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Abstract Under the term behavioral data, we consider any type of data
featuring individuals performing observable actions on entities. For instance,
voting data depict parliamentarians who express their votes w.r.t. legislative
procedures. In this work, we address the problem of discovering exceptional
(dis)agreement patterns in such data, i.e., groups of individuals that exhibit
an unexpected (dis)agreement under specific contexts compared to what is
observed in overall terms. To tackle this problem, we design a generic ap-
proach, rooted in the Subgroup Discovery/Exceptional Model Mining frame-
work, which enables the discovery of such patterns in two different ways. A
branch-and-bound algorithm ensures an efficient exhaustive search of the un-
derlying search space by leveraging closure operators and optimistic estimates
on the interestingness measures. A second algorithm abandons the complete-
ness by using a sampling paradigm which provides an alternative when an
exhaustive search approach becomes unfeasible. To illustrate the usefulness
of discovering exceptional (dis)agreement patterns, we report a comprehen-
sive experimental study on four real-world datasets relevant to three different
application domains: political analysis, rating data analysis and healthcare
surveillance.
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1 Introduction

Consider data describing the organization and votes of a parliamentary insti-
tution (e.g., European Parliament1, US Congress2). Such datasets record the
activity of each member in voting sessions held in the parliament, as well as
information on the parliamentarians and the sessions. Table 1 provides an ex-
ample. It reports the votes of Members of the European Parliament (MEPs)
on legislative procedures. These procedures are described by attributes such
as themes and dates. MEPs are characterized by their country, parliamen-
tary group and age. The general trends are well known, and easy to check
on these data with basic queries. For instance, the Franco-German axis is re-
flected by consensual votes between parliamentarians of both countries as well
as the usual opposition between right wing and left wing. An analyst (e.g.,
a data journalist) is aware of these political positions and expects deeper in-
sights. To this end, it is of major interest to discover groups of individuals that
exhibit an unexpected mutual agreement (or disagreement) under specific con-
ditions (contexts). For example, from Table 1, an exceptional (dis)agreement
pattern is p = (c = 〈themes = 7.30 Judicial Coop〉, u1 = 〈country = France〉,
u2 = 〈country = Germany〉), which reads: “in overall terms, while German and
French parliamentarians are in agreement (comparing majority votes leads to
66%3 of equal votes), an unexpected strong disagreement between the two
groups is observed for Judicial Cooperation related legislative procedures (the
respective majorities voted the same way only 33% of the time in the corre-
sponding voting sessions, i.e. {e3, e5, e6})”.

In this work, we aim to discover such exceptional (dis)agreement patterns
not only in voting data but also in more generic data which involves individ-
uals, entities and outcomes. In fact, voting data are particular instances of a

ide themes date

e1 1.20 Citizen’s rights 20/04/16
e2 2.10 Free Movement of goods 16/05/16
e3 1.20 Citizen’s rights; 7.30 Judicial Coop 04/06/16
e4 7 Security and Justice 11/06/16
e5 7.30 Judicial Coop 03/07/16
e6 7.30 Judicial Coop 29/07/16

(a) Entities (Voting sessions)

idi country group age

i1 France S&D 26
i2 France PPE 30
i3 Germany S&D 40
i4 Germany ALDE 45

(b) Individuals (Parliamentarians)

idi ide outcome

i1 e1 For
i1 e2 Against
i1 e5 For
i1 e6 Against
i2 e1 For
i2 e3 Against
i2 e4 For
i2 e5 For
i3 e1 For
i3 e2 Against
i3 e3 For
i3 e5 Against
i4 e1 For
i4 e4 For
i4 e6 Against

(c) Outcomes

Table 1: Example of behavioral dataset - European Parliament Voting dataset

1http://parltrack.euwiki.org/, last access on October 15, 2019.
2https://voteview.com/data, last access on October 25, 2019.
3Since the majorities of 〈u1, u2〉 voted respectively on {e1, e2, e3, e4, e5, e6} as follows:
〈For,For〉, 〈Against,Against〉, 〈Against ,For〉, 〈For,For〉, 〈For ,Against〉, 〈Against,Against〉.

http://parltrack.euwiki.org/
https://voteview.com/data
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more general type of data that we call behavioral data. It regroups any type
of data featuring individuals (e.g., parliamentarians, users in social networks,
patients) performing observable actions (e.g., votes, ratings, intakes) on en-
tities (e.g., procedures, movies, restaurants, medicines). From such datasets,
we aim to discover exceptional (dis)agreement between groups of individu-
als on specific contexts. That is to say, an important difference between the
groups’ behaviors is observed compared to the usual context (i.e., the whole
data). This could answer a large variety of questions. For instance, consider-
ing political data, an analyst may ask: what are the controversial subjects in
the European parliament in which groups or parliamentarians have divergent
points of view? In collaborative rating analysis, one may ask what are the con-
troversial items? And which groups are opposed? In Healthcare surveillance,
the analyst may want to know if some medicines are prescribed much more
often for one group of individuals than another one.

The discovery of regions within the data that stand out with respect to
a given target has been widely studied in data mining and machine learn-
ing communities under several names (Novak et al, 2009) (subgroup discovery
(Wrobel, 1997), emerging patterns (Dong and Li, 1999), contrast sets (Bay and
Pazzani, 2001)). Subgroup Discovery (SD) is known as the most generic one
as it is agnostic of the data and the pattern domain. For instance, subgroups
can be defined by a conjunction of conditions on symbolic (Lavrac et al, 2004)
or numeric attributes (Grosskreutz and Rüping, 2009; Atzmüller and Puppe,
2006) as well as sequences (Grosskreutz et al, 2013). Furthermore, the single
target can be discrete or numeric (Lemmerich et al, 2016). Exceptional Model
Mining (EMM) (Leman et al, 2008) extends SD by offering the possibility to
handle complex targets (Duivesteijn et al, 2016). However, no model in the
EMM/SD framework makes it possible to investigate exceptional contextual
(dis)agreement between groups. We made a first attempt to discover excep-
tional (dis)agreement patterns in (Belfodil et al, 2017). However, the model
proposed required the specification of many non-intuitive parameters that may
be the source of misleading interpretations. In this paper, we strive to provide
a simpler and more generic framework to analyze behavioral data.

Figure 1 gives an overview of the approach we devise to discover exceptional
(dis)agreement between groups. At a high level of description, five steps are
necessary to discover interesting (dis)agreement patterns. First, two groups
of individuals (u1, u2) are selected (1) . Then, their usual agreement on all
their expressed outcomes is computed in step (2). All characterizable subsets
of entities (contexts (c)) are then enumerated (3). For each selected subset,
the agreement between the two groups is measured (4) and compared to their
usual agreement (5) to evaluate to what extent the mutual agreement changes
conditioned at a (dis)agreement pattern (c, u1, u2). Eventually, all pairs of
groups (at least conceptually) are confronted. The discovery of exceptional
(dis)agreement patterns requires to explore (simultaneously) both the search
space associated to the individuals and the search space related to the entities.
Moreover, behavioral datasets may contain several types of attributes (e.g.,
numerical and/or categorical attributes potentially organized by a hierarchy),



4 Adnene Belfodil et al.

Entities
(e.g., Movies, Voting sessions) 

Individuals
(e.g., Users, Parlementarians) 

Select a subset of entities

e.g. Dotted diamonds

Overall Inter-group agreement2

Contextual Inter-group Agreement4

Select two groups of individuals  

eg. Confront      vs.      

Consider all entities

Outcomes
(e.g., Scores, Votes) 

Similarity based on all entities

Compare models to 
evaluate the 

intensity of change 
5 vs.

Pointed out by an 
interestingness 

measure

Significant variation 
of agreement

(   ,   ,   )

Behavioral 
Dataset

1

3

Fig. 1: Overview of the task of discovering exceptional (dis)agreement between groups

and outcomes. This requires efficient enumeration strategies. Last but not
least, different measures to capture agreement may be considered depending
on the application domain. Accordingly, the proposed method must be generic.

The main contributions of this paper are threefold:

Problem formulation. We define the novel problem of discovering exceptional
(dis)agreement between groups of individuals when considering a particular
subset of outcomes compared to the whole set of outcomes. Particular
attention is paid to ensure a generic framework for behavioral data analysis.

Algorithms. We propose two algorithms to tackle the problem of discovering
exceptional (dis)agreement patterns. DEBuNk4 is a branch-and-bound al-
gorithm that efficiently returns the complete set of patterns. It exploits
both closure operators and optimistic estimates. Quick-DEBuNk is an al-
gorithm that samples the space of (dis)agreement patterns in order to
support instant discovery of patterns.

Evaluation. We report an extensive empirical study on four real-world datasets
to demonstrate the efficiency of our algorithms as well as the interest of
the discovered patterns. In particular, we report three case-studies from
different application domains: political analysis, rating data analysis and
healthcare surveillance to demonstrate that our approach is generic. The
analysis of political votes, which is done in collaboration with journalists,
is also available online5.

The rest of this paper is organized as follows: the problem formulation is
given in Section 2. We present the agreement measure and how it is integrated
into an interestingness measure to capture changes of inter-group agreement
in Section 3. Algorithm DEBuNk is presented in Section 4 while a pattern
space sampling version, Quick-DEBuNk, is defined in Section 5. We report an
empirical study in Section 6. Section 7 reviews the literature. We conclude and
discuss future directions of research in Section 8.

4 DEBuNk stands for Discovering Exceptional inter-group Behavior patterNs
5http://contentcheck.liris.cnrs.fr, last access on October 25, 2019.

http://contentcheck.liris.cnrs.fr
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2 Problem Definition

We are interested in discovering exceptional (dis)agreements among groups in
Behavioral Datasets, which are defined as follows.

Definition 1 (Behavioral Dataset) A behavioral dataset 〈GI , GE , O, o〉
consists of (i) a collection of Individuals GI , (ii) a collection of Entities GE ,
(iii) a domain of possible Outcomes O, and (iv) a mapping function o : GI ×
GE → O that gives the outcome of an individual i over an entity e.

In order to define appropriately the form of the sought patterns, we need
first to characterize subgroups of data records in GI and GE . These two sets
are collections of records defined over a set of descriptive attributes (Schema).
We denote such collection of records by G, reintroducing the subscripts only
in case of possible confusion. We assume A = (a1, ..., am) to be the ordered list
of attributes constituting the schema of G. Each attribute aj has a domain
of interpretation, noted dom(aj), which corresponds to all its possible val-
ues. Attributes may be numerical or categorical potentially augmented with
a taxonomy referred to by Hierarchical Multi-Tag (HMT) attributes (see sec-
tion 4.2). For instance, in Table 1, parliamentarians, described by their country
(categorical), their political group (categorical) and their age (numerical), de-
cide on some voting sessions outlined by a date (numerical) and themes (HMT
attribute). The attributes’ domains define a description domain D which cor-
responds to the set of all possible descriptions characterizing subgroups in G.

Definition 2 (Description) Let G be a collection defined over the schema
A = {a1, ..., am}, a description d ∈ D is a conjunction of conditions of the
form d = 〈r1, ..., rm〉 where rj depends on the type of the attribute aj :

– If aj is a categorical attribute then condition rj is an equality test of the form
aj = v with v ∈ dom(aj)∪ {∗j}. Note that ∗j is a symbol representing any
value in dom(aj). (i.e. every record in G satisfies aj = ∗j).

– If aj is a numerical attribute then condition rj is a membership test of
the form aj ∈ [v..w] with v, w ∈ dom(aj).

A description d characterizes a subgroup of records, also called support, in G
denoted Gd = {g ∈ G s.t. g satisfies d}.

Descriptions are partially ordered in D by a specialization relationship de-
fined as follows.

Definition 3 (Specialization between descriptions ⊑) Let d and d′ be
two descriptions from D. d′ is said to be a specialization of d, denoted d ⊑ d′, iff
d′ ⇒ d, i.e. each condition r′j in d′ implies its corresponding condition rj in d.

As a consequence of the previous definition, if d ⊑ d′ then Gd′ ⊆ Gd, since
each record satisfying d′ satisfies d.

Formally, the concept of description is used to describe both sets of in-
dividuals and sets of entities. Yet, for the ease of interpretation, we use two
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different terms to name them: group description and context. For example, in
Table 1, the context c = 〈 date ∈ [05/06/16..30/07/16] 〉 identifies the set of en-
tities Gc

E = {e4, e5, e6}. Similarly, the group description u = 〈 group=‘S&D’ 〉
selects the set of individuals Gu

I = {i1, i3}.
Since we are interested in patterns highlighting exceptional (dis)agreement

between two groups of individuals described by u1 and u2, in a context c
compared to the overall context, the sought patterns are defined as follows:

Definition 4 ((Dis)Agreement Pattern) A (dis)agreement pattern is a
triplet p = (c, u1, u2) where c ∈ DE is a context and (u1, u2) ∈ D2

I is a pair of
group descriptions.

The extent of a (dis)agreement pattern p is ext(p) = (Gc
E , G

u1

I , Gu2

I ) with
Gc

E the set of entities satisfying the conditions of context c, and Gu1

I (resp.
Gu2

I ) the set of individuals supporting the description u1 (resp. u2). The set
of all possible patterns is denoted as P = DE × DI × DI . Furthermore, as
P = DE×DI×DI is the product of three partially ordered collections, patterns
of P are also partially ordered.

Definition 5 (Specialization between patterns ⊑) Let p = (c, u1, u2)
and p′ = (c′, u′

1, u
′
2) be two patterns from P, p′ is a specialization of a pattern

p, denoted p ⊑ p′, iff c ⊑ c′, u1 ⊑ u′
1 and u2 ⊑ u′

2.

Notice that, if p ⊑ p′ then ext(p′) ⊆ ext(p), that is Gc′

E ⊆ Gc
E and

G
u′
1

I ⊆ Gu1

I and G
u′
2

I ⊆ Gu2

I . Moreover, two descriptions d1, d2 ∈ D are said
to be equivalent if they characterize the same subset S ⊆ G, i.e. Gd1 = Gd2 .
Similarly, two patterns p, p′ ∈ P are equivalent if ext(p) = ext(p′).

To objectively evaluate how interesting a (dis)agreement pattern is, a qual-
ity measure ϕ is required (Duivesteijn et al, 2016).

Definition 6 (Quality measure) A quality measure is a function ϕ : P → R
which assigns to each pattern p = (c, u1, u2) ∈ P a real number ϕ(p) ∈ R.

A quality measure is designed to compare patterns: the quality of one will
be compared to the quality of the others, most of the time to choose the best
one. Consequently, it must be carefully designed with respect to what the
algorithm is expected to produce. Our first objective is to identify particular
parts of the data. This naturally leads to quality evaluation functions focusing
only on the extent of the pattern. In particular, this means that, in this paper,
syntax is not considered to assess the quality of a pattern.

Consequently, the quality measures we propose6 are of the form: ϕ(p) =
ϕ′(ext(p)). It follows that two patterns characterizing the same data, i.e. with
the same extent, share the same quality measurement: ∀p, p′ ∈ P, if ext(p) =
ext(p′) then ϕ(p) = ϕ(p′).

The user will be provided with a collection of patterns that captures ex-
ceptional (dis)agreements in a given behavioral dataset. A first intuitive idea

6Different quality measures are proposed in Sec. 3.
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is to provide all patterns of high quality, i.e. with a quality greater than a
user-defined threshold σϕ. However, by construction of the quality measures,
different patterns sharing the same extent will reach the same quality level,
leading to multiple descriptions of the same parts of the data. Assuming that
the user can be quickly bothered by such duplication, we propose to expose
each interesting part of the data only once. More interestingly, the system
should provide the user with the best generalizations only, i.e., patterns whose
extent is not included in some other found ones. Additionally, some cardinality
constraints can be added to avoid patterns of too small extent. Given two min-
imum support thresholds σE and σI , these constraints ensure, for a pattern
p = (c, u1, u2), that the size of the context extent (i.e. |Gc

E | ≥ σE) and the
size of both groups (i.e. |Gu1

I | ≥ σI and |Gu2

I | ≥ σI) are large enough. Now,
we introduce formally the core problem we tackle in this paper.

Problem Def. (Discovering Exceptional (Dis)Agreement between Groups).
Given a behavioral dataset 〈GI , GE , O, o〉, a quality measure ϕ, a quality

threshold σϕ and a set of cardinality constraints C, the problem is to find the
pattern set P ⊆ P such that the following conditions hold:

1. (Validity) ∀p ∈ P, p is valid ; that is p satisfies C and ϕ(p) ≥ σϕ.
2. (Maximality) ∀p ∈ P ∀q ∈ P, ext(q) = ext(p) ⇒ q ⊑ p.
3. (Completeness) ∀q ∈ P \ P, q is valid ⇒ ∃p ∈ P, ext(q) ⊆ ext(p).
4. (Generality) ∀(p, q) ∈ P 2, p ∕= q ⇒ ext(p) ⊈ ext(q).

Condition (1) ensures that the patterns in P are of high quality and satisfy
the cardinality constraints. Condition (2) retains only one unique representa-
tive among patterns sharing the same extent: the maximal one w.r.t. ⊑. Such
a pattern exists only if the specialization relation ⊑ over the pattern space
induces a lattice structure (Ganter and Kuznetsov, 2001). It is commonly re-
ferred to as the closed pattern (Pasquier et al, 1999). We confine ourselves to
such pattern spaces. Condition (3) ensures that each valid pattern in P has a
representative in P covering it, while condition (4) ensures that only the most
general patterns w.r.t. their extents are in P . In other words, the combina-
tion of conditions (3) and (4) guarantees that the solution P is minimal in
terms of the number of patterns while having each valid pattern represented
in the solution. Considering the generic definition of the quality measure dis-
cussed here, this problem extends the top-k problem addressed in (Belfodil
et al, 2017) by introducing conditions (3) and (4). That is, for a sufficiently
large k, the method formerly provided in (Belfodil et al, 2017) solves this prob-
lem only limited to the two first conditions providing, hence, a solution with
a much larger number of redundant patterns.

3 Quality Measures and Inter-group Agreement Measurement

The previous section has already hinted at the fact that pattern interesting-
ness is assessed with a quality measure ϕ (cf. Definition 6). Here, we propose
such measures to capture the deviation between the contextual inter-group
agreement and the usual inter-group agreement .
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3.1 Quality Measures

For any pattern p = (c, u1, u2) ∈ P, we denote by p∗ the pattern (∗, u1, u2)
which involves the same groups but all the entities. IAS (p∗) (resp. IAS (p)),
which stands for Inter-group Agreement Similarity, represents the usual (resp.
contextual) inter-group agreement observed between the two groups u1, u2. In
order to discover interpretable patterns, we define two quality measures using
IAS (p∗) and IAS (p).

- ϕconsent assesses the strengthening of inter-group agreement in a context c:

ϕconsent(p) = max (IAS (p)− IAS (p∗) , 0) . (1)

- ϕdissent assesses the weakening of inter-group agreement in a context c:

ϕdissent(p) = max (IAS (p∗)− IAS (p) , 0) . (2)

For instance, one can use ϕconsent to answer: “What are the contexts for
which we observe more consensus between groups of individuals than usual?”.

3.2 Inter-group Agreement Similarity (IAS)

Several IAS measures can be designed according to the domain in which the
data was measured (e.g., votes, ratings) and the user objectives. The evaluation
of an IAS measure between two groups of individuals over a context requires
the definition of two main operators: the outcome aggregation operator (θ)
which computes an aggregated outcome of a group of individuals for a given
entity, and a similarity operator (sim) which captures the similarity between
two groups based on their aggregated outcomes over a single entity. These
operators are defined in a generic way as follows.

Definition 7 (Outcome Aggregation Operator θ) An aggregation oper-
ator is a function θ : 2GI ×GE → D.

θ(u, e) simply transforms the outcomes of individuals u over an entity e into
a value belonging to a domain D (e.g., R, categorical values). From this, two
elements of D have to be compared.

Definition 8 (Similarity between aggregated outcomes sim) A simi-
larity betweed aggregarted outcomes is a function sim : D× D → R+.

sim(x, y) assigns a real positive value to any couple of aggregated outcomes
(x,y).

Based on these operators, we properly define IAS which assigns to each
pattern p = (c, u1, u2) ∈ P a value IAS(p) ∈ R+. This similarity evaluates how
the two groups of individuals (u1, u2) behave similarly given their outcomes
w.r.t. the context c. In the scope of this work, we confine ourselves to IAS
measures that can be expressed as weighted averages. The next definition,
though limiting, is generic enough to handle a wide range of behavioral data.
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Definition 9 (Inter-group Agreement Similarity Measure IAS) Let w
be a function associating a weight to each triple from (GE × 2GI × 2GI ). IAS:
P → R+ associates to each pattern p the weighted average of the similarities
of the aggregated outcomes for each entity e supporting the context c.

IAS (p = (c, u1, u2)) =

󰁓
e∈Gc

E
w(e,Gu1

I , Gu2

I )× sim(θ(Gu1

I , e), θ(Gu2

I , e))
󰁓

e∈Gc
E
w(e,Gu1

I , Gu2

I )
.

(3)

3.3 Examples of IAS Measures

By simply defining sim and θ, we present two instances of IAS measures that
address two types of behavioral data with specific aims.

Behavioral Data With Numerical Outcomes: Rating datasets are a clas-
sic example of behavioral data with numerical outcomes. Such datasets de-
scribe users who express numerical ratings belonging to some interval O =
[min,max] (e.g., 1 to 5 stars) over reviewees (e.g., movies, places). A simple
and adapted measure for aggregating individual ratings over one entity is the
weighted mean θwavg : 2GI ×GE → [min,max].

θwavg(G
u
I , e) =

1󰁓
i∈Gu

I
w(i)

󰁛

i∈Gu
I

w(i)× o(i, e). (4)

Weight w(i) corresponds to the importance of ratings given by each individual
i ∈ GI . Such weight may depend on the confidence of the individual or the size
of the sample population if fine granularity ratings (rating of each individual)
are missing. If no weights are given, θwavg computes a simple average over
ratings, denoted θavg. To measure agreement between two aggregated ratings
over a single entity, we define simrating : [min,max]× [min,max] → [0, 1].

simrating(x, y) = 1−
󰀕

|x− y|
max−min

󰀖
. (5)

Behavioral Data with Categorical Outcomes: A typical example of such
datasets are Roll Call Votes7 datasets where voting members cast categori-
cal votes. The outcome domain (e.g., O = {For,Against,Abstain}) regroups
all possible votes. To aggregate categorical outcomes we adapt majority vote
to handle potential ties (non unique majority vote). Hence, θmajority: 2

GI ×
GE → 2O returns all the outcomes that received the majority of votes. Given
#votes(z,Gu

I , e) = |{(i, e) s.t. i ∈ Gu
I ∧ o(i, e) = z}|,8 we have:

7 Roll-Call vote is a voting system where the vote of each member is recorded, such as http:
//www.europarl.europa.eu (EU parliament, last access on October 25, 2019) or https:

//voteview.com (US Congresses, last access on October 25, 2019).
8o(i, e) returns the outcome (e.g., vote, rating) expressed by an individual i (e.g., parlia-
mentarian, user) to an entity e (e.g., legislative procedure, movie) if given.

http://www.europarl.europa.eu
https://voteview.com
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θmajority(G
u
I , e) = {v ∈ O s.t. v = argmax

z∈O
#votes(z,Gu

I , e)}. (6)

We use a Jaccard index to assess the similarity between two majority votes
x and y. Hence, simvoting : 2O × 2O → [0, 1] is defined as follows.

simvoting(x, y) =
|x ∩ y|
|x ∪ y| . (7)

3.4 Discussion

Above we introduced simple outcome aggregating functions and similarities
that can be used to build an IAS measure to assess how similar two groups of
individuals are. More sophisticated measures can be considered. For instance,
in behavioral datasets with categorical outcomes, one can define an outcome
aggregation measure which takes the empirical distribution of votes into ac-
count and then a similarity measure which builds up on a statistical distance
(e.g., Kullback-Leibler divergence (Csisz et al, 1967; Johnson and Sinanovic,
2001)). Such measures can also be used on behavioral datasets which involves
numerical outcomes, for instance the Earth Mover Distance measure was in-
vestigated in similarly structured datasets (rating datasets) in (Amer-Yahia
et al, 2017). Several other measures can be relevant to analyze behavioral
data with numerical outcomes depending on the aim of the study. In Sec-
tion 6, “empirical study”, we investigate another IAS measure which relies
on a ratio to highlight discrepancies between the medicine consumption rates
of two subpopulations.

4 A Branch-and-Bound Algorithm for Mining Relevant
(Dis)Agreement Patterns

In this section, we present DEBuNk, a branch-and-bound algorithm that solves
the problem outlined in Section 2. To this end, DEBuNk uses an exhaus-
tive search strategy that exploits properties of closure operators to enumerate
groups and contexts in a systematic manner and without redundancy. This
allows the exploration of the complete search space, at least conceptually, by
confronting all pair of groups (u1, u2) ∈ DI × DI in every possible context
c ∈ DE . To speed up this exploration process while ensuring completeness,
it is necessary to identify areas of the search space that cannot lead to the
discovery of interesting patterns (i.e. patterns whose qualities are above the
minimum quality threshold σϕ). This is where optimistic estimates for the
used quality measures are needed, since they provide an upper bound on the
maximum possible quality measurement that a pattern can observe in each
sub-search space. Algorithm 1 outlines the different ingredients of DEBuNk
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Algorithm 1: PseudoDEBuNk(〈GI , GE , O, o〉,σE ,σI ,ϕ,σϕ)

Inputs : 〈GI , GE , O, o〉 a behavioral dataset;
σE (resp. σI) minimum support threshold of a context (resp. group);
ϕ the quality measure; σϕ quality threshold on the quality.

Output: P the set of exceptional (dis)agreement patterns.
1 P ← ∅
2 foreach pair of groups (u1, u2) ∈ DI ×DI do
3 foreach context c ∈ DE do
4 Evaluate the quality of the pattern ϕ(c, u1, u2)
5 if the pattern is interesting (i.e. ϕ(c, u1, u2) ≥ σϕ) then
6 Update P with (c, u1, u2)
7 else
8 Evaluate the optimistic estimate oe(c, u1, u2)
9 if oe(c, u1, u2) < σϕ then

10 Prune the sub-search space (backtrack).

11 return P

and explains how they are combined to compute the complete set of excep-
tional (dis)agreement patterns.

From Algorithm 1, we see that the main ingredients of DEBuNk basically
consists of:

1. Enumerating candidate patterns (lines 2− 3): Efficiently enumerating
candidate patterns in the whole search space P = DE × DI × DI is a
crucial part of DEBuNk. We give in Section 4.1 an overview of how the
search space is structured and its main properties that one can leverage
for an efficient enumeration of candidate patterns. We then pay particular
attention to hierarchical multi-tag attributes in Section 4.2.

2. Evaluating the quality of candidate patterns (lines 4−6) : Section 3
already discussed how the quality of patterns is assessed by capturing the
deviation between the usual inter-group agreement and the contextual one
using IAS measures (see Definition 9).

3. Pruning unpromising areas of the search space (lines 7−10): For a
more efficient exploration, one need to safely discard, as early as possible,
unpromising parts of the search space. To this end, we define optimistic
estimates for the proposed quality measures in Section 4.3.

Once these ingredients are properly defined, we introduce, in Section 4.4,
Algorithm DEBuNk which efficiently computes the complete set of exceptional
(dis)agreement patterns.

4.1 Enumerating Candidate Subgroups

Exploring the space of (dis)agreement patterns from DE × DI × DI is equiv-
alent to enumerating descriptions in DE and DI concurrently. Therefore, we
explain how to enumerate descriptions for an arbitrary collection of records G
associated to an arbitrary descriptions space D.
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Recall that several descriptions are considered to be equivalent when they
characterize the same subset S ⊆ G. This may cause redundancy which we
want to avoid. Focusing on closed descriptions enables to only retain in the
results set the unique maximal element w.r.t. ⊑ – identified by clo(d) – of each
equivalence class ċ = {d ∈ D s.t. Gc = Gd} (Ganter and Wille, 1999).

We need to introduce some basic notions to define the operator clo(d).
Similarly to (Ganter and Kuznetsov, 2001), we define a mapping function δj(s)
which provides a condition describing the value v of attribute aj . This clearly
depends on the type of aj . δj(s) is of the form (aj = v) (resp. (aj ∈ [v..v]))
if aj is a categorical (resp. numerical) attribute. Applying such mappings to
all attributes leads to the tightest (maximal) description of a record g ∈ G:
δ(s) = 〈δ1(g), ..., δm(g)〉. Given these mappings, the subgroup associated to a
description d can be defined formally as such Gd = {g ∈ G s.t. d ⊑ δ(g)}.

Extending the definition of δ to subsets S ⊆ G characterizes a subset with
the maximum common description of its elements:

δ(S) =
󰁡

g∈S

δ(g) = 〈 ∧1
g∈S

(δ1(g)), ...,∧m
g∈S

(δm(g))〉. (8)

δ(S) requires to compute a conjunction9
󰁙

j of conditions related to each
attribute aj . Using the aforementioned concepts, the closure operator can be
defined as clo(d) = δ(Gd). This results from the fact that □d and δ(□) form
a pair of Galois derivation operators between 2G and (D,⊑) providing as a
consequence a closure operator δ(□d)(Ganter and Kuznetsov, 2001).

Algorithm 2, called EnumCC (Enumerate Closed Candidates), first intro-
duced in (Belfodil et al, 2017), enumerates once and only once all the closed
descriptions that fulfill the support constraint |Gc| ≥ σG with σG a user de-
fined support threshold similarly to the ClosebyOne (Kuznetsov and Obiedkov,
2002) algorithm and the divide-and-conquer (Boley et al, 2010b) algorithm.

Algorithm 2: EnumCC(G, d, σG, f, cnt)

Inputs : G is the collection of records depicted each by m descriptor attributes
d a description from D, σG a support threshold,
f ∈ [1,m] a refinement flag, cnt a boolean

Output: yields all closed descriptions, i.e. clo[D] = {clo(d) s.t. d ∈ D}
1 if |Gd| ≥ σ then
2 closure d ← δ(Gd)
3 if d ⋖f closure d then
4 cnt c ← copy(cnt) ⊲ cnt c value can be modified by a caller algorithm
5 yield (closure d, Gclosure d, cnt c) ⊲ yield the results and wait for next call
6 if cnt c then
7 foreach j ∈ [f,m] do
8 foreach d′ ∈ ηj(closure d) do
9 foreach (nc, Gnc, cnt nc) ∈ EnumCC(G, d′,σG, j, cnt c) do

10 yield (nc, Gnc, cnt nc)

9(aj ∈ [v1..w1]) ∧j (aj ∈ [v2..w2])=aj ∈ [min(v1, v2)..max(w1, w2)] for numerical attributes.
For categorical attributes (aj =v1) ∧j (aj =v2) = v1 if v1=v2 else truej .
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EnumCC, initially called with the following inputs EnumCC(G, ∗,σ, 1, true),
explores the search space D in a depth-first search manner starting from the
most general description 〈truea1 , . . . , trueam〉, denoted ∗. It proceeds by atomic
refinements to progress, step by step, toward more specific descriptions. In-
tuitively, an atomic refinement of a description d produces a more specific
description d′ by reinforcing the condition of one attribute only. Such descrip-
tions are provided by a refinement operator denoted η : D → 2D which returns
η(d) the collection of neighbor descriptions d′, i.e. η(d) = {d′ ∈ D s.t. d ⊏
d′ ∧ ∄e ∈ D, d ⊏ e ⊏ d′}. η can be built up by defining a refinement operator
ηj for conditions related to each attribute aj ∈ A. For numerical attributes, an
atomic refinement corresponds to a left-minimal (resp. right-minimal) change
w.r.t. existing values of the attribute aj in Gd, that is aj ∈ [nextGd(inf)..sup]
(resp. aj ∈ [inf..predGd(sup)]) on the interval bounds of the condition (Kay-
toue et al, 2011). An empty resulting interval means that there is no possible
refinement. Considering a categorical attribute, the atomic refinement of a
condition trueaj gives a condition of the form aj = v ∈ dom(aj). Otherwise, a
condition of the form aj = v does not admit any refinement.

Given a description d, EnumCC first computes Gd. If the support con-
straint is fulfilled (line 1), the closure of d is computed (line 2). Subsequently,
a canonicity test between clo(d) and d is assessed (line 3). It enables to deter-
mine whether a description after closure was already generated and to discard
it, if appropriate. The canonicity test relies on an arbitrary order between
attributes in AG = {a1, a2, ..., am} indicating that, in the enumeration pro-
cess, attributes’ conditions are refined following this arbitrary order. Let d =
〈r1, ..., rf , ..., rm〉 be a description resulting from the refinement of the f th con-
dition of some preceding description, and d′ = 〈r′1, ..., r′f , ..., r′m〉 = clo(d) the
closure of d. Following the arbitrary order, we expect for d′, if it is the first time
that it is encountered, that no condition before r′f (i.e. r′1, ..., r

′
f−1) is refined;

otherwise, clo(d) was already generated after a refinement of preceding condi-
tions and has thus to be discarded. This canonicity test is based on lectic order
(cf. (Ganter and Wille, 1999, p.66-68)) between d and its closure d′ denoted
d⋖f d

′ which is defined as follows: d⋖f d
′ ↔ ∀i ∈ [1..f −1], ri = r′i ∧ rf ⋖ r′f .

The latter condition, rf ⋖ r′f , corresponds to an analogous canonicity test be-
tween conditions and makes sense for multi-valued attributes types only (e.g.,
HMT in Section 4.2). It does not need to be calculated for simple attributes
(numerical, categorical). If the canonicity test is successful (line 3), clo(d) is
returned as a valid closed candidate (line 5). The algorithm then generates
the neighbors by refining the attributes {af , ..., an} from d on the condition
that cnt c is not switched to False (lines 6-8). Flag f determines the index
of the last attribute that was refined in the description d. Boolean cnt c can
be modified externally by some caller algorithm to prune the search space, for
instance, when using optimistic estimates. Eventually, a recursive call is done
to explore the sub search space related to d (lines 9-10).
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4.2 Hierarchical Multi-Tag Attribute (HMT)

Vote and review datasets often contain multi-tagged records whose tags are
part of a hierarchical structure. For instance, voting sessions in the EU parlia-
ment can have multiple tags. For example, procedure Gender mainstreaming
in the work of the EU Parliament is tagged by 4.10.04-Gender equality and
8.40.01-EU Parliament. Tag 4.10.04 is identified in a a hierarchy as a special-
ization of tag 4.10 that depicts Social policy and which is itself a specialization
of tag 4 that covers all the sessions related to Economic, social and territorial
cohesion. We formally define this type of attribute named HMT.

Definition 10 (HMT Attribute) Let T = {t1, t2 . . . tk} ∪ {∗} be a set of
values (also called tags), < be a partial order over T inducing a tree structure
(T,<) whose root is ’∗’. ti < tj denotes the fact that tj is a descendant of
ti in T . In addition, the ascendants (resp. descendants) of a tag t ∈ T is
↑ t = {t′ ∈ T s.t. t′ ≤ t} (resp. ↓ t = {t′ ∈ T s.t. t′ ≥ t}).
A HMT attribute aj takes its values in dom(aj) = 2T .

As an example, Fig. 2b describes G, a set of tag records defined by a unique
attribute tags. Elements of tags are organized through the tree from Fig. 2a.
We have ∗ < 1 < 1.20 and ↑ 1.20 = {1.20, 1, ∗}.

For a HMT attribute aj , each record g ∈ G is mapped by δj(g) to its
corresponding tightest set of tags in dom(aj). If δj(g) = {t1, ..., tn}, the record
g is tagged explicitly by all the tags tk for k ∈ [1, n] and also implicitly by
all their generalizations ↑ tk. Figure 2c illustrates this by reporting the flat
representation of the collection of tagged records depicted in Figure 2b. It
follows that a condition over a HMT attribute is defined as follows:

Definition 11 (Condition on a HMT attribute) (extends Definition 2)
Let G be a collection defined over the schema A = {a1, ..., am}.
– If aj is a HMT attribute then condition rj is a superset test of the form

aj ⊇ χ with χ ∈ dom(aj) .

Accordingly, a HMT condition can be depicted by a rooted sub-tree of T
and a record supports such a condition if it contains at least all tags of the
sub-tree. It follows that, the partial order between two HMT conditions r, r′

denoted r ⊑ r′ (r′ is a specialization r) is valid if the sub-tree r covers the
sub-tree r′. i.e. , r ⊑ r′ means ∀t ∈ r, ∃t′ ∈ r′, t′ ∈ ↓ t.

*

1 2 3

1.10 1.20 2.10

(a) Tree of tags - T

tags

g1 {1.20, 2.10}
g2 {1, 3}
g3 {1.10, 2.10, 3}
g4 {2.10}
g5 {1.20}

(b) Tagged records

∗ 1 1.10 1.20 2 2.10 3

g1 × × × × ×
g2 × × ×
g3 × × × × ×
g4 × × ×
g5 × × ×

(c) Flat representation

Fig. 2: A collection of records labeled each by a set of tags and its flat representation.
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*

1 2 3

1.10 1.20 2.10 (r)

∧

*

1 2 3

1.10 1.20 2.10 (r′)

=

*

1 2 3

1.10 1.20 2.10 (r ∧ r′)

Fig. 3: Illustration of the conjunction operator ∧ between two HMT descriptions.

Two ways are possible to take this attribute into account in the enu-
meration of descriptions from the complex search space aforementioned. One
straightforward solution is to consider HMT attribute values as itemsets as
depicted in the vector representation in Fig. 2c. However, such a solution ig-
nores the taxonomy T implying the enumeration of chain descriptions. For
instance, a chain description {1, 1.20.01} is regarded as a different description
than {1.20.01}. This stems from the fact that items are unrelated from the
viewpoint of itemsets solution. As a consequence, a larger search space is ex-
plored while determining the same number of closed descriptions. To tackle
this issue, we define a HMT description language.

Similarly to the aforementioned attributes, we define the conjunction oper-
ator ∧ between two conditions which computes the maximum common sub-tree
covering a set of conditions. Let r = {t1, ..., tn} and r′ = {t′1, ..., t′m} be two
HMT conditions, r ∧ r′ = max(∪t∈r ↑ t ∩ ∪t′∈r′ ↑ t′) where max : 2T → 2T

maps a subset of tags s ⊆ T to the leafs of the sub-tree induced by s:
max(s) = {t ∈ s s.t. (↓ t \ {t}) ∩ s = ∅}. Intuitively, r ∧ r′ is the set of
the maximum explicit and implicit tags shared by the two descriptions (cf.
Fig. 3).

Moreover, we define an atomic refinement operation which enables calcu-
lating neighbors of a HMT condition r. A condition r′ is said to be a neighbor
of r if: either only one tag of r is refined in r′ or a new tag is added in r′ that
shares a parent with a tag in r or with one of its ascendants.

Finally, we define the lectic order between two conjunctions of tags r =
{t1, ..., tn} and its closure r′ = {t′1, ..., t′n, ..., t′m} for the canonicity test to
avoid the enumeration of already visited descriptions. Let r be generated after
a refinement of the f th tag, the lectic order is defined as: r ⋖f r′ ⇔ ∀i ∈
[1..f − 1] : ti = t′i ∧ tf ⋖ t′f . The linear order ⋖ between tags can be provided
by a depth first search order on T . These concepts being defined, the mapping
function δ can be extended easily to handle HMT among other attributes. Note
that HMT supports itemsets. This can be done simply by considering a flat
tree T with all the items as leaves. Hence, HMT can be seen as a generalization
of itemsets, where implications between items are known.

4.3 Optimistic Estimates on Quality Measures

The enumeration of closed patterns enables a non-redundant traversal of the
search space. For a more efficient exploration, we follow a branch and bound
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scheme to discard unpromising parts of the search space. This requires the
definition of safe pruning properties leveraging optimistic estimates on ϕ.

Let u1, u2 be two descriptions from DI that respectively cover the two
groups Gu1

I , Gu2

I . We consider optimistic estimates only with regards to the
search spaceDE . We assume that u1 and u2 are instantiated a priori. Moreover,
without loss of generality, we assume that the input domains of oe and ϕ are
defined over both the pattern space P and 2GE × 2GI × 2GI . This is possible,
since the quality measure only depends on extents (cf. Section 2). Below, we
give the definition of an optimistic estimate (Grosskreutz et al, 2008).

Definition 12 (Optimistic Estimate) An optimistic estimate oe for a given
quality measure ϕ is a function such that:

∀ contexts c, d ∈ DE . c ⊑ d ⇒ ϕ(Gd
E , G

u1

I , Gu2

I ) ≤ oe(Gc
E , G

u1

I , Gu2

I ).

Tight optimistic estimates, defined in (Grosskreutz et al, 2008), offer more
pruning abilities than simple optimistic estimates.

Definition 13 (Tight Optimistic Estimate) An optimistic estimate oe is
tight iff: ∀c ∈ DE . ∃S ⊆ Gc

E : oe(Gc
E , G

u1

I , Gu2

I ) = ϕ(S,Gu1

I , Gu2

I ).10

4.3.1 Lower Bound and Upper Bound for the IAS Measure

The two quality measures ϕconsent and ϕdissent rely on the IAS measure. Since
u1 and u2 are considered to be instantiated for optimistic estimates, we can
rewrite the IAS measure for a context c ∈ DE and its extent Gc

E :

IAS(Gc
E , G

u1

I , Gu2

I ) =

󰁓
e∈Gc

E

we × α(e)

󰁓
e∈Gc

E

we
with

󰀫
α(e) = sim(θ(Gu1

I , e), θ(Gu2

I , e))

we = w(e,Gu1

I , Gu2

I )
.

(9)
We can now define a lower bound LB and an upper bound UB for the

IAS measure based on the following operators that are defined for any context
c ∈ DE and for n ∈ N:

– m(Gc
E , n) = Loweste∈Gc

E
({we×α(e) s. t. e ∈ Gc

E}, n) returns the set of the
n distinct records e from Gc

E having the lowest values of we × α(e).

– M(Gc
E , n) = Higheste∈Gc

E
({we × α(e) s. t. e ∈ Gc

E}, n) returns the set of

the n distinct records e from Gc
E having the highest values of we × α(e).

– mw(Gc
E , n) = Loweste∈Gc

E
({we s. t. e ∈ Gc

E}, n) returns the set of the n
distinct records e from Gc

E having the lowest values of we.

– Mw(Gc
E , n) = Higheste∈Gc

E
({we s. t. e ∈ Gc

E}, n) returns the set of the n
distinct records e from Gc

E having the highest values of we.

10Note that this does not require S to have a corresponding description in DE .
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Proposition 1 (Lower bound LB for IAS) we define function LB as:

LB(Gc
E , G

u1

I , Gu2

I ) =

󰁓
e∈m(Gc

E ,σE) we × α(e)
󰁓

e∈Mw(Gc
E ,σE) we

. (10)

For any context c (corresponding to a subgroup Gc
E), LB provides a lower

bound for IAS w.r.t. contexts with σE a minimum context support threshold:

∀c, d ∈ DE . c ⊑ d ⇒ LB(Gc
E , G

u1

I , Gu2

I ) ≤ IAS(Gd
E , G

u1

I , Gu2

I ).

Proposition 2 (Upper bound UB for IAS) we define function UB as:

UB(Gc
E , G

u1

I , Gu2

I ) =

󰁓
e∈M(Gc

E ,σE) we × α(e)
󰁓

e∈mw(Gc
E ,σE) we

. (11)

For any context c, UB provides an upper bound for IAS w.r.t. contexts. i.e.

∀c, d ∈ DE . c ⊑ d ⇒ IAS(Gd
E , G

u1

I , Gu2

I ) ≤ UB(Gc
E , G

u1

I , Gu2

I ).

Now that both the lower bound and the upper bound of IAS are defined
w.r.t. contexts, we define the optimistic estimates corresponding to ϕconsent

and ϕdissent. The proofs of the propositions are given in Appendix A.

4.3.2 Optimistic Estimates for Quality Measures

Proposition 3 (Optimistic estimate for ϕconsent and ϕdissent) oeconsent
(resp. oedissent) is an optimistic estimate for ϕconsent (resp. ϕdissent) with:

oeconsent(G
c
E , G

u1

I , Gu2

I ) = max(UB(Gc
E , G

u1

I , Gu2

I )− IAS(GE , G
u1

I , Gu2

I ), 0).
(12)

oedissent(G
c
E , G

u1

I , Gu2

I ) = max(IAS(GE , G
u1

I , Gu2

I )− LB(Gc
E , G

u1

I , Gu2

I ), 0).
(13)

The two defined optimistic estimates are tights if IAS is a simple average.

Proposition 4 If ∀({e}, Gu1

I , Gu2

I ) ⊆ GE × GI × GI : w(e,Gu1

I , Gu2

I ) = 1,
oeconsent (oedissent) is a tight optimistic estimate for ϕconsent (ϕdissent).

4.4 Algorithm DEBuNk

DEBuNk is a Branch-and-Bound algorithm which returns the complete set of
patterns as specified in the problem definition (Section 2). DEBuNk follows
the same guidelines given in Algorithm PseudoDEBuNk (see Algorithm 1). For
an efficient exploration, it exploits the defined closure operator and optimistic
estimates. Relying on algorithm EnumCC, DEBuNk starts by generating the
couples of confronted groups of individuals that are large enough w.r.t. σI

(lines 2-3). Then it computes the usual agreement observed between these two
groups of individuals when considering all entities in GE (line 4). Next, the
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context search space is explored to generate valid contexts c (line 5). Subse-
quently, the optimistic estimate oe is evaluated and the context sub search
space is pruned if oe is lower than σϕ (lines 7-8). Otherwise, the contextual
inter-group agreement is computed and the quality measure is calculated (lines
9-10). If the pattern quality exceeds σϕ, two scenarios are possible. Either the
current pattern set P already contains a more general pattern, or it does not.
In the former case, the pattern is discarded. In the latter, the newly gener-
ated pattern is added to pattern set P while removing all previously generated
patterns whose extents are included in the extent of p (lines 11-14). Since the
current pattern quality exceeds the threshold and all the remaining patterns
in the current context sub search space have their extents included in the
extent of the current one, the sub search space is pruned (line 15). Eventu-
ally, in the case that the quality measure is symmetric w.r.t. u1 and u2 (i.e.
∀u1, u2 ∈ D2

I , ϕ(c, u1, u2) = ϕ(c, u2, u1)) there is no need to evaluate both
qualities. It is therefore possible to prune the sub search space of the couple
descriptions (u1, u2) whenever u1 = u2 (lines 16-17).

DEBuNk and DSC algorithm (Belfodil et al, 2017) differ on several levels.
First, DEBuNk overcomes the lack of diversity of results provided by DSC
which was designed to discover the top-k solutions. The proposed algorithm
discards all patterns for which a generalization w.r.t. extents is already a so-
lution. Second, DEBuNk handles a wider range of bounded quality measures
(i.e. weighted mean IAS) in contrast to DSC algorithm. Finally, DSC requires
the prior definition of an aggregation level which makes it difficult to use and
interpret. DEBuNk overcomes this issue by reducing the number of input pa-
rameters and integrating relevancy checks between patterns. Hence, it requires
less effort from the end-user both in terms of setting the parameters, and in
terms of interpreting the quality of the patterns.

Algorithm 3: DEBuNk(〈GI , GE , O, o〉,σE ,σI ,ϕ,σϕ)

Inputs : 〈GI , GE , O, o〉 a behavioral dataset;
σE (resp. σI) minimum support threshold of a context (resp. group);
ϕ the quality measure; σϕ quality threshold on the quality.

Output: P the set of exceptional (dis)agreement patterns.
1 P ← {}
2 foreach (u1, G

u1
I , cont u1) ∈ EnumCC(GI , ∗,σI , 0,True) do

3 foreach (u2, G
u2
I , cont u2) ∈EnumCC(GI , ∗,σI , 0,True) do

4 IASref ← IAS(∗, u1, u2)
5 foreach (c,GE , cont c) ∈ EnumCC(Gc

E , ∗,σE , 0,True) do
6 if oeϕ(c, u1, u2) < σϕ then
7 cont c ← False ⊲ Prune the unpromising sub-search space under c
8 else
9 IAScontext ← IAS(c, u1, u2)

10 quality ← ϕ(c, u1, u2) ⊲ computed using IASref and IAScontext

11 if quality ≥ σϕ then
12 pnew ← (c, u1, u2)
13 if ∄pold ∈ P | ext(pnew) ⊆ ext(pold) then
14 P ← (P ∪ pnew) \ {pold ∈ P | ext(pold) ⊆ ext(pnew)}
15 cont c ← False ⊲ Prune the sub search space

16 if ϕ is symmetric and u1 = u2 then
17 break ⊲ Prune the sub search space

18 return P
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5 Sampling (Dis)Agreement Patterns

DEBuNk returns the exact solutions according to the problem definition. Al-
though it relies on the enumeration of closed descriptions and pruning tech-
niques, such an exploration may take a considerable time depending on the
size and the complexity (i.e. attributes types) of the behavioral data. To ad-
dress this concern, we devise a (dis)agreement pattern sampling approach
called Quick-DEBuNk. It enables instant mining of (dis)agreement patterns
by yielding approximate solutions that improve over time. Quick-DEBuNk
follows almost the same guidelines given in Algorithm PseudoDEBuNk (see
Algorithm 1), while Quick-DEBuNk adopt a sampling strategy instead of enu-
merating candidate patterns (Ingredient 1), it uses the same ingredients to
evaluate the quality of patterns (Ingredient 2) and to prune unpromising areas
of the search space (Ingredient 3). To sample the candidate patterns, Quick-
DEBuNk relies on two major steps as depicted in Fig. 4:

Frequency-Based Sampling (Step 1). A (dis)agreement pattern p ∈ P is
drawn with a probability proportional to the size of its extent (i.e. |ext(p =
(c, u1, u2))| = |Gc

E |× |Gu1

I |× |Gu2

I |). The key insight is to provide a greater
chance to patterns supported by larger groups and contexts which are less
likely to be discarded by more general ones generated by future iterations.
This technique is inspired by the direct frequency-based sampling algorithm
proposed in (Boley et al, 2011) which considers only Boolean attributed
datasets. Here, this method is extended to handle more complex data with
HMT, categorical and numerical attributes.

Random Walk on Contexts (Step 2). Starting from a context obtained
in step 1, a random walk traverses the search tree corresponding to the
contexts description space DE . We introduce some bias to fully take ad-

Minimum support 
threshold Individuals 

Search Space DI

Contexts Search 
Space DE

u1

contexts c forming interesting
patterns (c,u1,u2)

Sampled groups 
of  individuals 

Local sub-search space 
corresponding to the 
sampled context c

Step 1 : Sampling patterns satisfying cardinality constraints (FBS) Step 2 : Random Walk on Contexts (RWC)

Selected context to 
refine in a random 
walk process iteration

Interesting pattern p
found by Quick-DEBuNk

Sampled context c to expand

u2

Confronted
groups

Fig. 4: Quick-DEBuNk approach in a nutshell
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vantage of the devised quality measures and the optimistic estimates , this
being done to reward high quality patterns by giving them more chance to
be sampled by the algorithm.

5.1 Frequency-Based Sampling (Step 1)

To sample patterns of the form p = (c, u1, u2), we aim to draw description
c, respectively u1 and u2, from description space DE , respectively DI , with
a probability proportional to their respective support size. To this end, we
devise the algorithm FBS (Frequency-Based Sampling, cf. Algorithm 4). FBS
generates a description d from an arbitrary description space D (i.e. DE , DI

in practice) with a probability proportional to the size of its support.

Proposition 5 A description d ∈ D has a probability of being generated by

FBS equal to P(d) = Gd

󰁓
d′∈D |Gd′ | (see Appendix A for proofs).

In the following, for any d ∈ D, ↓ d denotes the set of all descriptions
subsuming d, i.e: ↓d = {d′ ∈ D s.t. d′ ⊑ d}. Since D11= D1 ×D2 × ...×Dm, it
follows that: ↓d =↓〈r1, r2, ..., rm〉 =↓ r1× ↓ r2 × ...× ↓ rm, where ↓rj is the set
of conditions less specific than (implied by) rj in the conditions space Dj .

To achieve the property defined in Proposition 5, FBS performs two steps
following the reasoning of Boley et al (2011):

Step 1.1 (line 1): FBS starts by drawing a record g from G with a probability
proportional to the number of descriptions d ∈ D covering g (i.e: ↓ δ(g)).
To enable this, each record g is weighted by wg = | ↓ δ(g)|. Knowing that
δ(g) = 〈rg1 , ..., rgm〉, the weight wg = | ↓ δ(g)| =

󰁔
j∈[1,m] | ↓ rgj | is the

product of the numbers of conditions subsuming each rgj . The size of | ↓r
g
j |

depends on the type of the related attribute aj
12.

Step 1.2 (line 2): Given g, the record returned from the first step and its
corresponding description δ(g) = 〈rg1 , ..., rgm〉, FBS uniformly generates a
description d from the set of descriptions covering g, that is ↓δ(g). This can
be done by uniformly drawing12 conditions rj from ↓ rgj , hence returning
a description d = 〈r1, ..., rm〉. This comes from the fact that ∀j ∈ [1,m] :
P(rj) = 1

|↓rgj |
:

Algorithm 4: FBS(G)

Input: G a collection of records which may be GE or GI
Output: a description d from D which may be DE or DI

1 draw g ∽ (wg = | ↓δ(g)|) from G ⊲ Step 1.1
2 draw d ∽ uniform(↓δ(g)) ⊲ Step 1.2
3 return d

11Cartesian product of the m lattices related to the attributes’ conditions spaces forms a
lattice (Roman, 2008)
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P(d|g) =
󰁜

j∈[1,m]

P(rj) =
1

󰁔
j∈[1,m] | ↓ rgj |

=
1

|
󰁔

j∈[1,m] ↓ rgj |
=

1

| ↓ δ(g)|
. (14)

FBS algorithm makes it possible to generate valid patterns p = (c, u1, u2)
from the pattern space P = DE ×DI ×DI . This is achieved in the first step of
Quick-DEBuNk (lines 3-6 in Algorithm 6) by sampling two group descriptions
u1, u2 from DI and a context c from DE followed by assessing if the three
descriptions satisfy the cardinalities constraints C (min. support thresholds).

Proposition 6 Given C, every valid pattern p is reachable by the first step of
Quick-DEBuNk: ∀p ∈ P, p satistifies C ⇒ P(p) > 0 (Proofs in Appendix A)

Step 1 of Quick-DEBuNk does not favor the sampling of high quality pat-
terns as it does not involve an exploitation phase. The random walk process on
contexts used in Step 2 enables a smarter traversal of the search space while
taking into account the devised quality measures and optimistic estimates.

5.2 RWC - Random Walk on Contexts (Step 2)

RWC (Algorithm 5) enumerates contexts of the search space DE while con-
sidering closure and optimistic estimates. RWC takes as input two confronted
groups u1,u2 for which it looks for relevant contexts following a random walk
process starting from a context c. Mainly, RWC has two steps that are recur-
sively executed until a terminal node is reached. RWC starts by generating
all neighbors d of the current context c (line 2). Next, RWC assesses whether
the size of the corresponding support Gc

E and the optimistic estimates respec-
tively exceed the support threshold σE and the quality threshold σϕ (line 3). If

Algorithm 5: RWC(〈GI , GE , O, o〉, c, u1, u2,σE ,ϕ,σϕ)

Inputs : 〈GI , GE , O, o〉 a behavioral dataset; c the current context;
(u1, u2) couple of confronted group descriptions;
σE threshold on support; ϕ the quality measure; σϕ quality threshold.

Output: yield valid patterns (c, u1, u2)
1 NtE ← {}
2 foreach d ∈ η(c) do

3 if |Gd
E | ≥ σE and oeϕ(d, u1, u2) ≥ σϕ then

4 closure d ← δ(Gd
E)

5 if ϕ(d, u1, u2) ≥ σϕ then
6 yield closure d
7 else
8 NtE ← NtE ∪ {d}
9 if NtE ∕= ∅ then

10 draw next ∽ ϕ(next, u1, u2) from NtE
11 foreach cnext ∈ RWC(〈GI , GE , O, o〉, next,σE ,ϕ,σϕ, u1, u2) do
12 yield cnext

13For the sake of brevity and clarity, the reader is referred to (Belfodil et al, 2019) for
technical details about the computation of | ↓rgj | and the uniform sampling of conditions

rj from ↓rgj for each attribute aj .
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appropriate, the closed description d is computed (line 4). The algorithm pro-
ceeds by evaluating the quality of the pattern (line 5). If the quality exceeds the
threshold σϕ, the pattern is valid and is hence returned (line 6). Otherwise, the
pattern is added to NtE (Neighbors to be Explored) (line 8) as its related sub
search space may contain interesting patterns (i.e oeϕ(d, u1, u2) ≥ σϕ). The
second step of RWC consists of selecting a neighbor from NtE to be explored
with a probability proportional to its quality (lines 10 − 12). This process is
recursively repeated until a terminal node is reached (i.e. NtE = ∅).

5.3 Quick-DEBuNk

Quick-DEBuNk (Algorithm 6) samples patterns from the full search space
DE×DI×DI . It is based on FBS and RWC. It takes as input the same param-
eters as DEBuNk in addition to a timebudget. It starts by generating a couple
of closed group descriptions of individuals u1, u2 that fulfill the cardinality
constraints (lines 3− 5) using FBS. Next, Quick-DEBuNk generates a context
while only considering entities having a quality greater than the threshold σϕ

(line 6). The reason behind considering only G
≥σϕ

E is clear: we have ∀p ∈ P
p satisfies C and ϕ(p) ≥ σϕ ⇒ ∃e ∈ Gc

E s.t. ϕ({e}, Gu1

I , Gu2

I ) ≥ σϕ (since
the quality measure is a weighted mean). If the context fulfills the cardinality
constraint and its evaluated optimistic estimate is greater than the quality
threshold (line 7), the algorithm then evaluates the quality of the sampled
pattern (line 8). If this quality is greater than the threshold σϕ, the pattern

Algorithm 6:Quick-DEBuNk(〈GI , GE , O, o〉,σE ,σI ,ϕ,σϕ,timebudget)

Inputs : 〈GI , GE , O, o〉 a behavioral dataset;
σE (resp. σI) minimum support threshold of a context (resp. group);
ϕ the quality measure; σϕ threshold on the quality;
timebudget the maximum amount of time given to the algorithm.

Output: P the set of sampled exceptional (dis)agreement patterns
1 P ← {}
2 while executionTime < timebudget do
3 u1 ← clo(FBS(GI))
4 u2 ← clo(FBS(GI))

5 if |Gu1
I | ≥ σI ∧ |Gu2

I | ≥ σI then

6 c ← clo(FBS(G
≥σϕ
E )) ⊲ G

≥σϕ
E = {e ∈ GE s.t. ϕ({e}, Gu1

I , G
u2
I ) ≥ σϕ}

7 if |Gc
E | ≥ σE ∧ oeϕ(c, u1, u2) ≥ σϕ then

8 if ϕ(c, u1, u2) ≥ σϕ then
9 pnew ← (c, u1, u2)

10 if ∄pold ∈ P s. t. ext(pnew) ⊆ ext(pold) then
11 P ← (P ∪ pold) \ {pold ∈ P s. t. ext(pold) ⊆ ext(pnew)}
12 else
13 foreach d ∈ RWC(〈GI , GE , O, o〉, c, u1, u2,σE ,ϕ,σϕ) do
14 pnew ← (d, u1, u2)
15 if ∄pold ∈ P s. t. ext(pnew) ⊆ ext(pold) then
16 P ← (P ∪ pnew) \ {pold ∈ P s. t. ext(pold) ⊆ ext(pnew)}
17 else
18 break
19 if executionTime ≥ timebudget then
20 return P

21 return P
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is added to the resulting pattern set if and only if its extent is not included
in an extent of an already found pattern (lines 9− 11). Otherwise, a random
walk is launched starting from context c (line 13). This is done by relying on
RWC. The algorithm continues by updating the resulting pattern set P with
each pattern pnew returned by RWC, as long as there is no pattern pold in P
whose extent includes the extent of pnew (lines 14 − 16). Otherwise, RWC is
interrupted (line 18). The process is repeated as long as the time budget allows.

6 Empirical Study

In this section, we report on both quantitative and qualitative experiments
over the implemented algorithms. For reproducibility purposes, source code
(in Python) and data are made available on a companion page13.

6.1 Aims and Datasets

The experiments aim to answer the following questions:

– Do the algorithms provide interpretable patterns?
– How effective is DEBuNk compared to state-of-the-art algorithms?
– Are the closure operators and optimistic estimate based pruning, efficient?
– How effective is HMT closed description enumeration?
– Does DEBuNk scale w.r.t. different parameters?
– How effective is Quick-DEBuNk at sampling patterns?

Most of the experiments were carried out on four real-world behavioral
datasets whose main characteristics are given in Table 2. Each dataset involves
entities and individuals described by an HMT (H) attribute together with
categorical(C) and numerical(N) ones.

EPD8 14 features voting information of the eighth European Parliament
about the 958 members who were elected in 2014 or after. The dataset
records 2.7M tuples indicating the outcome (For, Against, Abstain) of a
member voting during one of the 4161 sessions. Each session is described
by its themes (H), a voting date (N) and the organizing committee (C).
Individuals are described by a national party (C), a political group (C), an
age group (C), a country(C) and additional information about countries
(date of accession to the European Union (N) and currency (C)). To an-
alyze (dis)agreement patterns in this dataset, we consider IASvoting which
is defined by using θmajority and simvoting.

Movielens15 is a movie review dataset (Harper and Konstan, 2016) con-
sisting of 100K ratings (ranging from 1 to 5) expressed by 943 users on

13https://github.com/Adnene93/DEBuNk, last access on October 25, 2019.
14https://parltrack.org/, last access on October 15, 2019.
15https://grouplens.org/datasets/movielens/100k/, last access on April 24, 2017.

https://github.com/Adnene93/DEBuNk
https://parltrack.org/
https://grouplens.org/datasets/movielens/100k/
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1681 movies. A movie is characterized by its genres (H) and a release date
(N), while individuals are described with demographic information such as
age group (C), gender (C) and occupation (C). To handle the numerical
outcomes, we use the measure IASrating which relies on θwavg and simrating.

Yelp16 is a social network dataset featuring individuals who rate (scores
ranging from 1 to 5) places (stores, restaurants, clinics) characterized by
some categories (H) and a state (C). The dataset originally contains 1M
users. We preprocessed the dataset to constitute 18 groups of individu-
als based on the size of their friends network (C), their seniority (C) in
the platform and their account type (e.g., elites or not) (C). We also use
IASrating measure in this dataset.

Openmedic17 is a drug consumption monitoring dataset that has been re-
cently made available by Ameli18. This dataset inventories the number of
drug boxes (described by their Anatomical Therapeutic Chemical (ATC)
Classification19(H)) yearly administered to individuals (from 2014 to 2016).
Individuals are described with demographic information such as age (C),
gender (C) and region (C). We further discuss an adapted IAS measure.

Comparing the size and the complexity of these datasets is difficult because
of the heterogeneity of the attributes. In particular, the hierarchies of the HMT

Entities Individuals Outcomes

EPD8 Size (Nb. records) 4161 958 2.7M
attribute types 1H + 1N + 1C 1N + 5C
size after scaling 347 + 26 + 40 = 413 16 + 285 = 301
avg scaling per record 20.44 14

Movielens Size (Nb. records) 1681 943 100K
attribute types 1H + 1N 3C
size after scaling 20 + 144 = 164 4 + 2 + 21 = 27
avg scaling per record 75.72 3

Yelp Size (Nb. records) 127 000 18 750K
attribute types 1H + 1C 3C
size after scaling 1175 + 29 = 1204 3 + 2 + 3 = 8
avg scaling per record 5.77 3

Openmedic Size (Nb. records) 12 221 78 500K
attribute types 1H 3C
size after scaling 14 094 2 + 13 + 3 = 18
avg scaling per record 7 3

Table 2: Behavioral datasets characteristics before and after scaling.

16https://www.yelp.com/dataset/challenge, last access on April 25, 2017.
17http://open-data-assurance-maladie.ameli.fr/, last access on November 16, 2017.
18Ameli - France National Health Insurance and Social Security Organization
19The Anatomical Therapeutic Chemical classification system classifies therapeutic drugs
according to the organ or system on which they act and their chemical, pharmaco- logical
and therapeutic properties – https://www.whocc.no/atc/structure_and_principles/,
last access on October 18, 2019.

https://www.yelp.com/dataset/challenge
http://open-data-assurance-maladie.ameli.fr/
https://www.whocc.no/atc/structure_and_principles/


Identifying exceptional (dis)agreement between groups 25

attributes are very different, as well as the range of the numerical ones. To
enable a fair comparison, we employ a conceptual scaling (Ganter and Wille,
1999). The attributes are “projected” on a set of items by transforming each
one to a Boolean representation. Each possible value of a categorical attribute
provides a single item (e.g., gender gives male, female and unknown). The
items corresponding to an HMT attribute are all the nodes of the tag tree (T ).
Each numerical attribute is transformed to an itemset via interordinal scaling
(Kaytoue et al, 2011). To a given set of values [v1, v2, ...vn], we associate 2n
items {≤ v1,≤ v2, ... ≤ vn,≥ v1,≥ v2, ... ≥ vn}. Table 2 illustrates this step,
while Table 3 shows the obtained comparable characteristics.

Dataset Transactions Items AverageSize

EPD8 1 727 032 585 1 015 34.48
Movielens 16 807 109 218 79.37
Yelp 5 860 354 1 220 9.00
Openmedic 28 512 418 14 130 10.00

Table 3: Characteristics of the datasets considered as plain collections of itemsets records -
the plain collections correspond to GE×GI ×GI while considering only pairable individuals
(i.e., the cartesian product contains a record (e, i1, i2) only if both individuals expressed an
outcome on the entity e, that is o(i1, e) and o(i2, e) are given).

6.2 Qualitative Results

First, we focus on illustrating patterns discovered by DEBuNk. To this end,
we report three real world case studies: (i) In collaborative rating platforms
(Yelp, Movielens), we study the affinities between groups of users with re-
gard to their expressed ratings. (ii) In a voting system (European Parliament
Dataset), we show how the voting behavior of parlementarians can provide
interesting insights about the cohesion and the polarization between groups of
parliamentarians in different contexts. Such information can be valuable for
journalists and political analysts. (iii) We give example patterns reporting sub-
stantial differences in medicine consumption behavior between groups. Such
results can be leveraged by epidemiologists to study comparative prevalence
of sicknesses among subpopulations.

6.2.1 Study of Collaborative Rating Data

Table 4 describes some patterns returned by DEBuNk on the Movielens dataset
when looking for contexts that lead to a disagreement between groups of indi-
viduals labeled by their professional occupations. The first pattern describes
that, while students and health professionals agree 74% of the time, they tend
to disagree for horror and comedy-like movies released between 1986 and 1994
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(e.g., Evil Dead II, Braindead). Figure 5 illustrates the usual and the contex-
tual rating distribution of each groups. We observe from this rating distribu-
tions, that the students like the movies highlighted by the pattern, whereas
the healthcare professionals dislike them.
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Fig. 5: Pattern 1 Illustration – distribution of ratings of individuals constituting the group
of students versus distribution of ratings of individuals constituting the group of health
professionals. Left figure corresponds to the usual distribution observed over all movies.
Right figure corresponds to the contextual distribution observed over the context of pattern 1
from Table 4.

In Table 5, we present some results provided by DEBuNk over Yelp dataset.
The groups of individuals are labeled by the size of their friend network and

(c, u1, u2) |Gc
E | |Gu1

I | |Gu2
I | o(i, e) ϕdissent

1
Student vs. Healthcare in

6 196 16 106
0.42 =

[’11 Horror’, ’5 Comedy’] [1986, 1994] 0.74 − 0.33

2 Student vs. Healthcare in
5 196 16 40

0.41 =
[’5 Comedy’] [1991, 1991] 0.74 − 0.33

3 Healthcare vs. Artist in
5 16 28 28

0.42 =
[’5 Comedy’, ’8 Drama’] [1987, 1993] 0.73 − 0.3

Table 4: Top-3 w.r.t. number of expressed outcomes (o(i, e) column) of disagreement pat-
terns discovered on Movielens (|AE | = 2, |AI | = 1, σE = 5, σI = 10 and σϕ = 0.4).

(c, u1, u2) |Gc
E | |Gu1

I | |Gu2
I | o(i, e) ϕdissent

1
(Newcomer,*) vs. (Middler,*) in

10 6 6 43
0.4 =

[’03 Automotive’, ’14.22 Electronics Repair’, 0.8 − 0.4
’22.06 Battery Stores’, ’22.21 Electronics’] *

2
(Senior, Medium) vs. (Middler, Large) in

15 2 2 39
0.43 =

[’10.55.21 Internal Medicine’] Nevada 0.81 − 0.38

3
(Newcomer, Medium) vs. (Middler, Large)

14 2 2 30
0.4 =

[’11.59.01 Apartments’, 0.78 − 0.38
’11.59.18 University Housing’] Arizona

Table 5: Top-3 w.r.t. number of expressed outcomes (o(i, e) column) of disagreement pat-
terns discovered on the Yelp dataset (|AE | = 2, |AI | = 2, σE = 10, σI = 1 and σϕ = 0.4).
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their seniority in the Yelp platform. Notice that additional demographic data
about users are missing. This prevents DEBuNk from obtaining concrete re-
sults similar to the ones obtained in Movielens. The resulting patterns highlight
the places for which groups of individuals have divergent opinions. For exam-
ple, pattern 2 states that Senior Yelp users (registered in Yelp before 2010)
having a friend network of medium size (less than 100 friends) disagree with
users registered in Yelp before 2015 having a large friend network (more than
100 friends) on Internal Medicines Clinics in Nevada (e.g., Las Vegas Urgent
Care), contrary to the usual, where these two groups roughly share the same
opinions about places (81% of the time).

6.2.2 Analysis of the Voting Behavior in the European Parliament Dataset

Table 6 reports patterns obtained by DEBuNk where the aim is to find con-
texts (subsets of voting sessions) that lead groups of parliamentarians (labeled
by their countries and their corresponding date of accession to the European
Union) to strong disagreement compared to the usual observed agreement.
Note that we choose carefully σE ≥ 25 to reach subgroups of the third level
of the themes hierarchy which on average contain ∽ 25 voting sessions. Such
analysis can be valuable to political analysts and journalists as it enables to un-
cover subjects/thematics of votes on which countries have divergent opinions.
For instance, the second pattern in Table 6 illustrated in Figure 6, states that
the voting sessions about theme 4.15.05 (Industrial Restructuring, job losses,
EGF, e.g., Mobilization of the European Globalization Adjustment Fund: re-
dundancies in aircraft repair and installation services in Ireland) lead to strong
disagreements between parliamentarians from the United Kingdom and their
peers. In Figure 6, we provide a visualization of this pattern through a similar-
ity matrix where each cell represents the similarity between two countries. This
can be seen as a post-processing step where the end-user chooses to augment
the pattern with more related information (similarities between other coun-
tries). Such visualization brings more context to the pattern. While the second
pattern conveys that British parliamentarians are in strong disagreement with

(c, u1, u2) |Gc
E | |Gu1

I | |Gu2
I | o(i, e) ϕdissent

1
([1973, 1973] United Kingdom) vs. (*,*)

47 88 958 30255
0.54 =

[’4 Economic, social & territorial 0.68 − 0.14
cohesion’, ’8.70 Budget of the Union’]

2
([1973, 1973] United Kingdom) vs. (*,*)

47 88 958 30250
0.54 =

[’4.15.05 Industrial restructuring, job 0.68 − 0.14
losses, Globalization Adjustment Fund’]

3
([1958, 1958] Italy) vs. ([1981, 2013] *)

79 99 433 29501
0.51 =

[’3.40 Industrial policy’, ’6.20.02 Export 0.87 − 0.35
/import control, trade defence’]

Table 6: Top-3 w.r.t. number of expressed outcomes (o(i, e) column) of Relevant
(dis)agreement patterns discovered on EPD8 (|AE | = 1, |AI | = 2, σE = 25, σI = 1 and
σϕ = 0.5 using ϕdissent).
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their peers, the visualization goes beyond by reporting that all other countries
formed a coalition against the voting decision of British parlementarians. The
algorithms elaborated in this work also allow to discover patterns exhibiting
consensual subjects, thanks to the quality measure ϕconsent. Additional exper-
iments are reported in the technical report (Belfodil et al, 2019) illustrating
such patterns. Moreover, as part of a collaboration with political journalists,
we provide an online tool20, dubbed ANCORE that makes it possible to ana-
lyze European parliament voting sessions.
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Fig. 6: Illustration of pattern 2 reported in Table 6. The left matrix depicts the agreement
observed in general between countries when considering all voting sessions. The right matrix
corresponds to the inter country agreement for the context of pattern 2.

6.2.3 Illnesses Prevalence on the Basis of Medicine Consumption

One interesting analysis task to be carried out on the Openmedic dataset is
to look for subgroups of drugs where the ratio of intakes between two groups
of individuals is substantially different than the one usually observed. For in-
stance, we find that while Females takes 1.32× more drugs than Males in over-
all terms, this ratio increases up to 5× when considering drugs prescribed for
Hyperthyroidism (see Pattern 3 in Table 7). These results are similar to those
reported in an epidemiology study by Wang et Al. in (Wang and Crapo, 1997).
Such task can provide some insight regarding illness prevalence for particular
groups of individuals. In the behavioral dataset Openmedic, the outcomes ex-
pressed by individuals are depicted by numerical values reporting the count of
medicine boxes. As we are interested in characterizing the agreement by the
consumption ratio, we instantiate IAS as follows:

IASratio(c, u1, u2) =

󰁓
e∈Gc

E
θavg(G

u1

I , e)
󰁓

e∈Gc
E
θavg(G

u2

I , e)
. (15)

This ratio falls under the definition of IAS considered in Definition 9 as it
can be expressed as a weighted average:

20http://contentcheck.liris.cnrs.fr, last access October 25, 2019.

http://contentcheck.liris.cnrs.fr
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IASratio(c, u1, u2) =

󰁓
e∈Gc

E

w(e,Gu1
I , Gu2

I )× simratio(θavg(G
u1
I , e), θavg(G

u2
I , e))

󰁓
e∈Gc

E
w(e,Gu1

I , Gu2
I )

with w(e,Gu1
I , Gu2

I ) = θavg(G
u2
I , e) and simratio(x, y) =

x

y
.

(16)

In order to provide interpretable patterns according to the aim of the study,
we define an adapted quality measure ϕratio as:

ϕratio(p) =
IASratio(p)

IASratio(p∗)
with p = (c, u1, u2) ∈ P and p∗ = (∗, u1, u2). (17)

Drug boxes are labeled by tags in the ATC classification system. We aim
at leveraging the medical consumption differences between groups of individ-
uals to investigate the comparative prevalence21 of illnesses between gender
groups. Table 7 shows some patterns discovered by DEBuNk on Openmedic.
Note that we carefully choose σE ≥ 10 to reach subgroups of drugs of the fifth
level of ATC tree which on average contains ∽ 10 drugs. Pattern 4 states that,
for drugs prescribed for Gout22, men consume 3× more drugs than women,
whereas in overall terms, men consume 0.76× less drugs than women. Sim-
ilar results were reported by an epidemiology study of Gout in (Roddy and
Doherty, 2010) giving an incidence of gout per 1,000 person-years of 1.4 in
women and 4.0 in men. Patterns 3 and 4, depicted in Figure 7, report details
on the differences between the two gender groups in terms of population size
and number of drugs consumed both in overall and in the context highlighted
by the pattern.

(c, u1, u2) |Gc
E | |Gu1

I | |Gu2
I | o(i, e) ϕratio

1
Men vs. Women in 138 39 39 4195 4.59 = 3.48

0.76
N07B - Drugs used in addictive disorders

2
Women vs. Men in 54 39 39 3174 3.96 = 5.21

1.32
A12A - Calcium

3
Women vs. Men in 31 39 39 1981 3.89 = 5.13

1.32
H03 - Thyroid Therapy

4
Men vs. Women in 42 39 39 1940 3.91 = 2.97

0.76
M04A - Antigout preparations

Table 7: Top-4 w.r.t. the number of expressed outcomes on Openmedic considering by
default the full dataset, |AE | = 1, |AI | = 1, σE = 10, σI = 1 and σϕ = 3.5 using ϕratio.

21 https://www.idf.org/component/attachments/attachments.html?id=811&task=

download [Page=97], last access on October 18, 2019.
22https://bit.ly/2zuorQK, last access on October 18, 2019.

https://www.idf.org/component/attachments/attachments.html?id=811&task=download
https://bit.ly/2zuorQK
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6.3 Comparison to state-of-the-art techniques

We have investigated the ability of classical SD/EMM techniques to tackle the
problem of discovering exceptional (dis)agreement among groups of individu-
als. To this end, we have considered three appropriate SD/EMM adaptations23

and tested them on synthetic datasets with ground truth. No existing qual-
ity measure (in classical SD) or model (in classical EMM) makes it possible
to uncover exactly the (dis)agreement patterns, and these experiments obvi-
ously supported this observation (for more details, please refer to the technical
report (Belfodil et al, 2019)). This is due to the fact that SD and EMM tech-
niques are usually tailored to tackle a specific mining task. Therefore and for
the interest of brevity, we report here only comparative experiments against
our first attempt (Belfodil et al, 2017) implemented by DSC.

DSC aims at discovering top-k patterns that elucidate exceptional (dis)agree-
ment between groups of individuals. In addition, for a sufficiently large k, DSC
solves the core problem tackled in this paper limited to the two first condi-
tions (i.e., validity and maximality). Note that, we disable the aggregation
dimension parameter for DSC to obtain comparable pattern sets. To compare
between DEBuNk and DSC, we designed experiments to answer to the two
following questions:

Q1. How concise is the patterns set provided by DEBuNk compared to the
one provided by DSC?
Q2. How diverse is the pattern set, limited to k patterns, provided by
DEBuNk compared to the one provided by DSC?

In order to answer (Q1), we evaluate the number of patterns returned by
DEBuNk and DSC when looking for complete pattern set P (i.e., k sufficiently
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Fig. 7: Drugs consumption behavior of gender groups in Patterns 3 (left) and 4 (right).

23Since common SD techniques require flat representations of the underlying dataset aug-
mented with a target attribute, we have proposed two adaptations: SD-Majority for discov-
ering (dis)agreement with the majority and SD-Cartesian for discovering (dis)agreement
between two groups on the cartesian product GE ×GI ×GI . In both of the aformentioned
adaptations, the target is equal to 1 if there is an agreement, 0 else. Experiments are
performed using PySubgroup(Lemmerich and Becker, 2018) while utilizing the precision
gain (Fürnkranz et al, 2012) as a quality measure. Moreover, to take into account the
usual agreement between groups, we adapt Exceptional Subgraph Mining (Kaytoue et al,
2017) to discover contextual (dis)agreement in subgraphs representing individuals group
pairs.
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large for DSC). For this, we run both methods on EPD8 with various24 quality
thresholds σϕ and descriptive attributes AE , AI . Figure 8 reports the results
of these experiments. Results demonstrate that DEBuNk considerably reduces
the desired pattern set while ensuring that each pattern returned by DSC is
represented by a pattern returned by DEBuNk (according to the problem defi-
nition). On average, DSC returns 38 times more patterns than DEBuNk. More-
over, DEBuNk achieves better performance than DSC in terms of run time .
This is explained by (i) the model simplification which reduces the complexity
of computing the interestingness measure and (ii) the pruning property imple-
mented by DEBuNk supported by condition (3) of the problem definition.

So far, we compared DEBuNk against DSC when looking for the complete
pattern set. Experiments (Q1) demonstrated the fact that in such a setting
DSC returns an overwhelmingly large result set. To tackle this problem, DSC
implements a top-k algorithm to control the size of the returned pattern set.
Of course, the main drawback of using a top-k algorithm is the lack of diversity
even when redundancy is avoided by closure operators. This lack of diversity
is induced by the fact that, most likely, the patterns observing the highest
qualities are condensed in small region of the dataset.

To fairly evaluate the diversity of patterns returned by both DSC and DE-
BuNk (Q2), we run both algorithms for several parameters25 and compare
the size of the datasets regions covered by both returned pattern sets. This
quantity can be captured by the number of outcomes covered by a result set,
that is |o[P k]| = |{(i, e) ∈ GI × GE s.t. o(i, e) is expressed}| with P k an ar-
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Fig. 8: Comparison between DEBuNk and DSC for the task of discovering the complete
set of the desired patterns on EPD8 dataset (default parameters are: |AE | = 2, |AI | = 2,
σϕ = 0.4, σE = 40, σI = 10 and ϕdissent). Lines correspond to the execution time and bars
correspond to the number of returned patterns.
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Fig. 9: Comparison between DEBuNk and DSC (top-k) for the task of discovering k-
sized pattern sets on EPD8 Dataset (default parameters: |AE | = 2, |AI | = 2, σϕ = 0.4,
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2427 runs for each method by varying (|AE |, |AI |,σϕ) ∈ [[1, 2, 3] , [1, 2, 3] , [0.2, 0.4, 0.6]]
2581 runs by varying (k, |AE |, |AI |,σϕ) ∈ [[10, 50, 100] , [1, 2, 3] , [1, 2, 3] , [0.2, 0.4, 0.6]]
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bitrary pattern set containing k patterns. For a fair comparison, we compare
|o[P k

DSC]| (top-k patterns) against |o[P k
DEBuNk]|. To obtain the latter quantity,

we run DEBuNk so as to obtain the complete pattern set PDEBuNk. Next, we
draw 100 k-sized samples drawn uniformly from the obtained PDEBuNk and
then compute the average |o[P k

DEBuNk]|. It is worth mentioning that compar-
ison can be made also by taking the top-k patterns PDEBuNk rather than an
arbitrary k-sized sample. We decided to study the latter scenario, since the
philosophy of DEBuNk is to retrieve the complete patterns set summarizing
exceptional (dis)agreement in an underlying behavioral dataset.

Results are reported in Figure 9. Clearly, DEBuNk’s k-sized pattern set
covers larger (and different) parts of the dataset compared to DSC’s top-k
pattern set. We observe that DEBuNk surpasses DSC by one order of magni-
tude (×12.5 in average) when comparing the portions of the dataset covered
by their respective k-sized pattern set. Simply put, when the pattern set re-
lated to DEBuNk covers 10% of the dataset, DSC patterns cover less than 1%
of the underlying dataset records.

6.4 Performance study

6.4.1 Efficiency of closure operators and optimistic estimates

To evaluate the efficiency of closure operators and optimistic estimates, we
compare DEBuNk against two baseline algorithms. The first baseline, named
Baseline, is obtained by disabling both closure operators and the pruning
properties supported by the defined optimistic estimates. Thus, Baseline only
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Fig. 10: Effectiveness of DEBuNk considering EPD8 Dataset with |GE | = 2000, |GI | = 500,
|Outcomes| = 750k, |AE | = 3, |AI | = 4, σE = 40, σI = 10, σϕ = 0.5 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of evaluated patterns.
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pushes the anti-monotonic constraints (i.e., the set of cardinality constraints
C). The second baseline, Baseline+Closed, is proposed to study more precisely
the efficiency of the optimistic estimates. Thus, it is obtained by disabling
the optimistic estimate based pruning. In these experiments, we interrupt a
method if its execution time exceeds 10 hours. Figure 10 reports the execution
time and the number of candidate patterns processed by each of the three
methods when varying the size of the dataset w.r.t. both the number of records
and the size of the descriptions space.

Experiments give evidence that the closure operator and the canonicity
tests performed by EnumCC are effective as they drastically reduce the num-
ber of evaluated patterns. Additionally, DEBuNk is about one order of mag-
nitude faster than the Baseline+Closed algorithm, thanks to the optimistic
estimate-based pruning. This especially happens when the IAS measure is a
simple average, which is the case of the IAS measure used for EPD8, Yelp and
Movielens. This is explained by the fact that the corresponding optimistic es-
timate is tight. Similar observations hold for the experiments carried on Yelp
and Movielens datasets, in contrast, experiments run on Openmedic exhibit
slightly different performance profiles. For more details, please refer to the
technical report (Belfodil et al, 2019).

6.4.2 Efficiency of HMT closed descriptions vs. closed itemsets enumeration

In order to evaluate the performance of the closed descriptions enumeration in
the presence of a taxonomy linking the tags (items), we study the behavior of
DEBuNk (i.e. execution time and the number of explored patterns) both with
and without leveraging the hierarchy between items. The latter can be done by
scaling the HMT values (as illustrated in Fig. 2) using a vector representation
for each tagged record. Experiments are carried out on EPD8 and Yelp datasets
whose entities are characterized by a hierarchy of 347 tags and 1175 tags
respectively. To vary the number of items/tags constituting the hierarchy, we
remove tags from the tree in a bottom-up fashion until the desired number of
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Fig. 11: Efficiency of HMT against itemsets closed descriptions enumeration according to
the number of items/tags constituting the hierarchy for the two datasets EPD8 (left) and
Yelp (right). For both datasets we only consider the HMT attribute for entities |AE | = 1.
The used parameters for EPD8 are: |AI | = 6, σE = 1, σI = 10, σϕ = 0.5 and ϕdissent.
The used parameters for Yelp are: |AI | = 3, σE = 5, σI = 1, σϕ = 0.5 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of visited patterns.
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tags/items is reached, followed by replacing the HMT values of each entity by
the set of ascendants tags remaining in the obtained tree.

Experiments reported in Figure 11 demonstrate that taking into account
the hierarchy of tags significantly improves the performance of DEBuNk (5×
faster). This results from the fact that, in contrast to itemsets enumeration,
HMT descriptions enumeration exploits the structure of the hierarchy and
therefore avoids considering chain descriptions (e.g., {1, 1.10.40}). Note that
the bars depict the number of patterns that are visited by EnumCC used in
DEBuNk to generate the closed patterns. Obviously, the HMT and Itemset
closed description enumeration return the same number of closed patterns.
We choose to represent the number of visited patterns rather than the number
of closed patterns to illustrate the differences between the HMT and Itemset
enumeration in terms of the size of the explored search space.

6.4.3 Performance study of DEBuNk

We now focus on the study of DEBuNk according to the size of the descrip-
tion spaces (DE , DI), the support thresholds, the quality threshold and the
quality measures. To study the behavior of DEBuNk according to the size
of the description spaces, we choose to vary the number of items resulting
from projecting the attributes values of each record (entity/individual) on
their corresponding vector representation. To this end, we select values from
each attribute according to the size of its corresponding domain so as to ob-
tain the required number of items. We follow the same approach as in the
experiments reported in Figure 11 to select the required number of tags for
an HMT attribute. Numerical attributes domains are discretized according to
the required number of items. Subsets of values of categorical attributes are
regrouped under single categories in order to obtain the desired number of
values.
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Fig. 12: Effectiveness of DEBuNk on EPD8 according to the sizes of GE , GI , DE , DI , the
supports and quality measures thresholds. Considering by default |GE | = 4161, |GI | = 958,
|Outcomes| = 2.7M , |AE | = 3, |AI | = 6. σE = 40, σI = 10, σϕ = 0.5 and ϕdissent. Lines
correspond to the execution time and bars correspond to the number of evaluated patterns.
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Figure 12 reports the behavior of DEBuNk on EPD8. Clearly, the number
of evaluated candidates and the execution time increase with regards to the
size of description spaces DI and DE . These experiments confirm that pushing
monotonic constraints (i.e. supports threshold σE , σI) drastically improves the
efficiency of DEBuNk. Finally, a higher threshold on the quality σϕ leads to
an important reduction of the number of visited patterns and therefore to a
better execution time. This demonstrates the effectiveness of the pruning prop-
erties enabled by the use of optimistic estimates. We also notice that ϕconsent

performs slightly better than ϕdissent. This effect arises mainly from the fact
that, in the EU Parliament dataset, the overall observed agreement between
groups of individuals is rather consensual. The same conclusions can be drawn
as well from experiments performed on Movielens, Yelp and Openmedic. For
more details, see the technical report (Belfodil et al, 2019).

6.4.4 Quick-DEBuNk vs. DEBuNk

To evaluate the efficiency of Quick-DEBuNk, we compare it against the ex-
haustive search algorithm DEBuNk over different time budgets. To objectively
measure how well Quick-DEBuNk results approximates DEBuNk results, let
us first define a similarity measure simP between two patterns p = (c, u1, u2)
and p′ = (c′, u′

1, u
′
2) from P. It captures to what extent two patterns covers the

same context and groups and relies on a Jaccard Index (J in what follows):

simP(p, p
′) =

󰁵
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Note that, the quantity (J(Gu1
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u′
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I , G
u′
2

I )) is replaced by the
following measure if the quality measure ϕ is symmetric:
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For comparing two pattern sets P , P ′ returned by respectively DEBuNk
and Quick-DEBuNk, we use precision and recall defined as follows.

precision(P, P ′) =

󰁓
p∈P max({simP(p, p

′) s.t. p′ ∈ P ′})
|P | ,

recall(P, P ′) =

󰁓
p′∈P ′ max({simP(p

′, p) s.t. p ∈ P})
|P ′| .

(20)

A similar measure to recall has been proposed by Bosc et al (2018) to evalu-
ate the ability of their algorithm to retrieve ground-truth patterns. We extend
this measure with the precision to evaluate not only that all the patterns re-
turned by DEBuNk have been retrieved by Quick-DEBuNk (i.e. recall=1) but
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also the conciseness of the returned set (i.e. precision=1 if and only if all re-
turned patterns by Quick-DEBuNk are actually present in the ground-truth
result set, namely the returned patterns by DEBuNk).

Figures 13a, 14a and 15a report the comparative study between DEBuNk
and Quick-DEBuNk carried out on respectively EPD8, Movielens and Yelp.
We notice that in all situations, Quick-DEBuNk is able to promptly return
high quality patterns. Interestingly, some differences can be observed between
datasets. Quick-DEBuNk is less efficient on the Yelp dataset. We argue that
this is due to the fact that the corresponding context search space is much
larger than the three other behavioral datasets (see Table 2) which might
impede random walk step RWC for finding high quality patterns.

We also investigate the empirical distribution from which the patterns are
sampled when using Quick-DEBuNk. This requires the true distribution of
the qualities of valid patterns in the corresponding datasets. To this end, we
run DEBuNk by disabling the generality condition (see Problem definition).
This makes it possible to identify all interesting (dis)agreement patterns in
the dataset. In these experiments, we choose an arbitrary threshold set to
σϕ = 0.1. Similarly, we run Quick-DEBuNk so as to obtain a sufficiently
large pattern set, and calculate the sampling distribution from the retrieved
patterns’ qualities. We observe from the empirical distributions depicted in
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Figures 13b, 14b and 15b that Quick-DEBuNk rewards high quality patterns
by giving them a better chance to be sampled.

Finally, to evaluate the importance of the RWC (Random Walk on Con-
texts) step in Quick-DEBuNk, we perform the same experiments with the same
time budgets with the RWC step disabled. This configuration, Quick-DEBuNk
without RWC returned only 3 472, 389 and 120 valid patterns compared to
408 610, 64 198 and 75 398 valid patterns when carried out on, respectively,
EPD8, Movielens and Yelp. In average, Quick-DEBuNk without RWC re-
trieved 20× fewer valid patterns than the original Quick-DEBuNk. This clearly
indicates that RWC improves the performance of Quick-DEBuNk. This stems
from the fact that when the first step (FBS step) generates a pattern, most of
the time the pattern is not of a sufficient quality. RWC tackles this issue by
locally searching for interesting patterns, starting from the generated pattern.

6.5 Discussion

DEBuNk scales well w.r.t. the size of the search space corresponding to the
entities collection thanks to the defined optimistic estimates which enable to
prune unpromising parts of the search space. However, DEBuNk does not
scale according to the size of the description spaces related to the individuals.
This limits its application when behavioral datasets have a large number of
individuals described with many attributes. This is due to the need of taking
into account the usual inter-group agreement in the interestingness measures.
As a consequence, it is notoriously difficult to define an optimistic estimate
which not only works on the entities related search space, but also on the one
corresponding to the confronted couples of groups of individuals. This should
be the scope of future research, starting with definition of bounds on the usual
agreement quantity. Algorithm Quick-DEBuNk partially addresses this scala-
bility issue by sampling the couples of groups directly from the patterns space
rather than starting from the search tree root. Interestingly, the experiments
demonstrated that Quick-DEBuNk makes it possible to retrieve most of the
interesting patterns in a relatively small amount of time (i.e. compared to
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what returns the exhaustive search algorithm DEBuNk and the ground truth
in artificial data). This is particularly observed for EPD8 dataset involving
the largest descriptions space DI × DI , hence empirically demonstrating its
interest. Nevertheless, Quick-DEBuNk does not have theoretical guarantees
on the distribution of the sampled patterns (we only proved that all valid
patterns are reachable and are generated proportionally to their size). This
shortcoming is due to two reasons. On the one hand, the three-set format of
the patterns makes them challenging to be sampled proportionally to their
interestingness measure since the value is computed only when the context is
known (no information is available before the instantiation of the two groups).
On the other hand, quality measures that are expressed as average functions
are complex to apprehend under direct pattern sampling framework. Dealing
with this two issues is required to obtain theoretical guarantees.

To avoid misleading interpretations, it is important to be aware of the data
sparsity. To this end, the proposed approaches enable to discard some patterns
that involve too small subset of entities on which the two confronted groups
haven’t expressed enough outcomes. Moreover, the strength of the claim re-
lated to the pattern should be assessed according not only to the data sparsity
but also to the representativeness of the two subpopulation of interest (e.g.,
the claims drawn from the EU parliament votes are usually consistent even
though the data are fairly sparse).

7 Related Work

Subgroup Discovery and Exceptional Model Mining. Scientists have
always seen Exploratory Data Analysis (EDA) as an important research area
since its introduction (Tukey, 1977). Among the various EDA techniques that
aim to maximize insight into datasets and uncover underlying structures, Sub-
group Discovery (SD) (Klösgen, 1996; Wrobel, 1997; Atzmueller, 2015; Herrera
et al, 2011) is a generic data mining task concerned with finding regions in the
data that stand out with respect to a given target. Many other data mining
tasks have similar goals as SD, e.g., emerging patterns (Dong and Li, 1999),
significant rules (Terada et al, 2013), contrast sets (Bay and Pazzani, 2001)
or classification association rules (Liu et al, 1998). However, among these dif-
ferent tasks, SD is known as the most generic one, especially SD is agnostic
of the data and the pattern domain. For instance, subgroups can be defined
with a conjunction of conditions on symbolic (Lavrac et al, 2004) or numeric
attributes (Grosskreutz and Rüping, 2009; Atzmüller and Puppe, 2006) as
well as sequences (Grosskreutz et al, 2013). Furthermore, the single target can
be discrete or numeric (Lemmerich et al, 2016). Exceptional Model Mining
(EMM) (Leman et al, 2008), while sharing exactly the same exploration space
(i.e., the description space), extends SD by offering the possibility to handle
complex targets, e.g., several discrete attributes (van Leeuwen and Knobbe,
2012; Duivesteijn et al, 2010, 2016), graphs (Kaytoue et al, 2017; Bendimerad
et al, 2016, 2017), two numeric targets (Downar and Duivesteijn, 2017) and
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preferences (de Sá et al, 2016, 2018). Our method is rooted in the SD/EMM
framework. Nevertheless, the problem we tackle cannot be directly addressed
with an instance of SD/EMM because a target space is provided instead of
explicit targets. As a consequence, the discovery of (dis)agreement patterns
with a SD/EMM instance would consist in performing a SD discovery algo-
rithm per pair of confronted groups of individuals, which is not feasible in
practice due to the exponential number of possible pairs of groups. Dynamic
EMM (i.e., EMM with a non-fixed model) has been recently investigated for
different aims. Bosc et al (2016) propose a method to handle multi-label data
where the number of labels per record is much lower than the total number
of labels which prevents the use of usual EMM model. Other dynamic EMM
approaches aim to discover exceptional attributed sub-graphs (Kaytoue et al,
2017; Bendimerad et al, 2016, 2017). The present paper, which is an extension
of (Belfodil et al, 2017), is the first attempt to discover (dis)agreement pat-
terns with a method rooted in dynamic EMM. Our preliminary work (Belfodil
et al, 2017) is extended on many levels: (1) we provide an easier to use frame-
work to discover exceptional (dis)agreement between groups which requires
less parameter setting and interpretation effort by the end-user. (2) Our pro-
posal enables to use a wider spectrum of interestingness measures that can
be enriched by relying on the building blocks discussed in Section 3. (3) This
work provides a more elaborate exhaustive search algorithm compared to the
former one as discussed in Section 4 and (4) An alternative sampling approach
Quick-DEBuNk is proposed. It enables instant mining of (dis)agreement pat-
terns, which sets the ground for interactive pattern mining tools.

Rating Data Analysis. Behavioral data analysis has received a wide in-
terest in the last two decades allowing the development of new services for
consumers, citizens, companies and organizations. In (Das et al, 2011), the
problem of discovering meaningful ratings interpretation is introduced. It can
be formalized as a SD problem, the authors’ aim is to identify groups of users
that substantially agree or disagree w.r.t. some given subsets of entities while
using a mono-objective measure (ratings average). Extensions have been pro-
posed to enable multi-objective groups identification thanks to more complex
statistical measure (rating distribution) (Amer-Yahia et al, 2017; Omidvar-
Tehrani et al, 2016). This makes it possible to discover intra-group behavior
patterns such as polarized and homogeneous opinions. The main differences
with our work are: (i) these methods consider intra-group agreement only (no
inter-group agreement) without taking into account the usual agreement ob-
served between the individuals; (ii) the set of reviewees on which the study
is performed is given in prior, in contrast to our SD/EMM based approach,
which discovers relevant contexts by leveraging the reviewees dimension.

Voting Data Analysis. Similarly, the past two decades have witnessed an
increasing emergence of Open Government Data26 (OGD) promoting trans-
parency and accountability in public institutions. Consequently, many re-

26http://www.oecd.org/gov/digital-government/open-government-data.htm, last access
on October 25, 2019.

http://www.oecd.org/gov/digital-government/open-government-data.htm
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searchers from different fields (e.g., information science, political and social
sciences, data mining and machine learning) have studied such data (Charal-
abidis et al, 2016). For instance, (Jakulin, 2004) uses hierarchical clustering
and PCA to identify cohesion blocs and dissimilarity blocs of voters within the
US Senate. Similar work was done on the Finnish (Pajala et al, 2004), the Ital-
ian (Amelio and Pizzuti, 2012) and the Swiss (Etter et al, 2014) parliaments
to study the polarization and cohesion between parliamentarians. Similarly,
Grosskreutz et al (2010) investigate the voting behavior of citizens instead of
politicians relying on SD. Our work goes further and supports the discovery
of new insights in such data.

Outpatient Data Analysis. Monitoring the disease prevalence is an impor-
tant task. Many researchers dedicated much effort to analyze the prevalence
of diseases considering different sources of data. Orueta et al (2012) highlight
the importance of considering outpatient data (e.g., medical prescriptions)
in such epidemiology studies. This motivates the analysis task proposed over
Openmedic data. It provides an interesting additional tool in epidemiology
surveillance applications by revealing substantial differences in medicine con-
sumption between subpopulations.

Pattern Sampling Approaches. The discovery of the complete set of inter-
esting patterns (e.g., frequent, discriminant) has two disadvantages that limit
the use of such methods in practice. It is time consuming to compute the com-
plete set of solutions. Furthermore, this set can be huge and non-manageable
for a human expert. To overcome these limitations, many approaches that can
effectively sample the pattern space for interesting patterns have been pro-
posed for a decade. These methods address frequent or discriminant itemset
mining tasks (Boley et al, 2011; Giacometti and Soulet, 2016; Li and Zaki,
2016; Moens and Goethals, 2013) offering some theoretical guarantees on the
sampling quality or more generic ones (Dzyuba et al, 2017; Boley et al, 2010a;
Hasan and Zaki, 2009). Dzyuba et al (2017) define the problem of sampling
pattern sets and propose a method based on a SAT solver sampling solution.
However, this approach only supports pattern languages that can be compactly
represented by binary variables such as itemsets. It requires the discretization
of numerical attributes. Authors in (Boley et al, 2010a; Hasan and Zaki, 2009)
use a MCMC (Monte-Carlo Markov-Chain) based algorithm to achieve sam-
pling with guarantees according to a desired probability distribution. Despite
the generic nature and the interesting guarantees that MCMC algorithms pro-
vide, it requires a number of steps that grows exponentially in the input size to
generate a single pattern (Boley et al, 2010a). This may prevent the user to ob-
tain instant results. The problem we are interested in has several specificities.
First, the search space involves attributes of different types (i.e., numerical,
symbolical, HMT attributes) which prevents us to use sampling techniques
based on itemset language. Second, the quality measure is not considered in
the state-of-the-art methods that mainly support frequency and discriminative
measures (Boley et al, 2011, 2012). Finally, the method proposed in (Moens
and Boley, 2014) for EMM is not suited to our problem since we have to
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simultaneously consider both description space and target space. Algorithm
Quick-DEBuNk handles the specificity of the problem by combining an explo-
ration step (i.e. direct sampling from the pattern space) and an exploitation
step while taking profit of the quality measures properties (i.e. random walk
step on contexts search space). However, we have no theoretical guarantee on
the quality of the sampled (dis)agreement patterns.

8 Conclusion

In this paper, we have defined the problem of discovering exceptional (dis)-
agreement in behavioral data. The generic definition of behavioral data en-
ables to encompass datasets featuring individuals and their outcomes on some
entities whatever the application domain (e.g., ratings, votes, medicines con-
sumption). The discovery of exceptional (dis)agreement patterns is rooted in
SD/EMM with a novel pattern domain and associated quality measures. How-
ever, the targets are not specified and have to be enumerated in our framework.
We have defined DEBuNk, a branch-and-bound algorithm which takes ben-
efit from closure operators, properties of the underlying descriptions space
(as for HMT attributes) and (tight) optimistic estimates to efficiently enu-
merate the patterns. Alternatively, we devised Quick-DEBuNk that samples
the space of patterns instead of returning the complete set of (dis)agreement
patterns. We have investigated several quality measures to assess inter-group
agreement. The extensive experimental study demonstrates the efficiency of
our algorithms as well as their ability to provide new insights in three case-
studies: (i) the investigation of contexts that impact the inter-group agreement
between parliamentarians, (ii) the characterization of affinities and contrasted
opinions between reviewers in rating platforms and (iii) the study of prevalence
of certain sicknesses that can be pointed out by high discrepancies between
the medicine consumption rates of two subpopulations.

We believe that this work opens new directions for future research. This
generic framework can be extended by paying a particular attention to the
analysis of intra-group agreement within a group of individuals. It may sup-
port the discovery of contexts that divide a political group. This requires the
definition and the integration of suited similarity measures into the IAS (Inter-
group Agreement Similarity) measure. For instance, the cohesion of a political
group can be assessed by the “agreement index” (Hix et al, 2005), which is
an application-specific measure to the study the European parliament. More
generic measures, such as Krippendorff’s alpha coefficient (Hayes and Krippen-
dorff, 2007), could also be investigated. While our method is able to analyze
behavioral datasets with large collections of entities (e.g., Yelp), tackling large
collections of individuals still remains challenging to ensure the scalability of
both DEBuNk and Quick-DEBuNk. Indeed, the search space related to indi-
viduals does not have, according to our problem definition, properties that can
be leveraged to prune unpromising parts of this search space. Another inter-
esting future direction is to take into account the temporal dimension into the
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analysis of behavioral data. This can offer the opportunity to investigate how
the relationship (e.g., inter-group agreement) between groups of individuals
evolves through time.
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Symbol Definition

GE A finite collection of records depicting entities

GI A finite collection of records depicting individuals

O the domain of possible outcomes

o function returning the outcome of an individual over an entity

〈GI , GE , O, o〉 A behavioral dataset

AE Descriptive attributes of entities

AI Descriptive attributes of individuals

θ An outcome aggregation measure

sim a similarity function between two aggregated outcomes

IAS Inter-group Agreement Similarity Measure

ϕ An interestingness measure

DE The description domain of entities containing all possible contexts

DI The description domain of individuals

Gd
E A subgroup of entities supporting a description d ∈ DE

Gu
I A subgroup of individuals supporting a description u ∈ DI

δ A mapping function that binds an entity from G to a description in D
P = DE ×DI ×DI and denotes the pattern space

p = (c, u1, u2) ∈ P depicts a (dis)agreement pattern

p∗ = (∗, u1, u2) ∈ P depicts the referential (dis)agreement pattern

related to some pattern p = (c, u1, u2)

P ⊆ P denotes a pattern set

⊑ read “less restrictive than” is a partial order between descriptions (resp.

patterns) in some descriptions space D (resp. patterns space P)

∧ the conjunction operator between descriptions in D
η the refinement operator which applies atomic refinements of a given

description d ∈ D, thereby yielding neighbor descriptions of d w.r.t. ⊑

Table 8: Symbol table
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A Appendix: Proofs of Theorems and Propositions

Before giving the proof of the proposition 1 we present the following lemma.

Lemma 1 Let n ∈ N∗, A = {ai}1≤i≤n and B = {bi}1≤i≤n such that:

∀i ∈ 1..n− 1, 0 ≤ ai ≤ ai+1,

∀i ∈ 1..n− 1, 0 < bi+1 ≤ bi.

We have:

∀k ∈ 1..n,
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Proof (Lemma 1) Using the same notations of the lemma, we know that:
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bi

󰀴

󰁄 .

Which is equal to

󰀳

󰁃
n󰁛

i=k+1

ai

󰀴

󰁄×
󰀣

k󰁛

i=1

bi

󰀤
−

󰀣
k󰁛

i=1

ai

󰀤
×

󰀳

󰁃
n󰁛

i=k+1

bi

󰀴

󰁄 .

Using the lemma hypotheses (orders between ai’s and bi’s), we have:

n󰁛

i=k+1

ai ≥ (n− k)× ak,

k󰁛

i=1

bi ≥ k × bk,

k󰁛

i=1

ai ≤ k × ak,

n󰁛

i=k+1

bi ≤ (n− k)× bk.

Thus:
󰀳

󰁃
n󰁛

i=k+1

ai

󰀴

󰁄×
󰀣

k󰁛

i=1

bi

󰀤
≥ (n− k)× k × ak × bk,

󰀣
k󰁛

i=1

ai

󰀤
×

󰀳

󰁃
n󰁛

i=k+1

bi

󰀴

󰁄 ≤ (n− k)× k × ak × bk.
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We conclude that

󰀳

󰁃
n󰁛

i=k+1

ai

󰀴

󰁄×
󰀣

k󰁛

i=1

bi

󰀤
−

󰀣
k󰁛

i=1

ai

󰀤
×

󰀳

󰁃
n󰁛

i=k+1

bi

󰀴

󰁄 ≥ 0.

Hence, we have:

∀k ∈ 1..n,
󰁓k

i=1 ai󰁓k
i=1 bi

≤
󰁓n

i=1 ai󰁓n
i=1 bi

.

Similarly the inequality
󰁓n

i=1 ai󰁓n
i=1 bi

≤
󰁓n

i=n−k+1 ai󰁓n
i=n−k+1

bi
can be easily proved following the same

line of reasoning of the proof of the first part of the inequality.

⊓⊔

Proof (Proposition 1) By a straightforward application of Lemma 1 we obtain for any d s.t.
|Gd

E | ≥ σE the following inequality.

LB(Gd
E , Gu1

I , Gu2
I ) ≤ IAS(Gd

E , Gu1
I , Gu2

I ). (21)

This stems from the fact that LB(Gd
E , Gu1

I , Gu2
I ) takes the sum of the lowest σE quan-

tities constituting the numerator of IAS(Gd
E , Gu1

I , Gu2
I ) and divides them by the sum of the

greatest σE quantities forming the denominator of IAS(Gd
E , Gu1

I , Gu2
I ).

Moreover, we have that LB is monotonic w.r.t. ⊑ of DE . i.e.

c ⊑ d ⇒ LB(Gc
E , Gu1

I , Gu2
I ) ≤ LB(Gd

E , Gu1
I , Gu2

I ). (22)

This results from c ⊑ d ⇒ Gd
E ⊆ Gc

E . Hence, if we reorder values of Gc
E and Gd

E where

Gc
E = {ec1, ..., ec|Gc

E
|} and Gd

E = {ed1, ..., ed|Gd
E
|} as such:

󰀻
󰀿

󰀽

wec1
.α(ec1) ≤ wec2

.α(ec2) ≤ ... ≤ wecσE
.α(ecσE

) ≤ ... ≤ wec|Ec|
.α(ec|Gc

E
|)

wed1
.α(ed1) ≤ wed2

.α(ed2) ≤ ... ≤ wedσE
.α(edσE

) ≤ ... ≤ wed
|Gd

E
|
.α(ed|Gd

E
|)

.

Given that Gd
E ⊆ Gc

E , it is clear that: ∀i ≤ σE , weci
.α(eci ) ≤ wedi

.α(edi ). Having that

m(Gc
E ,σE) = {ec1, ..., ecσE

} and m(Gd
E ,σE) = {ed1, ..., edσE

}, it follows that:

󰁛

e∈m(Gc
E
,σE)

we × α(e) ≤
󰁛

e∈m(Gd
E
,σE)

we × α(e). (23)

Similarly, if we reorder entities e in descending order w.r.t the weights we we have
∀j ≤ σE | wedj

≤ wecj
. Resulting in:

󰁛

e∈Mw(Gc
E
,σE)

we ≥
󰁛

e∈Mw(Gd
E
,σE)

we. (24)

Hence, from (23) and (24) we have LB(Gc
E , Gu1

I , Gu2
I ) ≤ LB(Gd

E , Gu1
I , Gu2

I ) and pro-

vided that LB(Gd
E , Gu1

I , Gu2
I ) ≤ IAS(Gd

E , Gu1
I , Gu2

I ) from (21), we have: ∀c, d ∈ DE , c ⊑
d ⇒ LB(Gc

E , Gu1
I , Gu2

I ) ≤ IAS(Gd
E , Gu1

I , Gu2
I ).

⊓⊔
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Proof (Proposition 2) This proof is similar to the proof of Proposition 1. For the sake of
brevity, we give a proof sketch. By a direct application of Lemma 1, it is clear that for any
d s.t. |Gd

E | ≥ σE ,

IAS(Gd
E , Gu1

I , Gu2
I ) ≤ UB(Gd

E , Gu1
I , Gu2

I ). (25)

We have that UB is anti-monotonic w.r.t. ⊑ of DE . i.e.

c ⊑ d ⇒ UB(Gc
E , Gu1

I , Gu2
I ) ≥ UB(Gd

E , Gu1
I , Gu2

I ). (26)

This results from c ⊑ d ⇒ Gd
E ⊆ Gc

E . Thus,

󰁛

e∈M(Gc
E
,σE)

we × α(e) ≥
󰁛

e∈M(Gd
E
,σE)

we × α(e) and
󰁛

e∈mw(Gc
E
,σE)

we ≤
󰁛

e∈mw(Gd
E
,σE)

we.

Hence, given (25) and (26) it follows that:

∀c, d ∈ DE . c ⊑ d ⇒ IAS(Gd
E , Gu1

I , Gu2
I ) ≤ UB(Gc

E , Gu1
I , Gu2

I ).

⊓⊔

Proof (Proposition 3) given c, d ∈ DE such that c ⊑ d, using proposition 1 we have:

IAS(Gd
E , Gu1

I , Gu2
I ) ≤ UB(Gc

E , Gu1
I , Gu2

I ),

IAS(Gd
E , Gu1

I , Gu2
I )− IAS(GE , Gu1

I , Gu2
I ) ≤ UB(Gc

E , Gu1
I , Gu2

I )− IAS(GE , Gu1
I , Gu2

I ).

Since ϕconsent(Gd
E , Gu1

I , Gu2
I ) = max(IAS(Gd

E , Gu1
I , Gu2

I )− IAS(GE , Gu1
I , Gu2

I ), 0) thus

ϕconsent(Gd
E , Gu1

I , Gu2
I ) ≤ oeconsent(Gc

E , Gu1
I , Gu2

I ).

Similarly we have:

IAS(Gd
E , Gu1

I , Gu2
I ) ≥ LB(Gc

E , Gu1
I , Gu2

I ),

IAS(GE , Gu1
I , Gu2

I )− IAS(Gd
E , Gu1

I , Gu2
I ) ≤ IAS(GE , Gu1

I , Gu2
I )− LB(Gc

E , Gu1
I , Gu2

I ).

Since ϕdissent(G
d
E , Gu1

I , Gu2
I ) = max(IAS(GE , Gu1

I , Gu2
I ) − IAS(Gd

E , Gu1
I , Gu2

I ), 0) we get

ϕdissent(G
d
E , Gu1

I , Gu2
I ) ≤ oedissent(G

c
E , Gu1

I , Gu2
I ).

⊓⊔

Proof (Proposition 4) Given that ∀(e,Gu1
I , Gu2

I ) ∈ E × 2I × 2I : w(e,Gu1
I , Gu2

I ) = 1, we
have for any c ∈ DE s.t. |Gc

E | ≥ σE ,

IAS(Gc
E , Gu1

I , Gu2
I ) =

󰁓
e∈Gc

E

α(e)

|Gc
E |

and UB(Gc
E , Gu1

I , Gu2
I ) =

󰁓

e∈M(Gc
E
,σE)

α(e)

σE
.

It follows from the fact that M(Gc
E ,σE) ⊆ Gc

E :

∃S ⊆ Gc
E , UB(Gc

E , Gu1
I , Gu2

I ) = IAS(S,Gu1
I , Gu2

I ),

UB(Gc
E , Gu1

I , Gu2
I )− IAS(GE , Gu1

I , Gu2
I ) =

IAS(S,Gu1
I , Gu2

I )− IAS(GE , Gu1
I , Gu2

I ),

oeconsent(G
c
E , Gu1

I , Gu2
I ) = ϕconsent(S,G

u1
I , Gu2

I ).

The subset S being for example the set M(Gc
E ,σE) itself. The same reasoning applies when

considering oedissent. In this case we consider the lower bound LB. We have:

LB(Gc
E , Gu1

I , Gu2
I ) =

󰁓
e∈m(Gc

E
,σE) α(e)

σE
.
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Given that m(Gc
E ,σE) ⊆ E, we have:

∃S ⊆ Gc
E , LB(Gc

E , Gu1
I , Gu2

I ) = IAS(S,Gu1
I , Gu2

I ),

IAS(GE , Gu1
I , Gu2

I )− LB(Gc
E , Gu1

I , Gu2
I ) =

IAS(GE , Gu1
I , Gu2

I )− IAS(S,Gu1
I , Gu2

I ),

oedissent(G
c
E , Gu1

I , Gu2
I ) = ϕdissent(S,G

u1
I , Gu2

I ).

This proves that, if IAS is a simple mean, for any c ∈ DE s.t. |Gc
E | ≥ σE :

∃S, S′ ⊆ Gc
E

󰀫
oeconsent(Gc

E , Gu1
I , Gu2

I ) = ϕconsent(S,G
u1
I , Gu2

I )

œdissent(G
c
E , Gu1

I , Gu2
I ) = ϕdissent(S

′, Gu1
I , Gu2

I )
.

Hence oeconsent and oedissent are tight optimistic estimates for respectively ϕconsent and
ϕdissent if the underlying IAS is a simple average. ⊓⊔

Before giving the proof of the proposition 5 we present the following lemma.

Lemma 2 The sums of the number of all descriptions covering each record in G is equal
to the sum of the supports of all descriptions in D. That is:

󰁛

g∈G

|↓δ(g)| =
󰁛

d∈D
|Gd|.

Proof (Lemma 2) For g ∈ G, we have ↓ δ(g) = {d ∈ D s. t. d ⊑ δ(g)} and for d ∈ D, we
have Gd = {g ∈ G s. t. d ⊑ δ(g)}. Let us define the indicator function on D ×G:

1⊑(d, g) =

󰀫
1 if d ⊑ δ(g)

0 else
.

Hence, we have | ↓δ(g)| =
󰁓

d∈D 1⊑(d, g) and |Gd| =
󰁓

g∈G 1⊑(d, g) thus:

󰁛

g∈G

| ↓δ(g)| =
󰁛

g∈G

󰁛

d∈D
1⊑(d, g) =

󰁛

d∈D

󰁛

g∈G

1⊑(d, g) =
󰁛

d∈D
|Gd|.

⊓⊔

Proof (Proposition 5) We denote by gs the random record drawn in line 1 and by ds the
random description drawn in line 2 of FBS.

P(ds = d) =
󰁛

g∈G

P((gs = g)(ds = d|g))

=
󰁛

g∈Gd

1

|↓δ(g)|
×

|↓δ(g)|
󰁓

i∈G |↓δ(i)|
󰁿 󰁾󰁽 󰂀

weight wg normalized

=
|Gd|

󰁓
g∈G |↓δ(g)|

.

It follows that from Lemma 2 that P(ds = d) =
|Gd|

󰁓
d′∈D |Gd′ |

. ⊓⊔

Proof (Proposition 6) Given Proposition 5, it is clear that ∀p ∈ P : p = (c, u1, u2) satisfies

C ⇒ P(p) =
|ext(p)|

Z
> 0. with |ext(p)| = |Gc

E | × |Gu1
I | × |Gu2

I | and Z =
󰁓

p′∈P |ext(p′)| a
normalizing factor. ⊓⊔


