E. Cabrio and S. Villata, Five years of argument mining: a data-driven analysis, Proceedings of IJCAI 2018, pp.5427-5433, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01876495

S. Eger, J. Daxenberger, and I. Gurevych, Neural end-to-end learning for computational argumentation mining, Proceedings of the 55th ACL, pp.11-22, 2017.

I. Habernal and I. Gurevych, Argumentation mining in user-generated web discourse, Comput. Linguist, vol.43, issue.1, pp.125-179, 2017.

Z. Huang, W. Xu, K. ;. Yu, and P. Torroni, Argumentation mining: State of the art and emerging trends, CoRR abs/1508.01991. Lippi, vol.16, p.25, 2015.

A. Peldszus and M. Stede, From argument diagrams to argumentation mining in texts: A survey, IJCINI, vol.7, issue.1, pp.1-31, 2013.

N. Reimers and I. Gurevych, Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.338-348, 2017.

C. Stab and I. Gurevych, Parsing argumentation structures in persuasive essays, Comput. Linguist, vol.43, issue.3, pp.619-659, 2017.

C. Stab, T. Miller, and I. Gurevych, Cross-topic argument mining from heterogeneous sources using attentionbased neural networks, 2018.

M. Teruel, C. Cardellino, F. Cardellino, L. A. Alemany, and S. Villata, Increasing Argument Annotation Reproducibility by Using Inter-annotator Agreement to Improve Guidelines, Proceedings of the LREC, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01876506

B. Wang, K. Liu, and J. Zhao, Inner attention based recurrent neural networks for answer selection, Proceedings of the 54th ACL, pp.1288-1297, 2016.