Restoring virulence to mutants lacking subunits of multiprotein machines: functional complementation of a Brucella virB5 mutant
Nicolas Sprynski, Christine Felix, David O’callaghan, Annette Vergunst

To cite this version:

HAL Id: hal-02381142
https://hal.archives-ouvertes.fr/hal-02381142
Submitted on 7 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
Restoring virulence to mutants lacking subunits of multiprotein machines: functional complementation of a Brucella virB5 mutant

Nicolas Sprynski 1, Christine Felix, David O’Callaghan*, Annette C. Vergunst

INSERM, U1047, UFR Médecine, 186, Chemin du Carreau de Lanes, 30908 Nimes Cedex 2, France
Université Montpellier 1, EA4204, UFR Médecine, 186, Chemin du Carreau de Lanes, 30908 Nimes Cedex 2, France

A R T I C L E I N F O
Article history:
Received 24 February 2012
Revised 29 March 2012
Accepted 31 March 2012

Keywords:
Type IV secretion system
VirB5
Complementation
Brucella

A B S T R A C T
Complementation for virulence of a non-polar virB5 mutant in Brucella suis 1330 was not possible using a pBBR-based plasmid but was with low copy vector pGL10. Presence of the pBBR-based replicon in wildtype B. suis had a dominant negative effect, leading to complete attenuation in J774. Due to pleiotropic effects on VirB protein expression due to multiple copies of the virB promoter region and over expression of VirB5. Functional complementation of mutants in individual components of multiprotein complexes such as bacterial secretion systems, are often problematic; this study highlights the importance of using a low copy vector.

© 2012 Federation of European Biochemical Societies. Published by Elsevier B.V.
Open access under CC BY-NC-ND license.

1. Introduction

Type IV secretion systems (T4SS) are multiprotein complexes which can mediate the transfer of nucleoprotein and protein substrates across the bacterial cell envelope to bacterial recipients for plasmid spread, and to eukaryotic hosts for survival during establishment of pathogenic or symbiotic relationships [1]. T4SS are major virulence factors for several pathogens of plants and animals, including Brucella. Brucella causes brucellosis, a major bacterial zoonosis resulting in abortion in animals and a serious disease with chronic undulant fever in humans [2]. The virulence of Brucella requires its VirB T4SS, which is essential for the establishment of its intracellular niche in macrophages and epithelial cells [3–5]. The VirB system is equally important for virulence in the mouse model of infection [6] and in natural hosts [7], and thus a major target of study to unravel its precise role in virulence.

Structure/function studies have centred on the prototype VirB/D4 T4SS of the plant pathogen Agrobacterium tumefaciens and the Tra system of plasmid pKM101. The current model predicts a dynamic multiprotein machinery [8–10], with a pilus like structure exposed at the bacterial surface. This pilus is built up of the major subunit VirB2, and the minor component VirB5, which is localised at the pilus tip [11]. VirB5 is essential for Brucella virulence [12, this work]. We encountered difficulties in complementing a non-polar deletion virB5 mutant using a pBBR-based vector. Here we show that both multiple copies of the virB operon promoter sequence and over expression of VirB5 had pleiotropic effects that disrupted VirB function.

2. Materials and methods

2.1. Bacterial strains and plasmids

All bacterial strains, plasmids and primers used in this study are listed in Table 1. Unless stated, Brucella suis was grown in Trypticase Soy (TS) broth, and Escherichia coli in Luria-Bertani (LB) broth. Expression from the lac promoter in pBBRplac–virB5 was induced with 1 mM IPTG.

2.2. Plasmid constructions

The virB5 gene was amplified using B. suis 1330 chromosomal DNA as a template with primers virB5-1 and virB5-2 (Table 1). For expression under control of the virB promoter, the PCR fragment was digested with NdeI/BamHI and ligated into similarly digested pN34 [13], named pBBRpvirB in the text for clarity, to yield pLN144 (pBBRpvirB–virB5). Plasmid pLN146 (pGLpvirB–virB5) was constructed by ligation of an XbaI/PstI fragment of pLN144 into pGL10. For expression from the lac promoter, the NdeI/KpnI

Abbreviations: bp, base pairs; CFU, colony forming units; hpi, hours post-infection; LB, Luria-Bertani; TS, Trypticase Soy; T4SS, type IV secretion system; MOI, multiplicity of infection
* Corresponding author at: INSERM, U1047, UFR Médecine, 186, Chemin du Carreau de Lanes, 30908 Nimes Cedex 2, France. Fax: +33 466 028148.
E-mail address: david.o’callaghan@univ-montp1.fr (D. O’Callaghan).
1 Current address: IRBA/CRSSA, UMR-MD1, La Tronche, France.

http://dx.doi.org/10.1016/j.fob.2012.03.003

CrossMark
fragment of pSN144 was ligated into pSRKKm [14] to yield pSN164 (pBBRplac–virB5).
A suicide vector was constructed by ligation of a 2.7 kb BamHI/ScI fragment of pSDM3005 [15] containing the sacR gene for negative selection, in pHSG398 (CmR) (TaKaRa Bio Inc), and named pSN11.

2.3. Construction of a virB5 non-polar mutant
A mutant of B. suis 1330 with a non-polar deletion of the virB5 gene (bin1900, virB5 in the text) was constructed as described previously for virB8 [13]. Both 500 base pair (bp) flanking regions of virB5 were amplified by PCR so that ligation of the fragments would result in a precise deletion of virB5 using primer sets B5MutUF/B5MutUR and B5MutDF/B5MutDR. The PCR fragments were digested with BamHI/Ndel or Ndel/XbaI, respectively, and ligated simultaneously in BamHI/XbaI digested suicide vector plSN11, resulting in plSN143. After introduction of plSN143 into 1330 by electroporation, chloramphenicol resistant colonies resulting from single crossover events were isolated and confirmed by PCR analysis.

3. Results and discussion
3.1. Successful complementation of a virB5 mutant to wild type virulence levels depends on plasmid copy number
We constructed a non-polar deletion of virB5 (bin1900), which was strongly attenuated for virulence in macrophages at 24 h post-infection (hpi) and 48 hpi (Fig. 1). However, we were unable to restore virulence when we complemented the virB5 deletion mutant with the virB5 gene under the control of the virB5 promoter using the medium copy number plasmid pBBR1-MCS (pBBRpvirB–virB5) (Fig. 1), despite restoration of VirB5 production (Fig. 2c). In contrast, virulence was restored when the gene was carried on the low copy number plasmid pGL10 (pGLpvirB–virB5) (Fig. 1), strongly repressed in the absence of inducer.

3.2. Multiple copies of the virB promoter sequence and overproduction of VirB5 attenuate virulence of wild type B. suis
The expression of the Brucella virB operon is controlled through several layers of regulation [17–22]. We have previously suggested

Table 1	Strains, plasmids and primers used in this study.		
Strains	**B. suis strains**	**Source or reference**	
1330	WT 1330	Wild type	ATCC 23444 T
bin1929	1330 (pSN34)	This study	
bin1909	1330 (pSN144)	This study	
bin1900virB5	1330 virB5 non-polar mutant	This study	
bin1901	1330 virB5, (pSN 144)	This study	
bin1908	1330 virB5, (pSN 146)	This study	

| **E. coli strain** | **DH5a** | | |
| | F- lacZAM15 A(lacZYA-argF)U169 endA1 recA1 hsdR17 (rKmS mKmS) supE44 thi-1 AgarA96 relA1 |

Plasmids		
pSN11	Suicide vector, Succ+ CmR	This study
pSN143	pSN11-derivative carrying 400 bp flanks of virB5, resulting in precise virB5 deletion, Succ+ CmR	This study
pBBR1-MCS	Broad host range plasmid, medium copy number (10–12 copies per genome equivalent) CmR	[32]
pSN34	pBBRpvirB	This study
pSN144	pBBRpvirB–virB5	[13]
pGL10	Broad host range RK2-based low copy number cloning vector, low copy number (2–4 copies per genome equivalent), CmR	[30]
pSN146	pGLpvirB–virB5	This study
pSRKKm	pBBR1-derived plasmid containing a reengineered lac promoter–lac operator complex in which cloned genes are strongly repressed in the absence of inducer	[14]
pSN164	pBBRplac–virB5	This study

Primers		
virB5-1	GAGGAATTCCATATG	
virB5-2	GAGGGATCCCTATAGAAGGCGCTTACCACTTG, Ndel site underlined	
B5MutUF	CGCCATCTTTTGAATGACGACGAGCC, BamHI site underlined	
B5MutUR	CGAGATCTCTTATCTTTGAGGACGAGACG, BamHI site underlined	
B2MutUR	CGAATCTCAGTGACTCTCTCTTGTAGTT, Ndel site underlined	
B5MutDF	CGAGATCTCATCTACCTGACCAGTACAAGAGTACA, Ndel site underlined	
B5MutDR	GCTCTAGAGGGATCTTTTGAATGACGACGAGCC, XbaI site underlined	

Murine J774 A.1 macrophage-like cells (ATCC) were cultivated and infected with Brucella with a multiplicity of infection (MOI) of 50 in a standard gentamicin protection assay as described previously [3]. The number of colony forming units (CFU) per well for each time point was expressed as the geometric mean (± standard error of the mean, S.E.M.) of three wells. All experiments were performed at least 3 times. A Student’s t-test (with two-tailed distribution and equal variance) was performed to determine whether two strains differed significantly (P < 0.05).
The presence of multiple copies of the virB promoter sequence might sequester regulatory factors essential for expression of the chromosomal virB operon or possibly other genes that are correlated with the virB operon and essential for virulence [3]. A second possibility is that non-stoichiometric (high) levels of VirB5 could interfere with correct T4SS biogenesis and/or function [12], as shown for VirB6 of A. tumefaciens [23].

We introduced pBBRvirB–virB5 into wild type 1330, finding that it had a dominant negative effect, completely abolishing the virulence of the wild type strain (Fig. 2a). To determine the individual contribution of the presence of multiple virB promoter sequences that might result in the sequestration of transcription factors, we analysed the virulence of wild type 1330 carrying pBBRvirB–virB5, an identical pBBR-based plasmid with the virB promoter, but lacking the virB5 coding region. This strain was also attenuated in J774 macrophages, although significantly less attenuated than wild type 1330 with plasmid pBBRvirB–virB5 (Fig. 2a). This clearly indicated that multiple promoter sequences partially contributed to the observed attenuation of 1330 (pBBRvirB–virB5), but that an additional effect of over expression of VirB5 contributed to the complete attenuation seen with pBBRvirB–virB5 and possibly the inability of pBBRvirB–virB5 to fully complement the virB5 mutant. To further investigate the sequestration of transcription factors, we constructed plasmids carrying the putative binding sites for VjbR in pSRKKm [14], which would not sequester virB specific transcription factors. Macrophages were infected with virB5 (pBBRlac–virB5) and virB5 expression was induced at different times with IPTG.

3.3. Controlled expression of virB5 from a lac promoter partially complements the virB5 mutant

To further dissect the reason for the observed attenuation of wild type 1330 by the presence of pBBRvirB–virB5, we placed the virB5 gene under the control of a tightly regulated lac promoter in pSRKKm [14], which would not sequester virB specific transcription factors. Macrophages were infected with virB5 (pBBRlac–virB5) and virB5 expression was induced at different times with IPTG.
As several regulators have either positive or negative effects on virB expression by binding to specific sequences in the promoter region [17,25], we would expect that an effect on endogenous virB transcription by the presence of multiple virB sequences would result in a general reduction of virB expression in the wild type carrying pBBRp, levels of VirB5, VirB9 and VirB10 were indeed slightly reduced (Fig. 2b). However, additional over expression of VirB5 in 1330 (pBBRp–virB5) led to a greater reduction of VirB9, and even undetectable VirB10 (Fig. 2b). This reduction in VirB protein levels correlates with the complete attenuation of 1330 (pBBRp–virB–virB5) and the inability of pBBRp–virB–virB5 to complement the virB5 mutant. In contrast, in virB5 (pGLp–virB5), with virulence restored to almost wild type levels, VirB5 and VirB10 levels were intermediate to those in 1330 and virB5 (pBBRp–virB–virB5) (Fig. 2c). Importantly, VirB10 was still detectable and VirB5 levels were still higher than those in wild type 1330, suggesting that some variation in VirB protein levels is tolerated to reach almost WT levels of complementation.

Other studies have shown that the assembly of a T4SS in the bacterial envelope is a complex process in which many different, often transitory, protein–protein interactions occur. Often T4SS genetic complementation studies are difficult and do not result in full functional complementation to wild type virulence levels [12,23,26]. The presence of one protein is often required to stabilize another; VirB5 was shown to interact in Agrobacterium with VirB9 and VirB10 [27,28] and co-expression of the T4SS components VirB7 and VirB8 is essential to restore virulence of individual null mutants [26]. In Agrobacterium, VirB10 plays an essential role in both substrate translocation and biogenesis of the VirB pilus [29]. Disturbance of its regulation or stability may have dramatic effects on T4SS function. Alternatively, an indirect effect on production of VirB9, which was shown in A. tumefaciens to be essential to stabilize VirB10 under specific conditions of low osmolality [28], may play a role in the attenuation of our VirB5 overproducing strain. Overproduction of VirB5 might also result in mislocalisation of the protein at the pilus tip [11].

Our data highlight that the choice of promoter and plasmid replication origin are critical components to ensure optimal levels of protein of individual T4SS components and not to deregulate expression of the endogenous operon. The protein levels required to maintain stoichiometric levels; however, may be different for each T4SS component under investigation. An easy assay to determine whether the original multiprotein complex will be deregulated is to verify virulence of the wild type strain containing the complementing plasmid. A low copy plasmid, with the gene expressed from its natural promoter is effective in complementation of a B. suis virB5 mutant. This approach has also been used with other proteins for which over expression may have inhibitory effects on bacterial physiology such as the CcrM protein [30]. An alternative way to ensure ‘perfect’ complementation is to recombine the complementing gene back into the chromosomal virB operon, a strategy used to complement a B. abortus virB2 mutant [31]. However, this method will be too time consuming for studies requiring complementation with multiple variant alleles, and unfeasible for certain bacterial species that are difficult to manipulate.

Acknowledgements

We thank Christian Baron and Renee Toslis for antisera, and Stephen Farrand for plasmid pSRK1m. This work was supported by institutional grants from INSERM and the Université Montpellier 1, the Agence Nationale de la Recherche (ANR), the Region Languedoc-Roussillon and the Ville de Nîmes. NS was supported by grants from the Ministère de la Recherche et de l’Enseignement Supérieur and the Fondation pour la Recherche Médicale.

References

