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Abstract

The purpose of this study is to compare network loadings related to different network equilibria by a simulation-based
framework. The direct comparison of path flows or trajectory patterns is hard to achieve so here we propose a more
aggregate approach based on the comparison of demand level breakpoints. A breakpoint is a demand threshold value
that leads to significant changes in path flow loading. More specifically, we set in this paper a demand breakpoint
when the list of effective route alternatives differs by at least one path. This is for example the case when one route
is no longer considered for one equilibrium while being used by some vehicles in the second one. We are going to
investigate both static and dynamic network loading while scanning all demand levels to identify the breakpoints. We
focus on discrete demand formulation and choices and use a trip-based traffic simulator.

This study analyzes the breakpoints for the solution of three popular equilibrium conditions: User equilibrium
(UE), System optimum (SO) and Boundary Rational User Equilibrium (BRUE). First, we investigate breakpoints
on a well-known network (Braess) in the static case in order to better define this concept. Second, breakpoints
are investigated on a real network (Lyon, France) where dynamic travel times are provided by a microscopic traffic
simulator. When the breakpoints are obtained for a given scenario, we focus on identifying demand ranges where
some paths are not used in SO while being travelled in UE or BRUE. Following the concept of Braess paradox, this
permits to design banning strategies at some key locations in the network to prevent some alternatives from being
used and thus to improve the system performance. We show by simulation that such a strategy is effective, which
demonstrates the importance of breakpoint identification.

Keywords: traffic, simulation, trip-based assignment, user equilibrium, system optimum, boundary rational user
equilibrium, variational demand, switch equilibrium, breakpoint

1. Introduction

The traffic assignment problem has been studied for more than five decades and a large variety of analytical and
simulation-based models and/or algorithms have been developed to find network equilibria. Network equilibria are
defined based on travel costs. Cost can be expressed as a function of time or money or a combination of both. When
all users experience the minimum possible path cost given the network constraints and other users’ path choice, the
solution is called User Equilibrium (UE) (Wardrop, 1952). Network operators aim to minimize the sum of all user
costs. The solution, in this case, is called System Optimum (SO) (Patriksson, 2015). The users are looking for UE
while the system wants to achieve the SO. The difference of the total travel cost between UE and SO is called Price of
Anarchy (PoA) (Roughgarden, 2005). There are several researches about how to reduce PoA in the literature (Youn
et al. (2008), Colini-Baldeschi et al. (2017)). The goal of this study is to investigate the evolution of PoA depending on
the level of demand by introducing a new concept named demand level breakpoints. This concept permits to identify
demand level ranges where PoA is high because of some paths which are used in UE whereas they are not used in SO.
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Such situations are known in the literature as the Braess paradox (Frank, 1981). While being highly documented this
paradox remains very hard to detect in the real field as the level of demand plays a crucial role (Askoura et al., 2011).
This paper aims to go one step further in a better identification of these situations by introducing systematic methods
to determine the demand level breakpoints. At the end, we will show how the identification of breakpoints enables to
design efficient control strategies at the network level that consist in banning some routes when critical demand level
values are experienced.

Path costs can be estimated based on models or simulators. Traffic assignment can be classified into three main
groups: Static Traffic Assignment (STA), semi-dynamic and Dynamic Traffic Assignment (DTA) (Bliemer et al.,
2017). Since the 1950s there is much research about finding the assignment solutions for UE and SO. In this paper,
based on reviews of Szeto and Wong (2012), Wang et al. (2018) and following Mahmassani (2001), a simulation based
approach is preferred because the results are easy to interpret and relatively close to reality (Sundaram et al., 2011).

Identifying situations in which the Braess paradox holds and induces the breakpoints means in practice investi-
gating the qualitative differences between UE and SO equilibrium. The UE acts as a proxy for the current network
situation whereas SO reproduces the optimal situations with smart traffic control (Ehrgott et al., 2015). Moreover, it
is well-known that users are not always taking the shortest paths (Szeto and Lo, 2006) because they lack a perfect
knowledge of the traffic conditions (Mahmassani and Chang, 1987; Delle Site, 2018) or because they also favor other
criteria when choosing their travel path (Abdel-Aty et al., 1997; Zhou et al., 2017). To investigate the robustness of
breakpoint definition while relaxing perfect UE assumptions, we are going to calculate also Boundedly Rational User
Equilibrium (BRUE). BRUE can be considered as a relaxation of UE where users try to optimize their own benefit up
to a point but stop the process where they are satisfied with the current solution (indifference bound). Equilibrium is
achieved when all user costs are within the boundary around the UE solution (Di and Liu, 2016; Han et al., 2015b).

In this paper, we consider UE, SO and BRUE independently and try to investigate the relation between these three
equilibria for different demand levels. To the best of our knowledge the studies in the literature focus mainly on
finding the path flow distributions over the global network related to each equilibrium. However, analyzing the output
of traffic assignment models in order to be used for improving the transportation system is also important. Here, we
would like to go further and cross-compare trip patterns. The questions are what is the next step after finding the
equilibrium? How can we analyze the network equilibrium? Can we design a strategy to move the system from user
equilibrium toward the system optimum? We are going to directly answer these questions by studying demand level
breakpoints and apply some banning and rerouting strategy. We attempt to design new traffic management methods
based on the idea of incenting users to change paths, so that the network moves closer to SO.

Generally, the travel demand is not fixed even in the short term. There are few studies that focus on the impact of
different levels of demand on the UE (see e.g. Wie et al. (2002); Szeto and Lo (2004); Han et al. (2011); D’Ambrogio
et al. (2009); Han et al. (2015a)). First we define breakpoints and analyze them. Then, for each level of demand, and
given a fixed active paths set, we try to analyze how we can determine the critical users for rerouting. Critical users
are the users who, when they change their path, have more impact than others on moving the equilibrium towards SO
conditions. There are four main points that we aim at investigating:

• The impact of one origin-destination demand level on the network equilibria.

• Critical users who can have maximum impact on moving UE and BRUE toward SO by change their path.

• Demand level ranges that we can apply control strategies to follow the SO assignment by respecting the network
UE or BRUE.

• Does the banning strategy work in order to shift the network UE/BRUE towards an equilibrium with lower total
travel costs?

The next section presents the definition of the breakpoint and solves a simple static traffic model in order to define
the breakpoints in the Braess network. In section 3, the trip-based simulator is presented first. Second, we explain the
dynamic equilibrium model and how we calculate the breakpoints for DTA. The network for numerical experiments
and the process of breakpoint detection are presented in the section 4. We consider two test cases on the dynamic
network. The control strategy and the obtained results for the first test case are discussed in section section 5. The
second test case and the application of breakpoint detection and ban strategy to the second test case are presented in
section 6. Finally, we state concluding remarks and introduce future directions of work in the “Conclusion” section.
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2. Breakpoint definition

Traffic assignment provides the path flow distribution for all Origin-Destination (OD) pairs, i.e. how many users
take each possible path from each origin to each destination. There is a path set which contains all the active paths
from each origin to each destination. A path chosen by at least one user is an active path. The active path set is a
component of the optimal path flow distribution defined for each equilibrium: UE, SO and BRUE. For a given origin
and destination pair w, the active path set for a given equilibrium can be the same at different levels of demand. We
define the breakpoints as demand levels where we observe a change in the active path set (e.g. one new path in or/and
one current path out). We will first study the breakpoints in the static case on the classical Braess network (Braess
et al., 2005). As explained in the introduction, the Braess paradox arises when UE and SO have difference path set.
Determining the breakpoint for both equilibria will permit to easily identify such situations.

The classic Braess network with linear cost functions in the static case is shown is figure 1. There are five links
with cost functions ti j for the link i j connecting node i to node j. The flow of the link i j is fi j and there are 3 alternative
paths from origin node 1 to destination node 4: path 1 (1-3-4), path 2 (1-2-4) and path 3 (1-3-2-4). Therefore the cost
functions (Ck) of paths k are as follow:

C1(π) = t13 + t34 (1)

C2(π) = t12 + t24 (2)

C3(π) = t13 + t32 + t24 (3)

Where πk denotes the flow of path k and π = (πk)k=1,2,3.

Figure 1: Classic Braess network with the link cost functions and assumptions

The two assumptions in figure 1 (α1 ≥ α2, β1 > β2) guarantee that by increasing the demand, there exist three
cases of UE (see e.g. Pas and Principio (1997)). They also ensure that the path 3 is the cheapest free flow path, due to
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lower coefficients (α2, β2) in the path cost function. This is a critical condition for the Braess paradox to appear. The
different demand levels will be defined in relation with the structure of the equilibrium (active paths). Consequently,
for UE we will have three scenarios. According to the definition of the UE, the conditions of static UE can be stated
mathematically as follows:

Cp −Cw
∗ ≥ 0 ;∀p ∈ Pw (4)

πp(Cp −Cw
∗) = 0 ;∀p ∈ Pw (5)

πp ≥ 0 ;∀p ∈ Pw (6)

Where Cw
∗ is the minimum travel cost for origin-destination pair w. Pw is the set of possible paths for w and πp

denotes the flow on path p.
The path flow distribution is a [1 × 3] vector π that contains the flow value for three paths. Note that the feasible

path flow vector is defined as: Π , {π : π ≥ 0,
∑

p∈Pw
πp = Dw}. So the active path set is the set of path p ∈ Pw

such that π > 0. The path flow distribution for UE is a function UE(D) of demand level D and can be shown to be as
follows:

UE(D) =


[0, 0, D] 0 ≤ D < α1−α2

β1+β2
,

[−α1+α2+(β1+β2)D
β1+3β2

, −α1+α2+(β1+β2)D
β1+3β2

, 2(α1−α2)−(β1−β2)D
β1+3β2

] α1−α2
β1+β2

≤ D < 2(α1−α2)
β1−β2

,

[ D
2 ,

D
2 , 0] D ≥ 2(α1−α2)

β1−β2

(7)

Consequently, there are two breakpoints for UE: D = α1−α2
β1+β2

and D =
2(α1−α2)
β1−β2

.
Let us now investigate the network under BRUE. The boundary rational model is one behavioral model used to relax
the perfect rational hypothesis in the definition of UE by considering an indifference band (ε). There are two main
differences in the definition of breakpoints between the BRUE and UE:

• The path flow distribution for BRUE not only depends on the demand level, it also depends on the ε value for
the indifference band for this origin and destination pair.

• The path flow distribution is not unique in some scenarios, so for the Braess network there are two convex sets
(simplices) of flow vectors φ1 and φ2 which can satisfy the conditions of BRUE:

φ1 = {π ≥ 0 : Ci(π) −C j(π) ≤ ε; i, j ∈ {1, 2}, i , j} (8)

φ2 = {π ≥ 0 : Ci(π) −C j(π) ≤ ε; i, j ∈ {1, 2, 3}, i , j} (9)

Note that equation 8 is obtained by assuming that both paths are used. In equation 9, φ2 is a set in which all three
paths can be active. If the indifference band is equal to zero (ε = 0) the BRUE and UE assignment are the same. Due
to the non-uniqueness of the BRUE, for a given ε, an active path has a cost lower or equal to the minimum travel cost
path plus ε. The ε-BRUE path flow pattern can be shown to be given by:

πp > 0→ Cp −Cw
∗ ≤ ε ;∀p ∈ Pw (10)

The path flow distribution for BRUE is a function of the demand level and the band value BRUE(D, ε) is given by:

BRUE(D, ε) =


[0, 0, D] 0 ≤ D < α1−α2

β1+β2
− ε

β1+β2
,

φ1 ∪ φ2 D > 2(α1−α2)
β1−β2

+ ε
β1−β2

,

φ2 o.w.

(11)
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For a detailed calculation of equation 11 readers can refer to Di et al. (2014). Therefore, there are two breakpoints but
they depend on the ε value: D = α1−α2

β1+β2
− ε

β1+β2
and D =

2(α1−α2)
β1−β2

+ ε
β1−β2

.
The third considered equilibrium is SO. The SO path flow distribution is based on the second principle of Wardrop

(1952), i.e. minimizing the total travel cost. Therefore, mathematically the goal is to minimize the total travel cost as
a function of demand and flow vector:

min T (D, π) =
∑
p∈Pw

πpCp (12)

Given our assumptions on coefficient values for the Braess network (figure 1), three scenarios that can occur as in
the UE case. The objective function in each scenario is given by:

T (D) =


(2β1 + β2)D2 + α2D if only path 3 used,
(β1 + β2)(π1

2 + π2
2) + α1D if path 1 and 2 used,

(β1 + 2β2)(π1
2 + π2

2) + [α1 − α2 − 2(β1 + β2)D](π1 + π2) if all paths used and π3 = D − (π1 + π2)
+2β2π1π2 + (2β1 + β2)D2 + α2D

(13)

Therefore and mathematically, the path flow distribution for SO is defined as follow:

S O(D) =


[0, 0, D] 0 ≤ D < α1−α2

2(β1+β2) ,

[
−α1+α2

2 +(β1+β2)D
β1+3β2

,
−α1+α2

2 +(β1+β2)D
β1+3β2

, (α1−α2)−(β1−β2)D
β1+3β2

] α1−α2
2(β1+β2) ≤ D < α1−α2

β1−β2
,

[ D
2 ,

D
2 , 0] D ≥ α1−α2

β1−β2

(14)

There are two breakpoints for SO: D = α1−α2
2(β1+β2) and D = α1−α2

β1−β2
. There is a fixed relationship between breakpoints of

SO and UE which is shown in equation 15. The relationship between BRUE’s breakpoints and the breakpoints of SO
is depending on the value of ε.

BPi,S O =
1
2

BPi,UE ; ∀i ∈ {1, 2} (15)

BP1,S O =
1
2

[BP1,BRUE +
ε

(β1 + β2)
] ; BP2,S O =

1
2

[BP2,BRUE −
ε

(β1 − β2)
] (16)

Where BPi, j is the ith breakpoint of the equilibrium j ∈ {UE, S O, BRUE}.
As aforementioned, existing studies usually finish the breakpoints analysis here (finding the path flow distribution for
equilibria). We are now going to analyze the equilibria based on breakpoints.

2.1. Analysis based on breakpoints

The path flow distribution for UE, SO and BRUE is shown in figure 2 to present the optimal path set of two different
types of paths in the Braess network. It is not easy to present the BRUE in the path flow distribution diagram because
the ε allowance for cost implies that for each path there is a set of possible flow values in the BRUE path flow
distribution around the UE flow value. Thus in figures 2(a) and 2(b), we represent the BRUE solution in terms of
the maximum range of flows at equilibrium. Figure 2(a) presents the demand-flow diagram for path 1 and 2 in UE,
SO and BRUE situations. Breakpoints are shown on the demand axis. (a↔b) presents the active path set for UE and
SO and also possible active path set for BRUE depending on the value of ε. The same demand-flow diagram for path
3 is shown in figure 2(b). Note that the breakpoints of BRUE, α1−α2

β1+β2
− ε

β1+β2
and 2(α1−α2)

β1−β2
+ ε

β1−β2
, are equal to UE

breakpoints when ε = 0.
The first breakpoint occurs when D = α1−α2

2(β1+β2) for analyzing the UE solution and SO. Determining this level of
demand as a breakpoint means that the active path set of one of the equilibria is changed. Before this breakpoint, the
active path set of both equilibria has the same path: PUE = PS O = {3}. In other words, from D = 0 to D = α1−α2

2(β1+β2) ,
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the equilibrium under both disciplines refers to the same active path set. Then after this breakpoint, only paths 1 and
2 should be used under SO discipline while path 3 is the only active path for UE. From the first breakpoint of the
SO (BP1,S O) to the first breakpoint of the UE (BP1,UE), the flow is distributed differently for UE and SO. For UE all
users are still taking the third path but for SO some of them start to take the paths 1 and 2 to minimize the total travel
time. It means that for demand level higher than the BP1,S O, paths 1 and 2 will be added to the active path set in SO
solution. The active path sets for UE and SO are fixed after BP1,S O until BP1,UE is detected at D = α1−α2

β1+β2
. Where

paths 1 and 2 are used under UE discipline. The active path set is the same for UE and SO when the demand level is
α1−α2
β1+β2

≤ D < α1−α2
β1−β2

. Path 3 is not in the active path set for SO but used in UE solution when we pass the BP2,S O and

the demand is in range α1−α2
β1−β2

≤ D < 2(α1−α2)
β1−β2

. Therefore the BP2,UE is D =
2(α1−α2)
β1−β2

where the active path set of UE is

changed. In Braess network, after the last breakpoint, D ≥ 2(α1−α2)
β1−β2

, the UE and SO path flow distribution will be the
same.

In general, the BRUE path flow distribution is close to UE but the solution is not symmetric with respect to paths 1
and 2 as in SO and UE. In the BRUE-SO analysis, D = α1−α2

2(β1+β2) is the first breakpoint as in the UE-SO only if ε ≤ α1−α2
2 .

If ε > α1−α2
2 , the first breakpoint is located in the lower demand level with respect to the first SO breakpoint. Path 1

and(or) path 2 are added to the path set after the first breakpoint. For higher demand levels, by taking into account ε,
the BRUE-SO breakpoints are same as the UE-SO breakpoints until the last breakpoint, when path 3 exits the active
path set. If D ≥ 2(α1−α2)

β1−β2
, the BRUE and SO path flow distribution will be the same only if ε = 0. It means, for

ε > 0, the last breakpoint will be 2(α1−α2)
β1−β2

+ ε
β1−β2

. All paths are active for BRUE and path 3 is not active for SO

while 2(α1−α2)
β1−β2

≤ D < 2(α1−α2)
β1−β2

+ ε
β1−β2

. Consequently, the path flow distribution is the same for BRUE and SO when

D ≥ 2(α1−α2)
β1−β2

+ ε
β1−β2

. Note that BRUE accepts 3 non zero path-flows for values of D < α1−α2
β1+β2

− ε
β1+β2

when ε > α1 −α2.
Moreover, if ε ≤ α1−α2

2 and D < α1−α2
2(β1+β2) , the solution is the same for all 3 equilibria. Finally, the mathematical formulas

for path flow distributions for the 3 equilibria (UE, SO and BRUE) are shown in table 1. This table is obtained by
merging the equations 7, 11 and 14 in order to jointly investigate the breakpoints when demand is increasing.

This study by breakpoint analysis attempts to identify ranges of demand where we have a qualitative difference
between UE/BRUE and SO. We are looking in particular for situations where some paths are used in UE/BRUE while
not in SO. This corresponds to demand ranges with breakpoints as boundaries, because breakpoints are identifying
changes in the active paths for each equilibrium. Then, we can apply a control strategy in order to improve the
performance of the network. At each range of demand between two breakpoints, we know the active path set of SO
and the network state (UE or BRUE). So at the range of demand where PUE/BRUE , PS O, changing the path set may
improve the system. For instance, when 2(α1−α2)

β1−β2
≤ D < 2(α1−α2)

β1−β2
+ ε

β1−β2
path 3 is not used under SO discipline. So in

this demand interval the system controller can ban path 3 or design other control strategies in order to prevent users
from travelling on path 3, and the system will move towards the SO state. In other ranges of demand the network
controller can induce a certain number of users to travel by specific paths, in order to get closer to SO. Such users are
critical for an efficient control strategy.

The breakpoint analysis helps the system controller to evaluate the possibility of applying control strategies in
order to improve the system performance. In the sequel, we focus on the banning strategy in which, by banning one
link or by preventing users from turning at one intersection, the controller can ban one path which is in the active path
set of the UE solution but does not belong to the SO active path set. An alternate possibility, which will be explored
in future work, consists in using guidance. In urban networks, transportation system controllers can guide (e.g. by
Advanced Traveler Information System (ATIS)) the limited number of users that are equipped (Klein et al., 2018).
Generally, it will be useful to know how many users need to change their path in order to move the network from one
equilibrium on the user side (UE or BRUE) to one equilibrium on the system side (SO).

This part of the study has attempted to explain the path flow distribution breakpoints concept and to define them in
a simple manner using the static assignment on the Braess network. In the following parts of the paper, we present the
dynamic trip-based framework to find the breakpoints and identify the critical user(s) for rerouting and critical path(s)
for banning.
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Figure 2: (a): Path 1 or Path 2 flow-demand diagram for UE, SO and BRUE. (a↔b): Possible path set of optimal solution [Px = Possible path set
of optimal solution for equilibrium x, where x stands for UE or SO]. Note that for BRUE, it depends on the ε. (b): Path 3 flow-demand diagram for
UE, SO and BRUE.
Red dash lines in figures (a) and (b) presents the value of breakpoints in BRUE path flow distribution based on the given ε. It can change in ranges
that are specified by the red arrows.
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For detailed calculation of (10), readers can look at (D
i et al. 2014) 
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3. Simulation-based dynamic network equilibrium

The concept and the application of breakpoint detection are presented in the static case. This section presents the
dynamic simulator, network equilibrium model and tools to calculate the equilibria in the dynamic case.

3.1. Dynamic traffic simulator
In this work, we use the Symuvia1 platform for trip-based dynamic simulation in order to calculate travel times

in the network for any given path flow distributions for all OD pairs. Symuvia gives access to the position, speed
and acceleration of each vehicle (user) on the network. It is a microscopic simulator based on the Lagrangian res-
olution of the LWR (Lighthill Whitham Richards) model (Leclercq et al., 2007) which is the conservation law with
respect to traffic density. Vehicle movements at the microscopic scale are governed by a set of rules, including car-
following modeling (Leclercq, 2007a,b), lane-changes by using a macroscopic theory of vehicle lane-changing inside
microscopic models (Laval and Leclercq, 2008) and specific movements based on noise modeling at intersections
(Chevallier and Leclercq, 2007). It has a simulation time-step equal to 1 second, travel time information is aggregated
at the link level every 1 minute. The travel demand is given (dynamic OD pair demand) and users’ routes are deter-
mined by a dynamic traffic assignment model, which guides each vehicle in the network on the route that optimizes
its travel time to its initially assigned destination based on some specific equilibria discipline (UE, SO and BRUE are
considered here).

3.2. Network equilibrium model
Consider a network G(N, A) with a finite set of nodes N and a finite set of directed links A. The demand is time-

dependent. The period of interest (planning horizon) of duration H is discretized into a set of small time intervals
indexed by τ (τ ∈ T = {τ0, τ0 +σ, τ0 + 2σ, ..., τ0 + Mσ} and τ0 + Mσ = H). σ is the duration of the time intervals. In
an interval τ, Travel Time (TT) and traffic conditions do not change. The main notations to introduce in the dynamic
equilibrium model are as follows:

W: OD pairs, subset of origin × destination nodes, W ⊂ N × N.
a: index of link, a ∈ A.
w: index of origin and destination pair, w ∈ W.
Pw, τ: set of paths for w in departure time τ.
P∗w, τ: set of shortest paths for w in departure time interval τ.
p: index of path, p ∈ Pw, τ.
p∗: index of shortest path, p∗ ∈ P∗w, τ.
Dw: total demand for w pair.
Cp, τ: travel cost of path p in departure time τ.
C∗w, τ: minimum travel cost of OD pair w in departure time τ.
Ĉp, τ: marginal travel cost of path p in departure time τ.
Ĉ∗w, τ: minimum marginal travel cost of OD pair w in departure time τ.

According to the definition of the time interval in DTA and based on the study of (Sbayti et al., 2007), the conditions
of dynamic UE can be mathematically restated from equations 4, 5 and 6:

Cp, τ −C∗w, τ ≥ 0 ;∀w ∈ W, p ∈ Pw, τ, τ ∈ T (17)

πp, τ(Cp, τ −C∗w, τ) = 0 ;∀w ∈ W, p ∈ Pw, τ, τ ∈ T (18)

πp, τ ≥ 0 ;∀p ∈ Pw, τ, τ ∈ T (19)

1Note that Symuvia is an open source simulator that will be made available starting winter 2020.
http://www.licit-lyon.eu/themes/realisations/plateformes/symuvia/
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The equilibrium condition for BRUE is:

πp, τ > 0→ Cp, τ −Cw, τ
∗ ≤ ε ;∀p ∈ Pw, τ (20)

3.3. Equilibration process
In order to find the equilibrium we are using an iterative algorithm. The Method of Successive Average (MSA) has
been presented for the first time by Robbins and Monro (1951). In this study, we use the modified MSA in simulation-
based DTA. Consider i as the index of iteration in the optimization process and πi

p, τ as the number of users on path
p in departure interval τ and iteration i of the optimization. In iteration i, MSA swaps a fraction 1

i+1 of users on each
path with higher cost value than the lowest cost path, to the lowest cost path(s). The direction of the optimization
process is defined by an all-or-nothing assignment vector (yi

p, τ) for each OD pair at departure interval τ. With this step
size, path assignments πi

p, τ at iteration i are updated in order to obtain the path assignments πi+1
p, τ for iteration (i + 1) as

follows:

πi+1
p, τ =

i
i + 1

πi
p, τ +

1
i + 1

yi
p, τ ;∀p ∈ Pw, τ (21)

The main drawback of MSA is that it swaps users from all non-lowest cost paths without considering the gap between
path costs. In fact, there is no priority for expensive paths to swap more users. In this study, we use MSA ranking by
Sbayti et al. (2007) to remove this drawback for trip-based DTA. The idea of MSA ranking is first, rank the users by
the experienced TT then swap a maximum number of users based on MSA method. Maximum of number of swaps
NS i is observed when we have an empty lowest cost path for swapping. It means:

NS i =
1

i + 1
Dw (22)

This method swaps the user from the most expensive paths so it accelerates convergence and provides the best quality
solution for the trip-based problem. With a large number of users traveling between many OD pairs and with many
paths per OD pair, ranking the users is very costly and has no justification in a large-scale problem. But here with the
sub-area network it is efficient to find the UE, SO and BRUE with this ranking method.

3.4. Definition of SO for dynamic case

In the static case, we focused on specific OD pair in mono-OD network but here we are going to focus on specific OD
pairs in the network with multiple OD pairs. Therefore we consider two different definitions for SO: Global SO and
Local SO.

3.4.1. Global SO
The SO conditions in the dynamic case are mathematically stated in equations 23, 24 and 25 based on marginal TT.
The path marginal TT is the extra travel time that will be added to the path TT if an extra user is assigned to the path at
the current time interval. The SO conditions state that if the path flow is positive, then the experienced path marginal
TT should be equal to the minimum path marginal travel times (Sbayti et al., 2007).

Ĉp, τ − Ĉ∗w, τ ≥ 0 ;∀w ∈ W, p ∈ Pw, τ, τ ∈ T (23)

πp, τ(Ĉp, τ − Ĉ∗w, τ) = 0 ;∀w ∈ W, p ∈ Pw, τ, τ ∈ T (24)

πp, τ ≥ 0 ;∀p ∈ Pw, τ, τ ∈ T (25)

Computing the path marginal TT analytically is very costly. In Leclercq et al. (2016) it has been shown that using the
simulation-based approach to compute the path marginals is also very costly, even in a simple grid network. Therefore,
we use the simulator to compute a surrogate model for the marginal TT. We used three methods for calculating the
SO and consider the minimum total TT as the SO path flow distribution. The first method updates the link marginal
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every time a vehicle is exiting the link by calculating the marginal variation since the last exit the link. Finally, link
marginal are averaged using the 1 minute window. Consequently, the path marginal TT can obtained by:

Ĉp, τ =
∑
a∈Ap

[
∑τ+σ

t=τ Ĉa, t

σ
] (26)

Where Ĉa, τ is the marginal TT of link a at second t, σ is the length of each time interval and Ap is the subset of link
set A which defines path p. In fact, the surrogate function by Peeta and Mahmassani (1995) considers the sum of link
marginal TTs as the actual function. In the SO problem, we aim to minimize the cost in equation 26 for all users of
each OD pair. We also consider two methods based on the observation of trajectories at the link level. The observation
process of link marginal travel time for both methods (second and third) is the same but in the second method we use
the average operator for link marginal TT and for the third one, median operator is used in order to calculate the link
marginal TT. Finally, the path marginal TT will be the sum of link marginal TTs of that path like the first method. The
last two methods are well defined in Yildirimoglu and Kahraman (2018). For each scenario of SO, the simulation is
executed three times with these methods and the path flow distribution by minimum total TT is considered as the SO
solution.

3.4.2. Local SO
The idea of the local SO is to look for a SO to be achieved only by the users of specific OD pair(s), while all

other users choose the path based on the UE framework. This permits to study control strategies that are focusing on
a single OD pair in the network while other users for other OD pairs are not targeted. Therefore, conditions 23, 24
and 25 for SO are applied to the users of specific OD pair(s) who are aiming to achieve SO and conditions 17, 18
and 19 for UE are applied to the other users in the network (who choose their paths according to UE). Finally we will
have a mixed equilibrium in the network which is called "ME" solution in this study.

4. Dynamic test case

As we are now using a simulator to derive dynamic TT, we can investigate a more complex network configuration
than the Braess network. We are then now considering a sub-area of the Lyon full regional network. It is a network
of the Lyon 6 district (figures 3(a)). It is a Braess-like network when considering a specific OD pair that corresponds
to travel from the west (“Quai de Serbie”) to the east of the network (“6 Avenue Verguin”). In this network we are
looking for the breakpoints at various demand levels. Note that the travelers of other OD pairs load the complete
network, in order to represent the peak half an hour of the network based on the study of Krug et al. (2018). The
simulation and optimization are carried out for each level of demand with a 30 minutes horizon. The demand pattern
has been set up to adjust the regular level observed in this area during the peak hour. We select the 3 most likely
routes from each origin to destination to define the set of path candidates. They are shown in figures figures 3(b). The
network of Lyon 6 has: 430 nodes, 786 links, 26 origins, 24 destinations and 3732 trips for OD pairs excluding the
demand of “Quai de Serbie” to “6 Avenue Verguin” (for more details see Appendix A).

We search for the three equilibria in the complete network. It means that the optimization process is executed
for all OD pairs and users in the network and we try to analyze the breakpoints by increasing the demand level on
the specific OD pair. A simulation-based DTA is used to find the UE, SO and BRUE at every level of the demand
on the three predefined paths. The departure time for the test users is spread uniformly in the 30 minutes duration
of the horizon. Moreover, the users with other OD pairs travel with fixed departure time. According to the scale of
the network, for calculating the BRUE assignment, we consider ε = 0.1 Cp, τ. It means users will be satisfied if they
perceive a maximum ten percent more than the shortest path cost.

4.1. Breakpoint detection in the dynamic case

As mentioned earlier, we solve the problem with different demand levels. Demand of the specific “Quai de Serbie
to Verguin” OD pair is increased from one user to 1439 users (maximum demand based on the study of Krug et al.
(2018)) over the simulation time horizon = 30 min. We focus on the travels from the specific “Quai de Serbie to
Verguin” OD pair with 3 paths like the Braess network in order to detect the breakpoints which are expected to
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exist in the real network. The departure time is fixed for all users who do not travel between the specific OD pair.
The distribution of departure time for this OD pair is uniform. The optimization process has been carried out for
all equilibria and the full network. All experiments for UE and SO are reproducible and lead to a unique solution
but for BRUE the solution depends on the first network initialization (starting point in optimization process) and the
value of ε. Note that we will present one instance for the BRUE path flow distribution for breakpoint detection with
all-or-nothing initialization and ε = 0.1Cp, τ.

The solution space is not continuous because of the trip-based simulation (flows have integer values). Therefore,
for each experiment, we have three integer numbers as the flow on each path in the vector of assignment. In order
to represent and analyze the breakpoints in a continuous space, we draw the flow distribution diagram by making a
(piece-wise) linear regression with R2 < 0.9 on the integer data. The demand-flow diagram for each path is presented
in figure 4(a)-(c). Moreover, the results of breakpoint detection are presented in figure 4(d). In each experiment, each
equilibrium is calculated and the breakpoint occurs when at least one path enters or exits the active path set of one
equilibrium. The breakpoint analysis will be carried out by comparing one equilibrium from travellers’ point of view
(UE or BRUE) and one equilibrium from system point of view (SO or ME).

4.2. Breakpoint analysis

According to the figure 4, the SO active path set contains paths 1 and 2 at low demand level until the first SO
breakpoint is reached at the demand level of 359 users where path 3 enters the active path set. Then, path 3 exits the
active path set at a demand level of 719 users where the second breakpoint is detected. The active path set remains the
same for all demand levels bigger than 719 users. Therefore, SO path flow distribution has two breakpoints. On the
other hand, UE path flow distribution has two breakpoints at a demand level of 539 travellers where path 2 enters to
the active path set and at a demand level of 1259 travellers where path 1 exits the active set; path 1 is not used beyond
this level. Consequently, the breakpoint analysis for UE-SO contains 4 breakpoints. It is remarkable that path 3 is not
being used at most demand levels in the SO path flow distribution but it always belongs the active path set of UE for
all demand levels.

The ME path flow distribution is obtained by applying UE discipline to users of all OD pairs except the users of
the specific OD pair (figure 3(b)) who travel under SO discipline. ME has paths 1 and 2 in the active path set until
the only breakpoint of ME where path 3 enters the path set. According to the UE breakpoint detection, the analysis

(a) Origin, destination and paths (Mapping data c©Google 2018). (b) Lyon 6 network consider by this study for one OD pair test case

Figure 3: Network of Lyon 6
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(a) Path 1 flow-demand diagram.

(b) Path 2 flow-demand diagram.

(c) Path 3 flow-demand diagram

(d) Active path sets between breakpoints for four equilibria

Figure 4: Paths flow-demand diagram for UE, BRUE, SO and ME. Breakpoints are presented by black vertical dash lines on total demand axis.
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of UE-ME breakpoint involves two breakpoints. Path 3 is not used at most demand levels as in the SO path flow
distribution.

As mentioned previously the BRUE scenario is one instance from BRUE solution set. There are two breakpoints
in this scenario. The first one is where path 3 starts to be used and the second one happens where path 2 enters to the
active path set. All three paths are used beyond the second breakpoint. There are 3 breakpoints with respect to the SO
breakpoints for BRUE-SO breakpoint analysis. Note that in BRUE, path 3 is used at all demand levels beyond the first
breakpoint. In the BRUE-ME breakpoint analysis, there are three breakpoints. The active path set for both equilibria
is same when demand is below the first breakpoint where path 3 enters the BRUE active path set. Path 2 enters the
active path set of BRUE at the second breakpoint and the last breakpoint is the BRUE breakpoint.

Here, we focus on one specific OD pair to detect the breakpoints in the real network. We compare the breakpoints
of different equilibria. We identify the range where the active path sets of two equilibria are different. This range is
used for applying control strategies in order to push the system from the current state to SO.

5. Control strategy

The idea of shifting the network from one equilibrium to another requires applying a control strategy in the demand
range between two breakpoints, where the active path set remains fixed. When both equilibria have the same path
set but different flows, we need to design a strategy to reroute the critical users. The number of critical users, in this
case, is the difference between the two flow values of the paths. For instance, in this network, the pattern of each
equilibrium (set of active paths) is constant between two breakpoints. The traffic management system can induce a
change of path for the critical users. Also, when the difference in flow is high for two equilibria, then promoting users
to use one specific path may also be efficient. On the other hand, if the active path set is not the same for the two
equilibria (e.g. paths used in UE which are not used in SO), the system can ban some paths (unused in SO) through
routing advises. In this study, we highlight the situation when one path is not used in SO or ME while it is being used
in UE or BRUE. Note that it is important to consider which discipline is used with respect to a control strategy. If we
consider the ME discipline as a reference, the range of banning or the path involved in banning may change. Here,
we want to investigate which discipline would be a reference for control strategy? And does banning improve the
network performance? The answer to the latter question is connected to the Braess paradox.

In these experiments, according to the breakpoint detection (figure 4(c)) when the demand level is below 359 and
when it exceeds 719, the SO flow for the third path is zero. For ME, when the demand is higher than 1259 the flow
of path 3 is not zero. Therefore, if we ban path 3 for UE and BRUE scenarios, users will use the two other paths and
the performance of the network is changed. The goal of the control methods is to improve the total travel time of the
network. We will check that banning is efficient in those ranges of demand where path 3 is unused in SO or ME. Here
we present the ban strategy that we apply to the test case.

5.1. Ban Strategy (BS)

Banning some links or some turning movements at intersections and optimizing traffic lights’ settings are major
tools that traffic managers use in order to improve the performance of a traffic network. Here based on the breakpoints
analysis we apply the BS to prevent users of specific OD pair(s) from taking a path which has zero flow in the SO/ME
framework and non-zero flow in the UE/BRUE solution. Such a strategy may also stop users from other OD pairs to
use the banned link or turning at the specific intersection in the network. Therefore, we can have side effects because
the route choice of other users is also affected.

In order to choose the best location banning point, we first list all possibilities and then count how many users from
other OD pair use that intersection or link. Then we choose the banning point that affects fewer users from other OD
pairs. Note that all the simulations with BS are executed in the UE/BRUE framework for all users in the network. We
consider one banning point which is presented in figure 5 which prevents the users of the “Quai de Serbie to Verguin”
OD pair from using path 3. The banning point prevent all users from going straight forward at the intersection.

5.2. Applying BS to one OD pair test case

For the “Quai de Serbie to Verguin” OD pair, we consider one BS based on SO and ME because with both
disciplines there are approximately same zone between breakpoints that the level of demand in ME and SO is zero
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for path 3 and not zero in UE/BRUE framework. In other words, the BS optimal ranges of demand (identifying by
breakpoints) for both references (SO and ME) are similar. We apply the banning strategy for all demand levels to
see the impact of the strategy on the different demand levels. Therefore, path 3 is banned for all levels of demand.
We remark that the BS scenarios are run in UE framework. The BRUE is also considered for all ban scenarios
(BRUE+BS) in order to compare with the BRUE scenario without ban strategy.

The total Travel Time (TT) of the breakpoints for all equilibria are presented in Figure 6. We present it here in
order to first show that optimizing the surrogate model instead of the actual value of the path marginal still yields a
better total TT than UE and BRUE. Second, in the mixed equilibrium the rerouting of a specific OD pair improves the
performance of the network but it also shows that when users of one OD pair switch to the SO solution, other users
take advantage and use the capacity of those links which are less used. Third, the total TT of BS is below the total TT
of UE. Even the BRUE+BS obtains better performance than BRUE. For ban strategies, we also close a link of path 3
between two breakpoints where path 3 is used in SO, and the result shows that the total TT of this level is higher than
UE (dash lines in figure 6). The results of all experiments for one OD pair test case are presented in figure 7. Note
that the ban strategy is applied for all demand level so the path 3 flow of BS and BRUE+BS in figure 7(c) is zero for
all demand levels. At the demand level at which we should not apply BS, flows and TT are presented by dash lines
for BS. The dash lines in figures 7(a) and 7(b) show that between demand levels 359 and 719 the flow assigned to
path one and the flow level is higher than SO solution. The BS improves the total TT also after the last breakpoint
where the SO solution guides us to ban path 3 and ME contains this path in the active path set. The result for one
OD pair test case shows that considering the SO solution as the reference can provide a better control strategy than
ME solution in order to improve the total TT of the system. Also, because all users in BS/BRUE+BS are looking for
UE/BRUE, we do not expect the total TT for the whole network to be equal to SO TT. But the result shows that the
performance of the network is improved with BS in UE and BRUE frameworks. If we would be able also to apply BS
to more than one OD pair flow based on the breakpoint analysis we would expect better performance in term of total
TT from the traffic network.

Figure 5: Network of Lyon 6 with banning point
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Figure 6: Total TT for each level of demand in one OD pair test case for UE, SO, BRUE, ME, BS and BRUE+BS.
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(a) Path 1 flow-demand diagram.

(b) Path 2 flow-demand diagram.

(c) Path 3 flow-demand diagram

Figure 7: flow diagrams in one OD pair test case for UE, SO, BRUE, Mixed Equilibrium (ME), Ban strategy (BS) and the combination of BRUE
and Ban Strategy (BRUE+BS). Breakpoints are presented by black vertical dash lines on total demand axis.
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6. Two OD pairs numerical experiments

In this section, we apply the breakpoint analysis and the ban strategy based on the breakpoint analysis to the
second test case considering jointly two OD pairs in order to show that our framework can be applied to more general
configurations. We first identify what are the two most problematic OD pairs in terms of congestion (carry the most
demand). Recall that the main idea is through the banning we try to improve the traffic condition of the full network
by focusing on these OD pairs. We trigger our banning based on the evolution of demand on these OD pairs.

We consider an experiment which contains two OD pairs in order to analyze the breakpoints by considering the
interaction of the two OD pairs. The Lyon 6 network, including the two OD pairs test case, is presented in figure 8.
There are 3139 trips for all OD pairs excluding the two targeted OD pairs (for more details see Appendix A). In order
to find the breakpoints, the demand levels of both OD pairs are increased at the same time because both demands
come from the same direction and ME discipline is also applied for the users of these OD pairs while the other users
follow the UE/BRUE framework. Figure 8 shows that the two OD pairs have many links in common. Taking this fact
into consideration, we try to choose the banning intersection in a smart way based on the breakpoint analysis.

(a) Satellite view of Lyon 6, France (Mapping data c©Google 2018). (b) The paths on the network for two OD pairs test case with banning
points.

Figure 8: Network of Lyon 6

6.1. Breakpoint analysis

The flow-demand diagrams of all six paths are presented in Figure 9. The demand level of both OD pairs is
increased at the same time and the breakpoints are detected from the path flows in order to identify the range of
demand for applying the ban strategy. The demand axis shows the inflow of both targeted OD pairs which are equal
and increase together for each simulation. The 3 figures on the right (figures 9(a),(c) and (e)) are related to the first
OD pair. They show the breakpoints which are changed because of the impact of the demand level of the second
OD pair. The third path is used in the SO solution when the demand level of both OD pairs exceeds than 362. It
shows the impact of OD pairs on each other when the demand level is changed. For the second OD pair the results in
figures 9(b),(d) and (f) show the opportunity of banning strategy for path 4 which is almost not used for SO solution.
Path 3 and path 4 have many common links and we observe that these links are more used for the UE discipline of the
first OD pair which shows that these links are critical for breakpoint detection and ban strategies.
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The breakpoint detection is carried out for each equilibrium by considering the active path set and the ban strategy
is designed based on the breakpoint analysis. Here, we do not represent the process which is same as in subsections 4.2
and 5.1 and just demonstrate the result of breakpoint analysis and BS designing. The ban strategies based on SO and
ME for two OD pairs test case are presented in table 2. For instance, when the path flow is zero for ME and not zero
for UE/BRUE, we ban that flow until the next breakpoint that this path is used.

(a) Path 1 flow-demand diagram. (b) Path 4 flow-demand diagram.

(c) Path 2 flow-demand diagram (d) Path 5 flow-demand diagram.

(e) Path 3 flow-demand diagram. (f) Path 6 flow-demand diagram

Figure 9: flow diagrams in two OD pairs test case for UE, SO, BRUE, Mixed Equilibrium (ME).

For this case, we consider two ban strategies. The first BS (BS1) is applied based on the SO and the second one
(BS2) is designed based on ME path flow distribution (table 2). Four banning points are chosen in order to implement
the BS which are presented in figure 10. Point α is same as in the first scenario and we ban path 3 for the first OD
pair and path 4 for the second OD pair. The second point is point β which prevents users from turning left at the
intersection and bans path 3 only for the first OD pair. Point γ prevents users from turning left and ban path 4 and
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the last banning point δ is forbidding users to go straight forward and use path 6. These four banning point(s) are
activated based on the breakpoint analysis. When the flows on both paths 3 and 4 are zero in the SO solution, point
α is activated and when the flow of path 3 is zero, point β becomes activated. The point γ allows us to ban path 4
and prevents users from turning left at the intersection. Finally point δ becomes active when we need to ban path 6 in
order to prevent users from moving straight at the intersection. Considering these banning points we are able to apply
the designed ban strategies in each range of demand.

Figure 10: Network of Lyon 6 with banning points for two OD pairs scenario

6.2. Applying BS to two OD pairs test case
The results of the Ban strategies are provided for the two OD pairs scenario. Figure 11 presents the evolution of

the total TT at different demand levels of the two OD pairs for different disciplines. We present the application of ban
strategy in the UE and BRUE frameworks. "BS1" and "BS2" correspond to the UE framework in Figure 11(a) and
"BRUE+BS1" and "BRUE+BS2" in Figure 11(b) present the total travel time of ban strategies in BRUE framework.

The total TTs for UE, SO, ME, BS1 and BS2 are shown in figure 11(a). The figure shows that BS2 works better
than BS1 in the two OD pairs test case, but we should consider that both strategies improve the network performance.
BS1 and BS2 also change the network design. Therefore, there is a possibility, while applying BS, to obtain a total TT
lower than the SO total TT in some ranges of demand. This has happened in two ranges of demand: [813− 1187] and
[155−241], where the total TT of BS is lower than the total TT SO. The second reason for getting lower total TT with

Table 2: The ban strategies for two OD pairs test case
Ban Strategy based on system optimum (BS1) Ban Strategy based on mixed equilibrium (BS2)

starting breakpoints ending breakpoints Ban starting breakpoints ending breakpoints Ban
0 359 3, 4 and 6 0 269 3, 4 and 6

359 1439 4 and 6 269 539 3 and 6
- - - 539 1439 4
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(a)

(b)

Figure 11: Total travel time for each level of demand in two OD pairs test case for UE, SO, BRUE, ME, BS1, BS2, BRUE+BS1 and BRUE+BS2.

BS than with SO could be using the surrogate model instead of the analytical path marginal cost in SO calculation.
The surrogate model only yields an approximate SO. But the results shows that considering the approximation of the
SO solution as a reference is enough to design a control strategy based on breakpoint detection in order to improve
the performance of the dynamic traffic network.

The second figure (figure 11(b)) presents the evolution of the total TT for reference disciplines (SO and ME)
and BRUE discipline combined with two ban strategies. BRUE+BS1 is the BS based on SO and the second one
(BRUE+BS2) is the BS based on ME. ME obtains a better solution for designing the ban strategy in the context of
BRUE discipline. The BRUE+BS2 solution is close to UE and better than BRUE in term of total TT. The application
of ban strategies to the second test case shows that this strategy can improve the network performance also when we
consider more than one OD pair with common links.
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6.3. Sensitivity analysis
For now, breakpoints for two OD pairs have been derived when the demand level is similar on both side. This

situation is quite realistic because, during network loading, we expect that the demand grows in a coordinated way.
However, we want to investigate in this subsection what happens if we relax this hypothesis and have different demand
levels for each OD pair.

First, we run simulations to derive UE and SO equilibrium on the network for any demand levels on both OD pairs.
Figure 12(a) presents the total TT for UE and SO conditions and all demand levels. We draw the planes by using the
linear interpolation method (Blu et al., 2004). The total TT in SO is obviously less than UE for all demand levels.
Second, we look for breakpoints and path 4 as previous results in section 6.1 show that banning this path at point γ
(figure 10) significantly improves the system performance when the demands very coordinated on both OD pairs. In
other words, path 4 is the most promising path for the application of banning strategy. The breakpoint detection is
carried out by comparing UE and SO solutions and looking for situations when path 4 should not be used in SO while
being used in UE. Figure 12(b) presents the demand ranges when the banishment should be applied to path 4 based
on such a breakpoint analysis. Note that we look for rectangle areas when all conditions are met and we did not do
fine tuning of the area shapes.

To assess how BS is effective, we first ban path 4 for all demand levels and run again the simulations considering
UE equilibrium. We expect that the BS improves the network situation compared to UE without banning within the
ranges of demand we have previously identified based on the breakpoint analysis. Figure 13 presents the total TT of
UE and UE + banning path 4 (BP4). Two deformed planes are overlapping each other in different demand levels.
When the UE plane is placed at the top of BP4 plane, it means by banning path 4 we reduce the total TT.

Figure 14(a) presents the comparison between BS plan (from Figure 12(b)) and the results of banning path 4 for
all demand levels of two targeted OD pairs. The green regions are where the system has better performance (less total
TT) than UE without banishment, i.e., the banishment is effective. The red regions are the demand ranges where the
BS cannot improve (decrease) the total TT of the network. Besides, the heat map in figure 14(b) shows how many
hours can be saved or lost by banning path 4 at each level of demand. The results in figure 14 show that breakpoint
analysis properly cover the ranges of demand when the BS is effective. Futhermore, it provides a full coverage of the
region when the BS is the most effective, i.e. save the more hours, see red regions in figure 14(b).

7. Conclusion

This paper considers static and dynamic traffic assignment in order to study the impact of different demand levels
on three equilibria (User Equilibrium, System Optimum and Boundary Rational User Equilibrium). It defines a
breakpoint as a demand level where we observe a change in the active path set of one equilibrium. This study attempts
to find the breakpoints and to investigate the possibility to use breakpoint information in order to move from one
equilibrium (UE/BRUE) to another (SO). In the static case, we first introduce the process of breakpoint detection and
then demonstrate the identification of the situation in which we can improve the network performance by using the
ban strategy in the Braess paradox context. For the dynamic case, this paper proposes a novel approach to analyze
network DTA equilibrium as a function of demand level. The potential implications of this approach for network
suppliers concern the analysis of the network status and the design of ban strategies in order to move from an initial
UE or BRUE situation towards SO. Two control strategies are applied based on the breakpoint detection in order to
evaluate their impact. The results show that in the dynamic case the banning strategy is efficient and we should apply
it in the right range of demand. The mixed equilibrium strategy is designed in order to consider a second reference
for designing the ban strategy. The results show that both references can help the design process and the ban strategy
improves the network performance. Finally, we have done a sensitivity analysis on the effectiveness of banning a
potential path for different demand levels of two OD pairs. The results show that the breakpoint analysis is a powerful
tool in order to detect the demand ranges wherein the banning strategy is effective.

The numerical experiments were conducted on a static classic Braess network and on a dynamic real sub network
(Lyon 6) in order to examine the equilibrium patterns at different demand levels. In the dynamic network, we consider
the full network equilibrium and analyze the pattern when the demand of either one, or two, origin-destination pairs
is changed. Note that the experiments of this study have been carried out with homogeneous users. The approach in
this paper can be carried over to heterogeneous users and can consider the profile of each user, which allows the study
to consider the BRUE in the stable form.
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(a) The total TT of UE and SO for different demand levels of joint OD pairs

(b) The output of breakpoint analysis

Figure 12: Breakpoint analysis on path 4 for two targeted OD pairs

The numerical results show that approximating the marginal cost and estimating SO solution yields a breakpoint-
based control strategy which improves network equilibrium, so there is a possibility to get better total travel time by
improving the approximation of SO. Therefore, the authors plan to improve the calculation method for SO. Thus it
will also be possible to investigate if what we observe here in subsection 6.2 (BS total TT lower than SO total TT) is
caused by a non-optimal solution or related to network effects (e.g. correlations of the effects between multiple OD
pairs). Finally, the results of this study show the existence of the breakpoints, which is to be expected from the static
case analysis but has not been analyzed in the dynamic case before. They also show the efficiency of the banning
strategy particulary based on mixed equilibrium discipline at the proper level of demand. For future work, the authors
are looking for the impact of initialization on the calculation of equilibrium for different demand levels and also apply
the breakpoint analysis process to more than two OD pairs while considering of correlation between paths.
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Figure 13: The total TT of UE and BP4 for different demand levels of targeted OD pairs

(a) The comparison between BS plan by breakpoint analysis and the
results of banning path 4 for all demand levels of two targeted OD pairs

(b) The difference between UE Total Travel Time (TTT) and the TTT
when path 4 is banned for all demand levels of two targeted OD pairs

Figure 14: Comparison between BS by breakpoint analysis and the result of banning path 4 for all demand levels of two targeted OD pairs
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Appendix A. Lyon 6 demand description

The total travel demand for Lyon metropolis (Figure A.15) is about one million trips per day (Souche et al., 2016).
During peak hour, we should then observe about 100,000 trips. The size of the Lyon 6 network (1.72 km2) is about
7% of the full network of Lyon. Therefore, approximately, we should have about 7,000 trips per hour. In this study,
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based on the real data (Krug et al., 2018), we have, in total, 4361 trips for half an hour in Lyon 6 network, which
shows that our test case is fully consistence with real life pattern.

Figure A.15: Full network of Lyon: Lyon 6 is highlighted by green color
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