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Abstract 6 

We review the 45 available studies of urban flooding based on laboratory experiments. We distinguish 7 

between the studies focusing on the flow in (i) a single street intersection, (ii) surface-sewer 8 

exchanges, (iii) an array of obstacles and (iv) quasi-realistic urban districts. We discuss the main flow 9 

processes which are covered in the various studies and detail which flow variables were recorded. This 10 

enables identifying flow processes for which comprehensive experimental datasets are available from 11 

those which require additional experimental research. We also highlight the typical ranges of scale 12 

factors used, which depend mainly on the extent of the studied area (from very local up to the district 13 

level). This review aims at helping computational modellers to pinpoint the most suitable dataset for 14 

validating their numerical approaches and laboratory modellers to identify gaps in current 15 

experimental knowledge of urban flooding. 16 

Keywords: urban flood; experimental models; databases; flow processes; model set-ups. 17 

 18 

1. Introduction 19 

Among all natural disasters, floods are the most frequent and they affect the highest number of people 20 

globally (UNISDR, 2015). Flood risk is particularly severe in urban areas (Chen et al., 2015). 21 

Improving urban flood risk management has become a high priority at virtually all levels of 22 

governance (Fang, 2016). The proper design and evaluation of measures to enhance urban flood-23 

resilience should be based on the analysis of a range of scenarios, in which various hydro-24 

meteorological conditions and management options are tested. This requires the accurate modelling of 25 

inundation extents, water depths, discharge partition and flow velocity in urbanized flood prone areas, 26 

since these parameters are critical inputs for flood impact modelling (Kreibich et al., 2014). 27 

*Revised Manuscript with no changes marked

Click here to view linked References



2 

 

For relatively rural areas, flood modelling and inundation mapping have become common practice 28 

(Falconer et al., 2017; Teng et al., 2017). Based on the 1D or 2D shallow-water equations (SWE), the 29 

accuracy of these computations depends mainly on the quality of hydrological and topographic input 30 

data (Dottori et al., 2013). In contrast, floods in urban areas exhibit more diverse and complex flow 31 

processes, as the water follows multiple flow paths such as crossroads, sewers, courtyards, parks, flow 32 

around or within buildings and pieces of urban furniture (Paquier et al., 2015; Falconer et al., 2017). 33 

Numerical models used for urban flood simulations need to account for these specific features of the 34 

urban environment. For about two decades, the quality and complexity of urban flood simulations 35 

have steadily increased. Starting from standard 1D or 2D models (Mark et al., 2004; Mignot et al., 36 

2006a), more sophisticated numerical approaches have become gradually available: 37 

· additional processes were included in the models, such as the rain falling directly on the street 38 

network (Pons et al., 2005; Paquier and Bazin, 2014), short waves or tsunami long waves 39 

invading a city (Park et al., 2013), human evacuation during a flood (Bernardini et al., 2017), 40 

among others; 41 

· high resolution digital elevation models (DEM), such as laser altimetry with a resolution as 42 

fine as 0.5 m in some urban areas (Van Ootegem et al., 2016), have enabled super precise 43 

descriptions of the urban domains (Ozdemir et al., 2013); 44 

· isotropic and anisotropic porosity-based models (e.g., Bruwier et al. (2017)), coupled 1D (in 45 

streets) and 2D (in crossroads) models (Ghostine et al., 2015), as well as improved 46 

computational techniques such as cloud computing (Glenis et al., 2013) or model 47 

implementation on graphical processing unit (Apel et al., 2016; Smith et al., 2015), have been 48 

developed to enable efficient coverage of large spatial areas; 49 

· although still in its infancy, modelling the interactions between surface flow and the sewer 50 

system has been tested, based on a 1D description of the underground system and 0D, 1D or 51 

2D approaches for surface flow, each with scientific challenges (Leandro et al., 2009; Seyoum 52 

et al., 2012; Bazin et al., 2014). 53 
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Nonetheless, further numerical developments are needed to incorporate more details (urban furniture, 54 

street profiles, façade misalignments, parked cars) as well as additional processes generally 55 

overlooked so far (water entering the buildings, more realistic interactions river/surface/sewers, 56 

transport of cars, pollutants, computing rescue operations …). Since 3D computations (Ghostine et al., 57 

2009; Gems et al., 2016; Rodi, 2017) will not be a viable option for operational flood analysis and 58 

mapping in the coming years, many processes will not be captured explicitly by operational flood 59 

models. They will have to be reproduced through appropriate analytical-empirical parametrizations. 60 

The development and validation of these parametrization requires high quality and reliable reference 61 

data. 62 

Field data, such as watermarks and aerial imagery, remain generally scarce, uncertain and insufficient 63 

to reflect the whole complexity of inundation flows in urbanized flood-prone areas, particularly under 64 

more extreme future conditions (Neal et al., 2009). Additional information on the velocity fields and 65 

discharge partitions are necessary to understand the multi-directional flow pathways induced by the 66 

built-up network of streets, buildings and underground systems (e.g., drainage network). There is also 67 

a lack of observations of pluvial urban floods, mainly due to the short duration and local nature of 68 

intense rainfall events. To address this lack of validation data from the field, laboratory models are an 69 

appealing alternative, since they provide accurate measurements of flow characteristics under 70 

controlled conditions. 71 

Therefore, this paper aims at reviewing the existing datasets of urban flood laboratory experiments. 72 

This review may benefit to both numerical modellers willing to test and validate innovative 73 

computational approaches, and experimentalists looking for comparison datasets or willing to close 74 

knowledge gaps. The paper presents also an inventory of the flow processes for which experimental 75 

research was undertaken or still to be handled. Field data are excluded on purpose, as they are 76 

generally sparser and more uncertain. 77 

The paper is organized in three parts. The existing experimental datasets dedicated to the analysis of 78 

urban flood processes are reviewed in Sect. 2. In Sect. 3, the coverage of the main urban flood process 79 

by dedicated laboratory experiments is evaluated; enabling us to point out the flow processes for 80 
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which no or limited experimental data are currently available. Finally, Sect. 4 links the main findings 81 

to the corresponding numerical approaches, highlighting those which lack validation data. Hints for 82 

future experimental research are proposed. 83 

 84 

2. State of the art of available urban flood datasets 85 

Table 1 lists the available experimental datasets related to urban flooding. Most experiments were 86 

performed in the last 15 years, suggesting a growing worldwide interest for urban flood laboratory 87 

data, as the corresponding numerical models also improved considerably. The experimental studies 88 

focused on four main flow types: (i) flow in street intersections, (ii) vertical exchanges between the 89 

sewer system and the streets, (iii) flow within regular grids of emerging rectangular obstacles 90 

representing idealized buildings or building blocks and (iv) flow within more realistic urban districts. 91 

Table 1 is organized in four blocks (I to IV), each of them corresponding to one flow type. 92 

As shown in the first column of Table 1, the experiments considered five different origins of the 93 

water, i.e. the cause of flooding. First, upstream runoff (UR) corresponds to experiments in which the 94 

water is supplied from an upstream boundary, mainly via a reservoir with a controlled discharge. It 95 

usually refers to flood events for which the overflow or rain takes place upstream of the urban area and 96 

water enters the urban domain as surface flow. Second, river overflow (RO) corresponds to 97 

configurations where the overflow takes place within the urban area and thus the river and the 98 

overtopping of the banks are explicitly included in the experiments. In such a case, the upstream 99 

boundary condition is a controlled discharge within the river. Sewer overflow (SO) is similar to river 100 

overflow except that in this case the water invading the surface comes from an exceeded capacity of 101 

the sewer within the urban domain; the upstream boundary condition is then a controlled discharge in 102 

the sewer inlet. The fourth origin of water is the rainfall over the studied domain (RA), which is the 103 

case of fully urban watersheds (Pons et al., 2005; Paquier and Bazin, 2014). Then the upstream 104 

boundary condition is a complex spatial (and temporal) distribution of water jets from a well-105 

controlled rainfall simulator. Finally, the tsunami (TS) type is a long wave imposed off-shore that 106 

propagates over the sea domain and invades an urban area when reaching the coast and overtopping 107 
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the shore protection furniture. Note that these five types of origin of the water can be unique or 108 

coupled with each other, as for some UR & SO cases in Table 1 (ID 19, 20, 22, 23). 109 

The diversity of the analysed flow patterns (columns 2, 5 and 7 in Table 1) emphasizes the 110 

complexity of urban flood processes, involving subcritical and supercritical flow regimes, open-111 

channel and pressurized flow, both at the surface or in the underground system, interacting with 112 

obstacles, building blocks etc. Among the 45 reported studies, very few address identical flow 113 

patterns. The experimental set-ups reproduce either a synthetic urban area (highly simplified streets, 114 

90° intersections and impervious rectangular buildings) or a simplified version of a real city 115 

(reproducing the topology of the city but with a highly simplified representation of the facades and 116 

street profiles) or finally a more realistic representation of an urban district based on the field DEM 117 

(with each individual building being included).  118 

The location of the set-up is indicated to help the reader contact the research team responsible for the 119 

flume (columns 3 and 4 in Table 1). It also reveals that the experiments were performed in 17 different 120 

countries, confirming the global interest for urban flood experimental data. 121 

Columns 6 and 10 in Table 1 provide the typical dimensions of the laboratory model. A plausible 122 

scale factor was derived, by assuming a typical street width equal to 15m and a gully width of 60cm 123 

at the prototype scale. Some set-ups aim at analysing in detail local flow features (e.g. flow in a street 124 

intersection, single vertical exchange structure, flow around one isolated building …), while others 125 

focus on larger scale flow characteristics, such as the flow in a street-network, but with a lower spatial 126 

resolution and measurement accuracy. As a consequence, the scale factor of models of street 127 

intersections or vertical exchange works typically ranges between 1/10 and 1/50, while those of 128 

experiments covering an entire urban district or a grid of obstacles range between 1/30 and 1/200. The 129 

experiments of Herbich and Shulits (1964) correspond to the largest model extent for tests involving a 130 

grid of obstacles. The largest models of urban districts are those of (Ishigaki et al., 2003; Güney et al., 131 

2014), with a setup length of 20m and 16m, respectively, representing real-world urban areas of 3km 132 

and 2.4km in length. 133 
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Finally, columns 8 and 9 in Table 1 report the number of tested configurations and type of recorded 134 

data. The measured data strongly depend on the scale of the experiment. For very local flow patterns, 135 

such as flows in street intersections and vertical exchange structures (blocks I and II in Table 1), 136 

spatially distributed flow characteristics are generally available, including 3D velocity fields and 2D 137 

water depth fields, together with more global flow variables such as discharges in the different 138 

branches. Moreover, for these local flow pattern experiments, the number of tested configurations 139 

remains low (below 10) when spatially distributed data were recorded; whereas it reaches up to 200 140 

configurations when only the discharges were recorded. For the experiments investigating larger scale 141 

flow patterns such as obstacle grids and urban districts, spatially distributed data are rare and mostly 142 

local velocities and water depths were recorded with pointwise measurement tools, except for surface 143 

velocity fields derived in some cases from large scale particle image velocimetry (using a camera 144 

located above the experimental setup). 145 

Overall, Table 1 demonstrates the availability of rich laboratory datasets covering a broad spectrum of 146 

typical urban flood conditions. In the following, we distinguish between the flow processes 147 

comprehensively studied and those calling for more laboratory investigations. 148 

 149 

3. Advances of urban flood processes analysis 150 

By listing the existing experimental datasets, Sect. 2 reveals that a wide range of flow processes were 151 

reproduced experimentally. Here, we attempt to present an inventory of the main flow processes of 152 

engineering relevance in urban flood studies (Table 2), and to relate them to the works listed in 153 

Table 1. This enables assessing whether the existing experimental datasets are comprehensive enough 154 

for the validation of the representation of each flow process in numerical models. Table 2 suggests that 155 

experimental datasets do exist for most urban flow processes of interest; but not for all of them. 156 

Regarding the origin of water, most common flood origins were reproduced experimentally. The 157 

main deficiency is the intrusion of water waves from a storm surge, with the water from the sea, 158 

overtopping the protection dikes and invading coastal cities with very unsteady flows, as described by 159 

Maspataud et al. (2013). One main question is the evolution of the unsteadiness as the flow propagates 160 
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within the urban areas, merges or splits at crossroads and in open spaces: will the typical hydrograph 161 

time-scale increase or decrease compared to the surge hydrograph? The validation of numerical 162 

simulations certainly requires dedicated experimental data. Moreover, the knowledge on intrusion of 163 

water through direct rain on the city domain should be further improved. In particular, as the rain falls 164 

on the buildings roofs, part of the water reaches the sewer network (through the gutters) and the rest 165 

reaches the surrounding streets or gardens (with possible infiltration) with some surface runoff on the 166 

private slots. These processes, computed by Pons et al. (2005) and Paquier and Bazin (2014), still 167 

require high quality data to enable deriving empirical parametrizations specific to urban catchments. 168 

Future research should also consider the complex coupling between several flood origins.  169 

Numerous datasets of flows in street networks (or within arrays of buildings) were published in the 170 

recent years. These consider steady or unsteady flows, including steep hydrographs, at single or 171 

multiple street intersections. One main deficiency regarding surface flow corresponds to the 172 

consideration of obstacles present in the streets (Mignot et al., 2013) and steep urban areas where 173 

mostly supercritical flow conditions take place. In such cases, hydraulic jumps occur at the street 174 

intersections (Mignot et al., 2008) and in the vicinity of obstacles (Bazin et al., 2017). 175 

Although the flow in street networks has been deeply studied experimentally, it is not the case of the 176 

flow invading other compartments of the urban fabric: 177 

· vertical flow interaction between the underground sewer and the street surface was 178 

investigated locally, at the level of one exchange structure or a single street, but it remains 179 

undocumented at the level of an entire urban district; 180 

· similarly, data on flow exchanges between the streets and the blocks / slots (building blocks, 181 

gardens, hospitals, etc…) through openings (gates, doors, windows…) remain scarce, both at 182 

the local level (one facade, one building) and at the district level, while such calculations have 183 

been performed for already some time (Hingray et al., 2000; Inoue et al., 2000). 184 

Existing experimental works focused not only on the flow dynamics; but so-called “associated 185 

events” have also been considered due to their importance for operational flood risk management. For 186 

instance, much attention has been paid to the stability and safety of human beings and cars within 187 
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flooded streets. These valuable experiments enable estimating, from the hydrodynamics, the level of 188 

risk for citizens and goods in flooded urban areas. Nevertheless, the behaviour of transported cars or 189 

other mobile furniture (either floating or within the water column) in a street network, and the 190 

possibility of creating dams at crossroads or street contractions (Mignot et al., 2006b) was not yet 191 

investigated in laboratory experiments. Also, experiments on people evacuation were conducted at a 192 

single institution (DRPI, Kyoto, Japan) and reproducing similar measurements is desirable. 193 

Measurements of hydrodynamic forces on buildings or facades, and the transport of sediments in 194 

flooded urban areas have received relatively little attention up to now. Finally, neither the access of 195 

rescue vehicles through flooded streets, nor the dispersion of pollutants (e.g. from flooded industry or 196 

damaged trucks) within a street network have been tested. Improved numerical modelling of these 197 

“associated events” would be of substantial added-value for the management of urban flood risk, but 198 

this still requires additional experimental data for model development and validation. 199 

 200 

 201 

4. Conclusion  202 

Based on the analysis of 45 laboratory studies and the identification of the main flow processes of 203 

significance in urban flooding, the previous sections have highlighted the need for additional 204 

(ambitious) experimental efforts to support the development and validation of more realistic 205 

computational models of urban floods. This is particularly the case as next-generation urban flood 206 

simulations should not only accurately replicate the water flows but also include the so-called 207 

associated events (Sect. 3). 208 

Indeed, as shown in Table 1 and Table 2, validation data are available for assessing most types of 209 

numerical models commonly used in engineering and research to simulate urban floods, namely 210 

(upper part of Table 3): 211 

· 2D-SWE, or the 2D-SWE coupled with a porosity model, or the coupled 1D (in the streets) 212 

and 2D (in the crossroads) SWE, to compute surface flow in the urban area; 213 
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· coupled 2D-SWE (in the streets) and 1D-SWE (in the sewer network), along with exchange 214 

models, to compute the coupled flows in both the underground and surface layers of the urban 215 

area; 216 

· 2D-SWE or Boussinesq-type equations to compute long and/or short waves approaching the 217 

shore and invading coastal urban areas; 218 

· 3D Reynolds-averaged Navier-Stokes equations at the level of an isolated building (Gems et 219 

al., 2016) or a single street intersection (Ghostine et al., 2009). 220 

In contrast, more advanced numerical models (lower part of Table 3) are required to represent the 221 

“associated events” occurring during urban floods, for which dedicated experimental data are virtually 222 

unavailable. For instance, empirical or semi-analytical parametrizations are required to estimate the 223 

amount of water entering the buildings or blocks, for computing sediment and pollutant transport in 224 

urban environments, or entrainment of pieces of urban furniture within a flooded network of streets. 225 

Similarly, specific numerical developments are needed for computing the behaviour of rescue 226 

vehicles, citizen evacuation, etc. using agent based approaches. 227 

The authors recommend that future experimental research aims at getting more quantitative insights 228 

into these associated processes closely intertwined with flow behaviour during urban flooding.  High 229 

quality experimental observations of these processes will contribute to unlock key bottlenecks in the 230 

current modelling practice and, consequently, pave the way for more integrative analyses of the urban 231 

water and anthropic systems under (extreme) flooding conditions. 232 

 233 
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Table 1: Databases available in literature for validation of urban flood numerical models 1 

Water 

origin 
(1) 

Flow pattern Location of set-up Reference 
Additional 

remarks 

Length of 

set-up (m) 

Steady (S)/ 

Unsteady (U) 

Number of 

configurations 

[Availability](2) 

Types of data 

 
Scale factors(3) ID 

I Flow at street intersections 

UR 
3-branch subcritical 

junction 

INSA/LMFA 

(Lyon, France) 

Mignot et al. 

(2012) 
 5 S 1 [B] 3D velocity field 

SW=0.3m 

SF~1/50 
(1) 

IIHR (Iowa, USA) 
Weber et al. 

(2001) 
 22 S 6 [A] 3D velocity field 

SW=0.91m 

SF~1/16 
(2) 

Gent University 

(Gent, Belgium) 

Schindfessel et al. 

(2015) 

Rectangular 

sections with 
chamfers 

33 S 2 [D] 3D velocity field 
SW=0.98m 

SF~1/15 
(3) 

Gent University 

(Gent, Belgium) 

Creëlle et al. 

(2017) 
 12 S 6 [D] Water depth field 

SW=0.4m 

SF~1/38 
(4) 

UR 
3 branch transcritical and 

supercritical junction 

EPFL (Lausanne, 

Switzerland) 

Hager (1989a & 

1989b) 
 2 S 8 [A] & [C] 2D velocity field 

SW=0.099m 

SF~1/152 
(5) 

UR 
3-branch subcritical 

bifurcation 

INSA/LMFA 
(Lyon, France) 

Mignot et al. 
(2013) 

Without/with 10 

obstacles (urban 

furniture) 

5 S 

14 flows 

x 10 obstacles 

[D] 

* Flow discharge 

+ 2D velocity field (for 1 
flow with 10 obstacle 

configs.) 

SW=0.3m 
SF~1/50 

(6) 

IIHR (Iowa, USA) 
Barkdoll et al. 

(1998) 
 2.7 S 1 [C] 

2D velocity field & water 
depth field  

SW=0.152m 
SF~1/100 

(7) 

UR 
3-branch critical & 

supercritical bifurcation 

INSA/LMFA 
(Lyon, France) 

ElKadi et al. 
(2011) 

 5 S ~100 [B] 

Discharge distribution to the 

downstream branches 

+ water depth field for 1 flow 

SW=0.3m 
SF~1/50 

(8) 

INSA/LMFA 

(Lyon, France) 

Rivière et al. 

(2018) 
 5 S 62 [B] 

Discharge distribution and 

water depth fields 

SW=0.3m 

SF~1/50 
(9) 

UR 
4-branch subcritical 

intersection 

INSA/LMFA 

(Lyon, France) 

Rivière et al. 

(2011) 
 5 S 220 [B] 

Discharge distribution to the 

downstream branches 

SW=0.3m 

SF~1/50 
(10) 

UPC (Barcelona, 

Spain) 

Nanía et al. 

(2011) 
 8.5 S 159 [A] 

Discharge distribution to the 

downstream branches 

SW=1.5m 

SF~1/10 
(11) 

UR 
4-branch transcritical & 

supercritical flows 

INSA/LMFA 

(Lyon, France) 

Rivière et al. 

(2014) 
 5 S 113 [B] 

Discharge distribution to the 

downstream branches 

SW=0.3m 

SF~1/50 
(12) 

INSA/LMFA 
(Lyon, France) 

Mignot et al. 

(2009) & Mignot 

et al. (2008) 

 4.5 S 
~200 

 [B] & [B] 

Discharge distributions to the 

downstream branches 

+ 8 water depth fields 

SW=0.3m 
SF~1/50 

(13) 

UPC (Barcelona, 

Spain) 

Nanía et al. 
(2004) & Nanía et 

al. (2014) 

 8.5 S 
~200 

[B] & [B] 

Discharge distribution to the 

downstream branches 

SW=1.5m 

SF~1/10 
(14) 

II Vertical exchanges (street/sewage) 

SO 
1 overflow exchange 

structure (1 way: from 

University of 

Coimbra (Coimbra, 

Lopes et al. (2017) 

& Romagnoli et al. 
 0.6 S 4 [B] & [B] 3D velocity field 

GW=0.6m 

SF~1 
(15) 
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Water 

origin 
(1) 

Flow pattern Location of set-up Reference 
Additional 

remarks 

Length of 

set-up (m) 

Steady (S)/ 

Unsteady (U) 

Number of 

configurations 

[Availability](2) 

Types of data 

 
Scale factors(3) ID 

sewer to surface) Portugal) (2013) 

UR 
1 inlet exchange structure 
(1 way: from surface to 

sewer) 

UPC (Barcelona, 

Spain) 

Russo, Gómez, and 

Tellez (2013) 
 5.5 S 280 [B] 

Exchanged discharge to 

sewer 
SF=1 (16) 

Faculty of Civil 
Engineering 

(Belgrade, Serbia) 

Despotovic et al. 

(2005) 

(without and with 

clogging effects) 
5 S ~100 [C] 

Exchanged discharge to 
sewer + flow spreading on 

the street 

SF~1 (17) 

DPRI (Kyoto, Japan) Lee et al. (2012)  6 S 12 [B] 
Exchanged discharge + water 

depths 
SF=1/10 (18) 

UR & 

SO 

1 exchange structure 
(2 ways between surface 

and sewer) 

University of 
Sheffield (UK) 

Rubinato et al. 

(2017) & Martins 

et al. (2017)  

 8 S + U 
46  

[A] & [A] 

Exchanged discharges 

(steady + time evolution) + 

water depths 

SF=1/6 (19) 

U. of Coimbra 

(Portugal) 
Beg et al. (2017)  9.5 S 19 [B] 

Exchanged discharges + 
velocity fields + pressure 

heads 

GW=0.6 

SF~1 
(20) 

UR 1 street with several inlets 
U. of Coimbra 

(Portugal) 
Leandro et al. 

(2010) 
 36 S 36 [B] Exchanged discharge 

SW=0.5m 
SF~1/30 

 (21) 

UR & 

SO 

1 street with several 
exchange structures (2 

ways) 

DPRI (Kyoto, Japan) 

Bazin et al. (2014) 

 10 S + U 

2 steady 

2 unsteady 

[C] 
Water depth and pressure 

head along the street (+ total 

exchanged discharge for 
Bazin2014) 

Sw=0.8m 

SF~1/20 

(22) 

JinNoh et al. 

(2016) 

6 steady 

2 unsteady [B] 
SF=1/20 

UR & 

SO 

1 half-street + 3 exchange 
structures (2 ways: collect 

and overflow) 

University of A 
Coruna (A Coruna, 

Spain) 

Fraga et al. (2017)  6 S + U 5 [B] 
Water depth in street and in 

pipes + discharge in pipes 
SF=1 (23) 

III Flow through a regular grid of emerging obstacles 

UR 
Non-uniform flow 

in a patch of obstacles 

UCL (Louvain la 

Neuve, Belgium) 

Soares-Frazão 

and Zech (2008) 
aligned obstacle 

grid (aligned with 

flow axis and 

rotated) 15 

U (dam break) 2 [B] 
Water depth 

Surface velocity fields 

Sw=0.1m 

SF~1/150 

(24) 

Velickovic et al. 

(2017) 

S 

20 [B] Water depth profiles (25) 

Lhomme et al. 
(2007) 

Staggered obstacle 

grid (aligned with 
flow axis) 

1 [D] 
Water depths 

Surface velocity fields 
(26) 

CESI (Milan, Italy) Testa et al. (2007) 
aligned & 

staggered obstacles 
5 U (dam break) 12 [A] Water depths SF=1/100 (27) 

National Taiwan 

University (Taiwan) 

Huang et al. 

(2014) 

aligned obstacles 
(aligned with flow 

axis) 

8 S 7 [D] Water depth profiles Various Sw (28) 

KICT (South Korea) Kim et al. (2015) Aligned obstacles 30 U (dam break) 2 [D] Water depths 
SW=0.1m 

SF~1/150 
(29) 
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Water 

origin 
(1) 

Flow pattern Location of set-up Reference 
Additional 

remarks 

Length of 

set-up (m) 

Steady (S)/ 

Unsteady (U) 

Number of 

configurations 

[Availability](2) 

Types of data 

 
Scale factors(3) ID 

Tsinghua Université 
(Beijing, China) 

Zhou and W. Yu 
(2016) 

Aligned obstacles: 
pervious & 

impervious 

10 S 30 [D] 
Water depths + 2D velocity 

fields 
Sw=0.05m 
SF~1/300 

(30) 

UR 
Uniform flow in  

a large grid of obstacles 

INSA/LMFA (Lyon, 

France) 

Guillen-Ludena et 

al. (2017) 

Aligned obstacles 

on rough bed with 

forces on buildings 

8 S 50 [B] 

Normal water depth + Forces 

on buildings (50 exp) & 2D 

velocity field (1 exp) 

Various Sw (31) 

Pennsylvania State 

U. (USA) 

Herbich and 

Shulits (1964) 

Staggered 

obstacles 
16 S 80 [C] 

Normal water depth (uniform 

flow)  
Various Sw (32) 

RO 
River overflow around 

obstacles 

Polytechnico di 

Milano (Italy) 

Beretta et al. 

(2018) 
 2.23 S 1 [B] 

Local velocities and water 

depths 
SF=1/25 (33) 

RA 
Rain over a group of 

buildings 

University of 

Coimbra (Portugal) 

Isidoro et al. 

(2013) 

Rain with/without 

wind effect and 
static/dynamic 

storm effects. 4 

tested building 
distributions 

2 U 30 [B] Outflow hydrographs Various Sw (34) 

 Cea et al. (2010) 

Rain over 

buildings with 
roofs 

2.5 U 72 [B] Outflow hydrographs Various Sw (35) 

TS 
Long wave over an 

obstacle grid at the shore 

DPRI (Kyoto, Japan) 
Tomiczek et al. 

(2016) 
Aligned obstacles 45 

U 

63 (2 

repetitions) [B] 

Water depth + pressure on 

obstacles 
SF=1/20 (36) 

Leibniz University 
(Hanover, Germany) 

Goseberg (2013) 
Aligned and 

staggered obstacles 
18 

24  (290 with 
repetitions) [A] 

Maximum run-up extension, 
water depths, velocities 

Various Sw (37) 

IV Urban district 

UR Flow in a street network 

DPRI (Kyoto, Japan) 
Ishigaki et al. 

(2003) 

With & without 
connections (48) to 

underground 

20 U 2 [C] 
Water depths, surface 
velocities & outflow 

discharges 

SF=1/100 (38) 

IMFS (Strasbourg, 

France) 

Arrault et al. 

(2016) and 

Finaud-Guyot et 

al. (2018) 

Synthetic district 5 S 16 [B] 
Water depth profiles & 

Outflow discharges 
SF=1/200 (39) 

RO 

Flow around buildings 

Univ. of South 
Carolina (Columbia, 

USA) 

LaRocque et al. 

(2013) 

River overtopping 
towards urbanized 

area 

12 S 2 [A] 
Surface velocity field + water 

depth field 
SF=1/50 (40) 

UR 
UNSW (Sydney, 

Australia) 
Smith et al. 

(2016) 
Mostly 

supercritical flows 
12.5 S 1 [A] 

Surface velocity field + water 
depth field 

SF=1/30 (41) 

UR 
Dokuz Eylül 

University (Izmir, 

Güney et al. 

(2014) 

Dam break on a 

group of buildings 
16 U 

1 (5 repetitions) 

[D] 

Water depths (10 locations) 

and velocities (4 locations)  
SF=1/150 (42) 
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Water 

origin 
(1) 

Flow pattern Location of set-up Reference 
Additional 

remarks 

Length of 

set-up (m) 

Steady (S)/ 

Unsteady (U) 

Number of 

configurations 

[Availability](2) 

Types of data 

 
Scale factors(3) ID 

Turquey) 

RO 
University of 

Innsbruck (Austria) 
Sturm et al. 

(2018) 

Supercritical & 

flow within 

buildings 

9 

U (Fixed discharge 

in the river 

upstream) 

140 
[D] 

Forces on buildings, water 
depths, flow velocities 

SF=1/30 (43) 

TS 
Long wave over a realistic 

planning at the shore 

PARI (Yokosuda, 

Japan) 
Yasuda (2004) 

with openings 

towards 

underground 

34 

U 

4 [C] 
Water depths + flood 

extension 
SF=1/50 (44) 

Oregon State 
University 

(Corvallis, USA) 

Park et al. (2013)  40 
1 (99 

repetitions) [B] 
Water depths and velocities SF=1/50 (45) 

 
2 

(1)
 UR=Upstream runoff, RO = River overflow, SO = Sewer overflow, TS=Tsunami, RA = Rain over the domain  3 

(2)
 A = Available on the Internet or in the article, B = Available upon demand, C = Likely not available, D = No information about availability 4 

(3)
 Sw= street width in model, GW = gully width in model, SF= horizontal scale factor reported by authors or computed using typical field values Sw=15m and GW=0.6m in 5 

prototype 6 

 7 

Note: In terms of discharge distribution in 3-branch subcritical and transcritical bifurcation flow configurations without obstacle (very simple cases), the recent works by 8 

Rivière et al. (2011, 2014) propose a review of available discharge distribution data. The reader can refer to these papers for a list of available data and corresponding 9 

references. 10 
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Table 2: Urban flood processes and corresponding data availability for validation 

Main 

processes 
Sub-processes Id. from Table 1 

S,C
*
 

Origin of 

the water 

Rain on urban domain 34, 35 S 

River overtopping towards urban area 33, 40, 43 C 

Dam break upstream from city 24, 27, 29, 42 C 

Tsunami (long) wave invading the city 36, 37, 44, 45 C 

Wave submersion / storm surges  Not available - 

Sewage overflow 15, 19-23 C 

Flow in 

streets 

Open-channel flows around a group of buildings:  

· Steady sate 25, 26, 28, 30-33, 40, 41 C 

· Transient flow (bank overtopping, flood 

wave, dike submersion wave…) 
24, 27, 29, 34-37, 42-45 C 

· Subcritical flow regime 25, 26, 28, 30-33 C 

· Supercritical flow regime 41, 43 S 

· Wave front 24, 27, 29, 36, 37, 42, 44, 45 C 

Open-channel flows in one street intersection  1-14 C 

Open-channel flows in a street network:  

· Steady 39 S 

· Transient flow  38 S 

· Subcritical flow regime 38, 39 S 

· Supercritical flow regime Not available - 

Flow interaction with fixed furniture 6 S 

Flow in 

other 

compart-

ments of 

the urban 

fabric 

Sewer-street  exchanges:  

· 1 exchange structure 15-20 C 

· 1 street & 1 pipe with exchange 

structures 
21-23 S 

· Street & pipe network with exchange 

structures 
Not available - 

Flow within and through buildings / building 

blocks  
30, 43 + Liu et al. (2018) S 

Flow through open-areas: gardens / semi-

urbanized private parcel / above walls / through 

vegetated or semi-pervious fences… 
Not available - 

Flow in underground spaces 38 + Takayama et al. (2007) S 

Associated 

events 

Cars transport :  

· Stability of a single car Ref 
(1)

 C 

· A group of cars in one street intersection 

creating dams 
Not available - 

· Single car or a group of cars transported 

in a street network 
Not available - 

Risk and evacuation of people :  

· Human stability Ref 
(2)

  C 

· Human evacuation (through doors, 

corridor, staircase, from cars) 

Ref 
(3)

 
S 

Forces on buildings 31, 43 S 

Sediment transport 43 S 

Rescue access and processes (via army, 

ambulance, fire-men, etc…) 
Not available - 

Pollution dispersion Not available - 
*
 S=scare, C=comprehensive 

(1) 
see recent extensive review by Martínez-Gomariz et al. (2018) and recent work by Martínez-Gomariz et al. 

(2017). 
(2)

 see Abt et al. (1989), Russo, Gómez, and Macchione (2013), Xia et al. (2014), Martínez-Gomariz et al. (2016) 

and the review by Kvocka et al. (2016); older papers also exist. 
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(3)
 see Ishigaki et al. (2008) and Baba et al. (2017) 
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Table 3: Typology of numerical models applied to compute urban flood events 

 

Type of model Typical processes Level of development
(4)

 

Available 

exp. data 

(Yes, No) 

3D RANS
(1)

 or LES
(2)

 
1 street intersection 

Flow around 1 building 
C Y 

2D SWE
(3)

 Street surface (local to large scale) C Y 

2D SWE + porosity models Urban district C / R Y 

1D-2D SWE 

(1D=streets / 2D=crossroads) 
Urban district R Y 

1D-2D SWE 

(1D=sewer / 2D=streets) 
Coupled flow in streets and sewers R Y 

2D SWE or Boussinesq-type 

equations 
Overland Tsunami C Y 

Hydrodynamics  

+ morphodynamic model 

Building foundation scour, sediment 

deposits around buildings… 
U N 

Hydrodynamics  

+ empirical /analytical  

exchange formulae 

Flow exchange between streets and 

built-up or open areas through 

openings (gates, doors, windows…) 

U N 

Hydrodynamics  

+ advection-diffusion model 
Pollutant transport U N 

Hydrodynamics  

+ Lagrangian model 

Transport of urban furniture and 

debris (cars, trees, etc…) 
U N 

Hydrodynamics  

+ agent based model 
Citizen evacuation, rescue access R

(5)
 N 

(1) 
 Reynolds-averaged Navier-Stokes equations; 

(2)
 Large-Eddy simulations;  

(3)
 Shallow-water equations (see Rodi (2017) for details of the models and applications); 

(4)
 C = common practice, R = research models, U = unavailable in the context of urban flood modelling;  

(5)
 Mostly for tsunami cases, see for instance Wang et al. (2016). 
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