, Using the above characterization of a : b < < ? c : d = 1, we have different cases to consider

, Case a = b: in that case, a : b < < ? e : f = 1 obviously holds

. Case-where-|-b-?-a-|-?-|-d-?-c-|, Since (c : d < < ? e : f = 1), we necessarily have | d ? c | ? | f ? e | and e ? f . We deduce | b ? a | ? | f ? e | and a ? b and e ? f

. Case-where-|-b-?-a-|-?-|-d-?-c-|, a similar reasoning applies to show that still a : b < < ? e : f = 1. ? Moreover a : b < < ? c : d = 0 if and only if

M. Bayoudh, H. Prade, and G. Richard, Evaluation of analogical proportions through Kolmogorov complexity, Knowl.-Based Syst, vol.29, pp.20-30, 2012.

S. Bayoudh, L. Miclet, and A. Delhay, Learning by analogy: a classification rule for binary and nominal data, Proc. Int. Joint Conf. on Artificial Intelligence, vol.07, pp.678-683, 2007.

C. H. Bennett, P. Gács, M. Li, P. Vitányi, and W. H. Zurek, Information distance, CoRR, 2010.

M. Bounhas, H. Prade, and G. Richard, Analogy-based classifiers for nominal or numerical data, Int. J. Approx. Reason, vol.91, pp.36-55, 2017.

A. Cornuéjols, Analogy as minimization of description length, Machine Learning and Statistics: The Interface, pp.321-336, 1996.

W. Correa-beltran, H. Prade, and G. Richard, Constructive solving of Raven's IQ tests with analogical proportions, Int. J. Intell. Syst, vol.31, issue.11, pp.1072-1103, 2016.

J. P. Delahaye and H. Zenil, On the Kolmogorov-Chaitin complexity for short sequences, CoRR, 2007.

J. P. Delahaye and H. Zenil, Numerical evaluation of algorithmic complexity for short strings: a glance into the innermost structure of randomness, Appl. Math. Comput, vol.219, issue.1, pp.63-77, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00825530

D. Dubois, H. Prade, and G. Richard, Multiple-valued extensions of analogical proportions, Fuzzy Sets Syst, vol.292, pp.193-202, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01475021

T. G. Evans, A program for the solution of a class of geometric-analogy intelligence-test questions, Semantic Information Process-ing, pp.271-353, 1968.

L. A. Gatys, A. S. Ecker, and M. Bethge, Image style transfer using convolutional neural networks, The IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, pp.2414-2423, 2016.

D. Gentner, K. J. Holyoak, and B. N. Kokinov, The Analogical Mind: Perspectives from Cognitive Science, Cognitive Science and Philosophy, 2001.

S. Goel and S. F. Bush, Kolmogorov complexity estimates for detection of viruses in biologically inspired security systems: a comparison with traditional approaches, Complexity, vol.9, issue.2, 2003.

M. Hesse, On defining analogy, Proc. Aristot. Soc, vol.60, pp.79-100, 1959.

M. Hesse, Models and Analogies in Science, 1963.

D. Hofstadter and M. Mitchell, The Copycat project: a model of mental fluidity and analogy-making, Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, pp.205-267, 1995.

D. Hofstadter and E. Sander, Surfaces and Essences: Analogy as the Fuel and Fire of Thinking, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02113552

S. J. Hwang, K. Grauman, and F. Sha, Analogy-preserving semantic embedding for visual object categorization, Proc. 30th Int. Conf. on Machine Learning, vol.28, 2013.

L. Jing, Y. Lu, H. Gang, and K. Bing, Visual attribute transfer through deep image analogy, Proc. SIGGRAPH), vol.36, 2017.

S. Klein, Culture, mysticism & social structure and the calculation of behavior, Proc. 5th Europ. Conf. in Artificial Intelligence (ECAI'82), pp.141-146, 1982.

S. Klein, Analogy and mysticism and the structure of culture (and Comments & Reply), Curr. Anthropol, vol.24, issue.2, pp.151-180, 1983.

.. H. Ch, H. Lampert, S. Nickisch, and . Harmeling, Learning to detect unseen object classes by between-class attribute transfer, IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR), 2009.

M. T. Law, N. Thome, and M. Cord, Quadruplet-wise image similarity learning, IEEE Int. Conf. on Computer Vision (ICCV), pp.249-256, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01094069

M. T. Law, N. Thome, and M. Cord, Learning a distance metric from relative comparisons between quadruplets of images, Int. J. Comput. Vis, vol.121, issue.1, pp.65-94, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01346190

Y. Lepage, Analogy and formal languages, Proc. Joint Meeting of the 6th Conf. on Formal Grammar and the 7th Conf. on Mathematics of Language, vol.53, pp.180-191, 2002.

L. Levin, Laws of information conservation (non-growth) and aspects of the foundation of probability theory, Probl. Inf. Transm, vol.10, pp.206-210, 1974.

M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, 2008.

L. Miclet, S. Bayoudh, and A. Delhay, Analogical dissimilarity: definition, algorithms and two experiments in machine learning, J. Artif. Intell. Res, vol.32, pp.793-824, 2008.

L. Miclet and A. Delhay, Relation d'analogie et distance sur un alphabet défini par des traits, IRISA, 2004.

L. Miclet and A. Delhay, Analogical Dissimilarity: Definition, Algorithms and First Experiments in Machine Learning, INRIA, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070321

L. Miclet and H. Prade, Logical definition of analogical proportion and its fuzzy extensions, Proc. Ann. Meet. North Amer. Fuzzy Inform. Proc. Soc. (NAFIPS), pp.1-6, 2008.

L. Miclet and H. Prade, Handling analogical proportions in classical logic and fuzzy logics settings, Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU'09), vol.5590, pp.638-650, 2009.

J. Piaget, Logic and Psychology, 1953.

M. Pirlot, H. Prade, and G. Richard, Completing Preferences by Means of Analogical Proportions, pp.135-147, 2016.

H. Prade and G. Richard, From analogical proportion to logical proportions, Log. Univers, vol.7, issue.4, pp.441-505, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01138469

H. Prade and G. Richard, Homogeneous and heterogeneous logical proportions, IfCoLog J. Log. Appl, vol.1, issue.1, pp.1-51, 2014.

H. Prade and G. Richard, Analogical inequalities, Proc. 14th Europ. Conf. (ECSQARU'17) on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, vol.10369, pp.3-9, 2017.

H. Prade and G. Richard, Boolean analogical proportions -axiomatics and algorithmic complexity issues, Proc. 14th Europ. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU'17), vol.10369, pp.10-21, 2017.

H. Prade and G. Richard, From the structures of opposition between similarity and dissimilarity indicators to logical proportions, Representation and Reality in Humans, Other Living Organisms and Intelligent Machines, pp.279-299, 2017.

H. Prade and G. Richard, Multiple-valued logic interpretations of analogical, reverse analogical, and paralogical proportions, Proc. 40th IEEE Int. Symp. on Multiple-Valued Logic (ISMVL'10), pp.258-263, 2010.

D. E. Rumelhart and A. A. Abrahamson, A model for analogical reasoning, Cogn. Psychol, vol.5, pp.1-28, 2005.

S. Schockaert and H. Prade, Completing rule bases using analogical proportions, Computational Approaches to Analogical Reasoning -Current Trends, 2014.

F. Soler-toscano, H. Zenil, J. P. Delahaye, and N. Gauvrit, Correspondence and independence of numerical evaluations of algorithmic information measures, Computability, issue.2, pp.125-140, 2013.

R. J. Solomonoff, A formal theory of inductive inference. Part I and II, Inf. Control, vol.7, issue.1, pp.224-254, 1964.

A. Tversky, Features of similarity, Psychol. Rev, vol.84, pp.327-352, 1977.

F. Yvon and N. Stroppa, Formal Models of Analogical Proportions, Ecole Nationale Supérieure des Télécommunications, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00145148