with ζ independent on n, one gets:

∀n ∈ N, ∀0 ≤ t ≤ T , ||Tn(t)R0,n − Tn(t)R̃0,n||L2([0,1]) ≤ eζt||R0,n − R̃0,n||L2([0,1]).

Taking the limit for all time t ≤ T (see Theorem A.3):

∀0 ≤ t ≤ T, ||T (t)R0 − T (t)R̃0||L2([0,1]) ≤ eζt||R0 − R̃0||L2([0,1])

which implies that:
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∀0 ≤ t ≤ T, ||T (t)R0 − T (t)R̃0||L2([0,1]) ≤ eζT ||R0 − R̃0||L2([0,1]).

It shows that UT is Lipschitz and hence continuous. This concludes the proof of Theorem 1.

Appendix B. Proof of Theorem 2

Take a ∆ ∈ D+
d (R) satisfying R∞(∆(H +BK)∆−1) < 1 and a positive µ < − log(R∞(∆(H +BK)∆−1)).

Take the smooth approximation (σn)n of σ from Remark 2. Notation An, D(An)... are the same as in Appendix A.1.

Let R0 be an initial data in D(A) = L2([0, 1]) (for the moment we do not suppose that R0 is in L∞([0, 1])) . As
C∞

c ((0, 1)) is dense in L2([0, 1]) (see [6]) and as C∞
c ((0, 1)) ⊂ D(An) for all integers n, one can construct a sequence

(R0,n)n belonging to C∞
c ((0, 1)) ⊂ D(An) converging to R0 in L2([0, 1]). In what follows, we will consider such a sequence

of initial data.

B.1. Local L∞ stability of C1([0, T ], L2([0, 1])) ∩ C0([0, T ],H1([0, 1])) solutions

All along section B.1, n is a fixed integer.

Rn is the solution to the smooth problem:







Rn,t + ΛRn,x=g ◦Rn

Rn(0, .) =HRn(1, .) +Bσn(KRn(1, .))
Rn(., 0) =Rn,0 ∈ D(An) ∩H2([0, 1]).

As the initial data isH2([0, 1]), satisfies compatibility conditions of order 1, the solution belongs to C1([0, T ], L2([0, 1])) ∩
C0([0, T ], H1([0, 1])) for all T > 0 by Theorem A.1.

Recall the definition of V (.),

∀f ∈ L∞([0, 1]), V (f) := max
i∈J1,dK

|δifie−µx|L∞([0,1]) (33)

where diagi∈J1,dK(δi) = ∆.

For all integers p, the functional V2p is defined by:

∀f ∈ L∞([0, 1]), V2p(f) :=

(

d
∑

i=1

∫ 1

0

q2pp,if
2p
i e−2pµxdx

)1/2p

where Qp = diagi∈J1,dK(qp,i) will be chosen wisely later.

Claim 2. We can differentiate V2p(Rn(., t)) with respect to time and

∀t ≥ 0,
dV 2p

2p (Rn(., t))

dt
= 2p

d
∑

i=1

∫ 1

0

q2pp,iRn,i,tR
2p−1
n,i e−2pµxdx. (34)

Proof of Claim 2. Take t ≥ 0, dt > 0 and T > t.

∣

∣

∣

∣

V 2p
2p (Rn(.,t+dt))−V 2p

2p (Rn(.,t))

dt − 2p
∑d

i=1

∫ 1

0 q2pp,iRn,i,tR
2p−1
n,i e−2pµxdx

∣

∣

∣

∣

≤∑d
i=1

∫ 1

0 q2pp,i

∣

∣

∣

∣

R2p
n,i(x,t+dt)−R2p

n,i(x,t)

dt − 2pRn,i,t(x, t)R
2p−1
n,i (x, t)

∣

∣

∣

∣

e−2pµxdx.

Thus it is sufficient to prove that at the limit when dt tends to zero

∀i ∈ J1, dK,

∣

∣

∣

∣

∣

R2p
n,i(., t+ dt)−R2p

n,i(., t)

dt
− 2pRn,i,t(., t)R

2p−1
n,i (., t)

∣

∣

∣

∣

∣

→L1([0,1]) 0.

Let i be in J1, dK,
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∫ 1

0

∣

∣

∣

∣

R2p
n,i(.,t+dt)−R2p

n,i(.,t)

dt − 2pRn,i,t(., t)R
2p−1
n,i (., t)

∣

∣

∣

∣

dx =
∫ 1

0

∣

∣

∣

Rn,i(.,t+dt)−Rn,i(.,t)
dt (Rn,i(., t+ dt)2p−1 + · · ·+Rn,i(., t)

2p−1)

−2pRn,i,t(., t)R
2p−1
n,i (., t)

∣

∣

∣
dx

≤ ||Rn,i(.,t+dt)−Rn,i(.,t)
dt −Rn,i,t||L2([0,1])

×
√

∫ 1

0 |Rn,i(., t+ dt)2p−1 + · · ·+Rn,i(., t)2p−1|2 dx

+
∫ 1

0 |Rn,i,t|
∣

∣Rn,i(., t+ dt)2p−1 + · · ·+Rn,i(., t)
2p−1

−2pRn,i(., t)
2p−1

∣

∣dx

The term
∣

∣

∣

∣

∣

∣

Rn,i(.,t+dt)−Rn,i(.,t)
dt −Rn,t

∣

∣

∣

∣

∣

∣

L2([0,1])
converges towards zero because Rn,i is in C1([0, T ], L2([0, 1])) while the

term
∫ 1

0

∣

∣Rn,i(., t+ dt)2p−1 + · · ·+Rn,i(., t)
2p−1

∣

∣

2
dx is bounded because Rn,i ∈ C0([0, T ], H1([0, 1])) ⊆ C0([0, T ]× [0, 1]).

Finally, the term
∫ 1

0

∣

∣Rn,i,t||Rn,i(., t+ dt)2p−1 + · · ·+Rn,i(., t)
2p−1 − 2pRn,i(., t)

2p−1
∣

∣ dx is bounded by ||Rn,i,t||L2([0,1])||Rn,i(., t+

dt)2p−1+· · ·+Rn,i(., t)
2p−1−2pRn,i(., t)

2p−1||L2([0,1]). The term ||Rn,i,t||L2([0,1]) is bounded as Rn is in C1([0, T ], L2([0, 1]))
whereas the other term converges towards zero by the dominated convergence theorem. Therefore, Claim 2 is proven. �

Next, as Rn verifies Rn,t + ΛRn,x = g ◦Rn, one gets:

dV 2p
2p (Rn(., t))

dt
= 2p

d
∑

i=1

∫ 1

0

q2pp,i (−λiRn,i,x + gi ◦R)R2p−1
n,i e−2pµxdx. (35)

There are two terms in (35) whose origins are different:

• the transport term:

W2p(Rn(., t)) := −2p
d
∑

i=1

∫ 1

0

q2pp,iλiRn,i,xR
2p−1
n,i e−2pµxdx (36)

• and the source term:

Z2p(Rn(., t)) := 2p

d
∑

i=1

∫ 1

0

q2pp,i(gi ◦R)R2p−1
n,i e−2pµxdx (37)

so that:

dV 2p
2p (Rn(., t))

dt
= W2p(Rn(., t)) + Z2p(Rn(., t)). (38)

Define:

∀t ≥ 0, ξn(t) := ∆Rn(1, t). (39)

In the rest of the proof, we will sometimes denote ξn(t) as ξn for readability.

Study of the term transport term W2p

Lemma B.1. For all µ < − log(R∞(∆(H + BK)∆−1)) and ε > 0 there exists p̃ = p̃(µ,H,B,K,∆, ε) such that for all
initial data R0,n ∈ H2([0, 1]) satisfying compatibility conditions of order 1, the solution Rn = Tn(.)R0,n to (3) verifies the
following assertion.

If at time t ≥ 0,

|ξn(t)|max <
R∞(∆B∆−1)σs,n

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ−ε| . (40)

Then:

∀p > p̃, W2p(Rn(., t)) ≤ −2pµλminV
2p
2p (Rn(., t)). (41)

Remark 10. The positive real ε is introduced to prevent an eventual dependence of p̃ with respect to t̄. Indeed, further
in the paper, we integrate (41) with respect to time. This would not be possible if p̃ = p̃(t̄). ◦
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Proof. In this proof we will sometimes drop the time dependence notation ξ(t) or Rn(t) for readability.

Using an integration by parts in (36), we compute :

W2p(Rn(., t)) = −
d
∑

i=1

q2pp,iλi

[

R2p
n,ie

−2pµx
]1

0
− 2pµ

d
∑

i=1

∫ 1

0

q2pp,iλiR
2p
n,ie

−2pµxdx

and therefore

W2p(Rn(., t)) ≤ −W2p,1(Rn(., t))− 2pµλminV
2p
2p (Rn(., t)) (42)

where

W2p,1(Rn(., t)) :=

d
∑

i=1

q2pp,iλi

[

R2p
n,ie

−2pµx
]1

0
.

Using the fact that Rn(., t) is in D(An), one gets:

W2p,1(Rn(., t)) =

d
∑

i=1

q2pp,iλiR
2p
n,i(1, t)e

−2pµ − q2pp,iλi

{

HRn(1, t) +Bσn(KRn(1, t))
}2p

i
.

We have,

W2p,1(Rn(., t)) = W2p,11 +W2p,12 (43)

with:

W2p,11 :=

d
∑

i=1

q2pp,iλiR
2p
n,i(1, t)e

−2pµ − q2pp,iλi

{

(H +BK)Rn(1, t)
}2p

i
(44)

and

W2p,12 :=

d
∑

i=1

q2pp,iλi

{

(H +BK)Rn(1, t)
}2p

i
− q2pp,iλi

{

HRn(1, t) +B(σn(KRn(1, t)))
}2p

i
. (45)

Note that if ξn = 0, W2p,1 is zero and the conclusion of Lemma B.1 holds. In what follows, we suppose that ξn 6= 0.

Study of W2p,11

For what follows, we choose Qp such that:

∀i ∈ J1, dK, ∀p ∈ N, qp,i = λ
−1/2p
i δi (46)

Inspired by [3, p. 123], we get the following estimates for W2p,11

W2p,11 =
∑d

i=1 q
2p
p,iλiR

2p
n,i(1, t)e

−2pµ − q2pp,iλi

{

(H +BK)Rn(1, t)
}2p

i

≥ |ξn|2pmaxe
−2pµ −∑d

i=1 q
2p
p,iλi

{

(H +BK)Rn(1, t)
}2p

i

= |ξn|2pmaxe
−2pµ −

∑d
i=1 δ

2p
i

{

∑d
j=1(H +BK)i,j

ξn,j

δj

}2p

≥ |ξn|2pmax

(

e−2pµ − d×R∞(∆(H +BK)∆−1)2p
)

where we have used the equations q2pp,iλi = δ2pi , |ξn|2pmax ≤
∑d

i=1 |ξi|2p, (39) and the definition of R∞.

For µ < − log(R∞(∆(H +BK)∆−1)) and p > − log(d)+log(2)
2(µ+log(R∞(∆(H+BK)∆−1))) , one has:

W2p,11

|ξn|2pmax

≥ e−2pµ

2
≥ 0. (47)

Study of W2p,12:

The term W2p,12 is deeply related to the effect of saturation; it corresponds to the difference between the action of a
linear controller and a saturated one. We recall the definition of W2p,12 in (45):
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W2p,12 =

d
∑

i=1

q2pp,iλi(
{

(H +BK)Rn(1, t)
}2p

i
−
{

HRn(1, t) +B(σn(KRn(1, t)))
}2p

i
)

equivalent to:

W2p,12 =
d
∑

i=1

δ2pi (χ2p
i − υ2p

i ) (48)

with:

χ = (H +BK)Rn(1, t) and υ = HRn(1, t) +Bσn(KRn(1, t)).

The following claim allows to neglect the term W2p,12 relatively to W2p,11 at the limit when p tends to infinity:

Claim 3. Under the conditions of Lemma B.1 and if ξn 6= 0, then there exists a p̃ = p̃(µ,H,B,K,∆, ε) such that:

∀p > p̃, |W2p,12| ≤
e−2pµ|ξn|2pmax

4
. (49)

Proof of Claim 3. Let i be in J1, dK:

δi|χi| = |
d
∑

j=1

(H +BK)i,jδiRn,j(1, t)| = |
d
∑

j=1

(H +BK)i,j
δi
δj
ξn,j | ≤ R∞(∆(H +BK)∆−1)|ξn|max (50)

Then, denoting Rn,j(1, t) by Rn,j (j ∈ J1, dK) and Sati the set

Sati = {j ∈ J1, dK | |(KRn)j | > σs,n and Bi,j 6= 0} ,
one has

δi|υi| =δi

∣

∣

∣

∣

∣

∣

d
∑

j=1

(H +BK)i,jRn,j +
d
∑

j=1

Bi,j (σn,j([KRn]j)− [KRn]j)

∣

∣

∣

∣

∣

∣

=δi

∣

∣

∣

∣

∣

∣

d
∑

j=1

(H +BK)i,jRn,j +
∑

j∈Sati

Bi,j (σn,j([KRn]j)− [KRn]j)

∣

∣

∣

∣

∣

∣

≤δi
d
∑

j=1

|(H +BK)i,jRn,j|+ δi
∑

j∈Sati

∣

∣

∣

∣

∣

Bi,j

(

σn,j([KRn]j)−
d
∑

k=1

Kj,kRn,k

)∣

∣

∣

∣

∣

≤δi
d
∑

j=1

|(H +BK)i,jRn,j|+ δi
∑

j∈Sati

|Bi,j |
(

|
d
∑

k=1

Kj,kRn,k| − σs,n

)

≤R∞(∆(H +BK)∆−1)|ξn|max +R∞(∆B∆−1)(R∞(∆K∆−1)|ξn|max − σs,n)

If Sati is empty ie if the saturation does not act on the ith coordinate, then υi = χi and

δi|υi| ≤ R∞(∆(H +BK)∆−1)|ξn|max (51)

by (50).

Otherwise, Sati is non empty and

δi|υi| ≤R∞(∆(H +BK)∆−1)|ξn|max +R∞(∆B∆−1)(R∞(∆K∆−1)|ξn|max − σs,n). (52)

Moreover as µ < − log(R∞(∆(H +BK)∆−1)) by hypothesis, there exists α ∈ (0, 1) such that

R∞(∆(H +BK)∆−1) = αe−µ.
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Additionally by (40),

R∞(∆(H +BK)∆−1)|ξn|max +R∞(∆B∆−1)(R∞(∆K∆−1)|ξn|max − σs,n) < e−µ−ε|ξn|max.

Injecting the last two equations in (50)-(52),

∀i ∈ J1, dK,

{

δi|χi| ≤ αe−µ|ξn|max

δi|υi| ≤ max(αe−µ, e−µ−ε)|ξn|max.
(53)

Finally, from (53) and (48), we have

∀p ∈ N,
W2p,12

|ξn|2pmax

≤ 2d×max
{

e−2pε, α2p
}

e−2pµ.

Hence, there exists an integer p̃ > − log(d)+log(2)
2(µ+log(R∞(∆(H+BK)∆−1))) (depending on (ε, α) but not on |ξn|max) such that

∀p ≥ p̃,

∣

∣

∣

∣

W2p,12

|ξn|2p
∣

∣

∣

∣

≤ e−2pµ

4
.

This ends the proof of Claim 3. �

As a consequence, by (47), (49) and for p > p̃, W2p,1 = W2p,11 +W2p,22 ≥ |ξn|
2
maxpe

−2p

4 ≥ 0. Injecting last statement in
(42), one gets:

W2p(Rn(., t)) ≤ −2pµλminV
2p
2p (Rn(., t)).

This finishes the proof of Lemma B.1. �

Remark 11. In the proof of the above result, we enforce W2p,12 =p→+∞ o(|ξn|2pmaxe
−2pµ). This condition recalls a local

sector bounded condition [19, Section 1.7.2]. Indeed, the term W2p,12 is induced by the difference between the linear control
law and the its saturated version, i.e., this term arises from a deadzone nonlinearity. The term on the right-hand side of
(54), e−µ|ξn|max, represents the state of the system. Thus formally speaking, the condition

W2p,12 =p→+∞ o(|ξn|2pmaxe
−2pµ), (54)

is somewhat equivalent to a regional sector condition [19, Section 1.7.2].

Remark 12. Conditions (40) are less restrictive when the saturation σs,n is weaker and when the exponential decay rate
µ decreases.

Analysis of the term Z2p

Lemma B.2. For all integers p and for all time t ≥ 0,

|Z2p(Rn(., t))| ≤ 2pLg,maxV
2p
2p (Rn(., t)).

Proof. Recall the definition of Z2p(Rn(., t)) (37):

Z2p(Rn(., t)) = 2p

d
∑

i=1

∫ 1

0

q2pp,i(gi ◦Rn)R
2p−1
n,i e−2pµxdx.

Using the hypothesis on g in (6):

|Z2p(Rn(., t))| ≤ 2p

d
∑

i=1

∫ 1

0

q2pp,iLg,iR
2p
n,ie

−2pµxdx ≤ 2pLg,maxV
2p
2p (Rn(., t)).

�

Conclusion on the L∞ stability of regular solutions
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Lemma B.3. Under conditions of Lemma B.1, the solution Rn = Tn(.)R0,n to problem (3) satisfies the following state-
ment.

If at a time t ≥ 0, condition (40) is satisfied then:

dV2p(Rn(., t))

dt
≤ −(µλmin − Lg,max)V2p(Rn(., t))

for all p > p̃ where p̃ defined in Lemma B.1.

Proof. Let p > p̃. By (38), we have:

dV 2p
2p

dt
= 2p

dV2p

dt
V 2p−1
2p = W2p + Z2p. (55)

After Lemmas B.1 and B.2,

W2p(Rn(., t)) ≤ −2pµλminV
2p
2p (Rn(., t))

and

|Z2p(Rn(., t))| ≤ 2pLg,maxV
2p
2p (Rn(., t)).

Summing previous inequalities and dividing by 2pV 2p−1
2p in (55), one gets:

dV2p

dt
≤ −(µλmin − Lg,max)V2p.

�

Before going further into the proof, we need the following lemma which may be useful in future works :

Lemma B.4.
∀R ∈ L∞([0, 1]), V2p(R)→p→+∞ V (R).

Moreover, the convergence is uniform on all bounded sets of H1([0, 1]).

Proof. Let R be in L∞([0, 1])

∀p ∈ N, V2p(R) =

(

d
∑

i=1

∫ 1

0

δ2pi λiR
2p
i e−2pµxdx

)1/2p

.

As a consequence,

λ
1/2p
min ||x 7→ ∆R(x)e−µx||L2p([0,1]) ≤ V2p(R) ≤ λ1/2p

max ||x 7→ ∆R(x)e−µx||L2p([0,1]).

By a classic result of analysis ||Q||L2p([0,1]) converges towards ||Q||L∞([0,1]) for all Q ∈ L∞([0, 1]). Hence, passing to the
limit in last inequalities:

||x 7→ ∆R(x)e−µx||L∞([0,1]) ≤ lim
p→+∞

V2p(R) ≤ ||x 7→ ∆R(x)e−µx||L∞([0,1])

and:

lim
p→+∞

V2p(R) = ||x 7→ ∆R(x)e−µx||L∞([0,1]) = V (R).

We also need to prove the uniform convergence for all bounded sets of H1([0, 1]). We will prove it for the case of scalar
functions; the case of vector valued function being similar.

Take an r > 0. Let Br be the ball of radius r in H1([0, 1]).

Define for ω > 0 and f in Br, Sf,ω := {x ∈ [0, 1]; |f(x)| ≥ |f |L∞([0,1]) − ω}.

For all ω > 0 and f in Br, there exists an x in Sf,ω/2. For all y in [0, 1], we have:

f(y) = f(x) +

∫ y

x

f ′(z)dz.

Maeva Boistel



22 TITLE WILL BE SET BY THE PUBLISHER

Using Cauchy-Schwartz inequality for the L2 canonical scalar product, one gets

|f(y)| ≥ |f(x)| − r|x − y|.

As x is in Sω/2:

|f(y)| ≥ |f |L∞([0,1]) −
ω

2
− r|x− y|

Thus, for all y in [0, 1] such that |x− y| ≤ ω
2r :

|f(y)| ≥ |f |L∞([0,1]) − ω

which implies that:

∀y ∈ [0, 1]; |x− y| ≤ ω

2r
=⇒ y ∈ Sf,ω.

As a consequence:

∀f ∈ Br, ∀0 < ω < r, µ(Sf,ω) ≥
ω

r
(56)

where µ designates the usual Lebesgue measure.

Now using the definition of Sf,ω and (56), one has:

∀f ∈ Br, ∀ω > 0, ∀p ∈ N,
(

ω
r

)1/2p
(|f |L∞([0,1]) − ω) ≤ µ(Sf,ω)

1/2p(|f |L∞([0,1]) − ω) =
(

∫

Sf,ω
(|f |L∞([0,1]) − ω)2pdx

)1/2p

≤ |f |L2p([0,1]).

Moreover,

∀f ∈ L∞([0, 1]), |f |Lp([0,1]) ≤ |f |L∞([0,1]).

Hence:

∀f ∈ Br, ∀ω > 0, ∀p ∈ N,
(ω

r

)1/2p

(|f |L∞([0,1]) − ω) ≤ |f |L2p([0,1]) ≤ |f |L∞([0,1])

which implies:

∀f ∈ Br, ∀ω > 0, ∀p ∈ N, 0 ≤
∣

∣

∣
|f |L2p([0,1]) − |f |L∞([0,1])

∣

∣

∣
≤
∣

∣

∣

∣

(ω

r

)1/2p

(|f |L∞([0,1]) − ω)− |f |L∞([0,1])

∣

∣

∣

∣

.

Now take an 0 < ε < 1, f in Br and pose ω = ε
2 ;

∣

∣

∣

∣

(ω

r

)1/2p

(|f |L∞([0,1]) − ω)− |f |L∞([0,1])

∣

∣

∣

∣

≤
∣

∣

∣

∣

(ω

r

)1/2p

− 1

∣

∣

∣

∣

∣

∣

∣
|f |L∞([0,1]) − ω

∣

∣

∣
+
∣

∣

∣
|f |L∞([0,1]) − ω − |f |L∞([0,1])

∣

∣

∣

≤
∣

∣

∣

∣

(ω

r

)1/2p

− 1

∣

∣

∣

∣

(r + ω) + ω

=

∣

∣

∣

∣

( ε

2r

)1/2p

− 1

∣

∣

∣

∣

(r +
ε

2
) +

ε

2

≤
∣

∣

∣

∣

( ε

2r

)1/2p

− 1

∣

∣

∣

∣

(r + 1) +
ε

2
.

There exists a P (r, ε) (independent on f) such that for p > P (r, ε):

∣

∣

∣

∣

( ε

2r

)1/2p

− 1

∣

∣

∣

∣

(r + 1) ≤ ε

2

so that:

∀f ∈ Br,
∣

∣

∣
|f |L2p([0,1]) − |f |L∞([0,1])

∣

∣

∣
≤ ε.

This finishes the proof of Lemma B.4. �
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Lemma B.5. For all initial data R0,n ∈ H2([0, 1]) satisfying compatibility conditions of order 1 and µ < − log(R∞(∆(H+
BK)∆−1)), if







µλmin − Lg,max ≥ 0

V (R0,n) < e−µ R∞(∆B∆−1)σs,n

|R∞(∆(H + BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ|

then, the solution Rn = Tn(.)R0,n to (3) verifies:

∀t ≥ 0, V (Rn(., t)) ≤ e−(µλmin−Lg,max)tV (R0,n).

Proof. Using a continuity argument, we can take a ε > 0 such that

V (R0,n) < e−µ R∞(∆B∆−1)σs,n

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ−ε| . (57)

Define for all integers p, Tp := sup
{

T ≥ 0; ∀t ∈ [0, T ], V2p(Rn(., t)) ≤ e−(µλmin−Lg,max)tV2p(R0,n)
}

.

(1) (Tp)p is not a bounded sequence

We will prove that the sequence (Tp)p is not bounded by contradiction. Suppose (Tp)p bounded and take a subsequence
still denoted (Tp)p converging towards a limit denoted T∞.

(1.1) T∞ is strictly positive

For all integers i in J1, dK

ξn,i(0)e
−µ = δiRn,i(1, 0)e

−µ ≤ V (Rn(., 0)) = V (R0,n).

By (57),

|ξn|max(0) <
R∞(∆B∆−1)σs,n

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ−ε| .

By continuity of t 7→ ξn(t) = ∆Rn(1, t), there exists a dt0 > 0 independent on p such that:

∀t ∈ [0, dt0], |ξn|max(t) <
R∞(∆B∆−1)σs,n

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ−ε| .

Applying Lemma B.3 and noting that condition (40) is satisfied for t← t ∈ [0, dt0], there exists a p̃(µ,H,B,K,Λ, ε) ∈ N

(independent on time):

∀p > p̃, ∀t ∈ [0, dt0],
dV2p(Rn(., t))

dt
≤ −(µλmin − Lg,max)V2p(Rn(., t)).

Integrating on [0, dt0], it holds

∀p > p̃, ∀t ∈ [0, dt0], V2p(Rn(., t)) ≤ e−(µλmin−Lg,max)tV2p(R0,n).

This allows to assert that:

∀p > p̃, Tp ≥ dt0

and passing to the limit,

T∞ ≥ dt0 > 0.

(1.2) Proof of the contradiction

As Rn ∈ C0([0, 1]× [0, T ]) for all T > 0 and by definition of Tp:

∀p ∈ N, V2p(Rn(., Tp)) = e−(µλmin−Lg,max)TpV2p(R0,n).
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As (Rn(Tp))p is a bounded sequence of H1([0, 1]) (because Rn is in C0([0, T ], H1([0, 1])) for all T > 0), we can use the
uniform convergence proven in Lemma B.4 to pass to the limit as p tends towards infinity in last equation:

V (Rn(., T∞)) = e−(µλmin−Lg,max)T∞V (R0,n) ≤ V (R0,n).

As a consequence, for all integers i in J1, dK

ξn,i(T∞)e−µ = δiRn,i(1, T∞)e−µ ≤ V (Rn(., T∞)) ≤ V (R0,n)

and by (57), we have:

|ξn|max(T∞) <
R∞(∆B∆−1)σs,n

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ−ε| .

As t 7→ ξn(t) = ∆Rn(1, t) is a continuous function (remember that Rn is in C0([0, 1]× [0, T ]) for all T > 0), there exists
a 0 < dt < T∞ independent on p (but dependent on n) such that:

∀t ∈ [T∞ − dt, T∞ + dt], |ξn|max(t) <
R∞(∆B∆−1)σs,n

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ−ε| .

Applying Lemma B.3 and noting that condition (40) is satisfied for t ← t ∈ [T∞ − dt, T∞ + dt], there exists
p̃(µ,H,B,K,Λ, ε) ∈ N such that :

∀p > p̃, ∀t ∈ [T∞ − dt, T∞ + dt],
dV2p(Rn(., t))

dt
≤ −(µλmin − Lg,max)V2p(Rn(., t))

which is no more than:

∀p > p̃, ∀t ∈ [T∞ − dt, T∞ + dt],
d[V2p(Rn(., t))e

(µλmin−Lg,max)t]

dt
≤ 0.

Integrating last statement on [T∞ − dt, t] for T∞ − dt ≤ t ≤ T∞ + dt:

∀p > p̃, ∀t ∈ [T∞ − dt, T∞ + dt], V2p(Rn(., t)) ≤ e−(µλmin−Lg,max)(t+dt−T∞)V2p(Rn(., T∞ − dt)) (58)

Moreover, as T∞ − dt < T∞ and limp→∞ Tp = T∞, there exists a P (dt) such that for all p > P (dt), T∞ − dt < Tp. It
implies that:

∀p > P (dt), ∀t ≤ T∞ − dt, V2p(Rn(., t)) ≤ e−(µλmin−Lg,max)tV2p(R0,n).

Using last inequality and (58), one has:

∀p > max(P (dt), p̃), ∀t ≤ T∞ + dt, V2p(Rn(., t)) ≤ e−(µλmin−Lg,max)tV2p(R0,n).

As a consequence and by the definition of Tp:

∀p > max(P (dt), p̃), Tp ≥ T∞ + dt

passing to the limit as p tends towards infinity, one gets:

T∞ ≥ T∞ + dt

implying that dt ≤ 0 which is a contradiction.

(2) Proof of exponential convergence

Hence, (Tp)p is not a bounded sequence and there exists a non decreasing subsequence (Tφ(p))p of (Tp)p such that:

lim
p→∞

Tφ(p) = +∞.

Take an arbitrary time t ≥ 0, there exists a P such that for p > P then Tφ(p) ≥ t. It implies that:

∀p > P, V2φ(p)(Rn(., t)) ≤ e−(µλmin−Lg,max)tV2φ(p)(R0,n)

Passing to the limit as p tends towards infinity, we get:

V (Rn(., t)) ≤ e−(µλmin−Lg,max)tV (R0,n)

and Lemma B.5 is proven. �
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B.2. Local L∞([0,1]) stability for weak solutions

Finally, we prove Theorem 2. The integer n is not fixed anymore and we will pass to the limit in the exponential
stability of the sequence (Rn)n.

Lemma B.6. For all R0 ∈ L∞([0, 1]), there exists a sequence (R0,n)n ∈ C2
c ((0, 1)) converging to R0 in L2([0, 1]) such

that

∀n ∈ N, V (R0,n) ≤ V (R0).

Proof. By [6, Corollary 4.23], for all R ∈ L∞([0, 1]) there exists a sequence of elements of C2
c ((0, 1)), (Rn)n, such that:

∀n ∈ N, ||Rn||L∞([0,1]) ≤ ||R||L∞([0,1])

and

Rn →n→+∞ R

where the convergence holds in L2([0, 1]).

Now take R0 in L∞([0, 1]), V (R0) = ||x 7→ ∆R0(x)e
−µx||L∞([0,1]). Applying the Corollary stated above to x 7→

∆R0(x)e
−µx, there exists a subsequence (S0,n)n of elements of C2

c ((0, 1)) such that:

∀n ∈ N, ||S0,n||L∞([0,1]) ≤ V (R0)

and

S0,n →n→+∞

[

x 7→ ∆R0(x)e
−µx

]

in L2([0, 1]).

Defining, for all integers n, R0,n = x 7→ ∆−1S0,n(x)e
µx, one gets:

∀n ∈ N, V (R0,n) ≤ V (R0)

and

R0,n →n→+∞ R0

in L2([0, 1]).

This concludes the proof of Lemma B.6.
�

Take the sequence (R0,n)n ∈ D(An) given by preceding Lemma B.6 converging to R0 in L2([0, 1]). We denote also
(Rn)n = (Tn(.)R0,n)n .

As for all integers n, V (R0,n) ≤ V (R0), σs,n ≥ σs and (8):

V (R0,n) < e−µ R∞(∆B∆−1)σs,n

|R∞(∆(H +BK)∆−1) +R∞(∆B∆−1)R∞(∆K∆−1)− e−µ| ,

we can apply Lemma B.5 for all integers n,

∀n ∈ N, ∀t ≥ 0, V (Rn(., t)) ≤ e−(µλmin−Lg,max)tV (R0,n). (59)

Now let t ≥ 0 and p ∈ N. By Fatou’s lemma and the fact that (Rn(., t))n converges up to a subsequence towards R(., t)
in the almost everywhere sense (because it converges in L2([0, 1]) by Theorem A.3):

V2p(R(., t)) ≤ lim inf
n→+∞

V2p(Rn(., t)).

Using the fact that for all R ∈ L∞([0, 1]), V2p(R) ≤ d1/2p maxi{λ−1/2p
i }V (R) (Remember (46) and the definition of V

and V2p), we have:
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V2p(R(., t)) ≤ d1/2p maxi{λ−1/2p
i } lim infn→+∞ V (Rn(., t))

≤ d1/2p maxi{λ−1/2p
i }e−(µλmin−Lg,max)t lim infn→+∞ V (R0,n)

≤ d1/2p maxi{λ−1/2p
i }e−(µλmin−Lg,max)tV (R0)

where we have used the fact that V (R0,n) ≤ V (R0) by construction.

Passing to the limit when p goes to infinity, one gets:

V (R(., t)) ≤ e−(µλmin−Lg,max)tV (R0).

Theorem 2 is proven.
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