H. Barbosa, J. C. Blanchette, M. Fleury, and P. Fontaine, Scalable fine-grained proofs for formula processing, Journal of Automated Reasoning, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01526841

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi? et al., Ganesh Gopalakrishnan and Shaz Qadeer, vol.6806, pp.171-177, 2011.

C. Barrett, L. De-moura, and P. Fontaine, Proofs in satisfiability modulo theories, APPA 2014, vol.55, pp.23-44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095009

C. Barrett, P. Fontaine, and C. Tinelli, The Satisfiability Modulo Theories Library (SMT-LIB), 2016.

C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, Satisfiability modulo theories, Handbook of Satisfiability, vol.185, pp.825-885, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01095009

F. Besson, P. Fontaine, and L. Théry, A flexible proof format for SMT: A proposal, pp.15-26, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00642544

S. Böhme, Proving Theorems of Higher-Order Logic with SMT Solvers, 2012.

T. Bouton, D. Caminha, B. De-oliveira, D. Déharbe, and P. Fontaine, veriT: An open, trustable and efficient SMT-solver, LNCS, vol.5663, pp.151-156, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00430634

L. De-moura and N. Bjørner, Z3: An efficient SMT solver, LNCS, vol.4963, pp.337-340, 2008.

D. Déharbe, P. Fontaine, and B. W. Paleo, Quantifier inference rules for SMT proofs, pp.33-39, 2011.

B. Ekici, A. Mebsout, C. Tinelli, C. Keller, G. Katz et al., SMTCoq: A plug-in for integrating SMT solvers into Coq, LNCS, vol.10426, pp.126-133, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669345