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Abstract

Solving a dynamic traffic assignment problem in a transportation network is a com-
putational challenge. This study first reviews the different algorithms in the literature
used to numerically calculate the User Equilibrium (UE) related to dynamic network
loading. Most of them are based on iterative methods to solve a fixed-point problem.
Two elements must be computed: the path set and the optimal path flow distribu-
tion between all origin-destination pairs. In a generic framework these two steps are
referred to as the outer and the inner loops, respectively. The goal of this study is
to assess the computational performance of the inner loop methods that calculate
the path flow distribution for different network settings (mainly network size and
demand levels). Several improvements are also proposed to speed up convergence:
four new swapping algorithms and two new methods for the step size initialization
used in each descent iteration. All these extensions significantly reduce the number
of iterations to obtain a good convergence rate and drastically speed up the overall
simulations. The results show that the performance of different components of the
solution algorithm is sensitive to the network size and saturation. Finally, the best
algorithms and settings are identified for all network sizes with particular attention
being given to the largest scale.
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1 INTRODUCTION

Dynamic TrafficAssignment (DTA) refers to the process of: (i)
identifying the relevant paths between all Origin-Destination
(OD) pairs in a transportation network, and (ii) determining the
path flow distribution, considering the total OD flow demand
and the time evolution of traffic states inside the network. For
the first step, many researches have proposed multiple path
selection models by considering the time and dynamics of the
network, e.g., (Jayakrishnan, Tsai, Prashker, & Rajadhyaksha,

0Abbreviations:UE, user equilibrium; DTA, dynamic traffic assignment; OD,
origin-destination

1994; Mahmassani, 2001; Xie, Nie, & Liu, 2018). The sec-
ond step depends on the user behavior rule we want to adopt,
which leads to different definitions of the network equilib-
rium. The best known is User Equilibrium (UE) when all users
try to minimize their own travel time selfishly. It corresponds
to Wardrop’s first principle (Wardrop, 1952), where users are
assumed to be perfectly rational and have perfect informa-
tion on the network’s status (Miaou, Summers, & Lieu, 1999),
i.e., the predicted travel time on all the relevant alternatives is
known at the beginning of all the users trips (Ng & Waller,
2012). Implementing this simple behavioral rule for Dynamic
Network Loading (DNL) is far from trivial (Lin, Valsaraj, &
Waller, 2011). DNL is the combination of DTA with a traffic
simulator that calculates network states and travel times (Yu,
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Ma, & Zhang, 2008). The critical issue is that the simulator
needs to know the path flow distribution in order to predict
the travel time accurately while the DTA process requires this
information to estimate the path flow distribution (Bekhor,
Toledo, & Reznikova, 2009). Mathematically, this problem
corresponds to a fixed-point search, which requires an iterative
solution method to converge. Transforming the DTA problem
into a fixed-point problem allow using a large number of algo-
rithms. The main idea stems from the theory of fixed-point
re-statement (Xu, 2002). Since one run of the traffic simula-
tor is computationally expensive, in particular for a large-scale
network, in the field of transportation, it is essential to use an
efficient algorithm to solve the fixed-point problem.
The general principle of the algorithms to solve the fixed-

point problem is to reassign a fraction of the users at each step
(Friesz & Han, 2019). The algorithm usually reassigns the part
of the users who have chosen a non-optimal path because the
travel time estimation was misleading (Sancho, Ibáñez Marí,
& Bugeda, 2015). The critical issue is to reach a given level
of convergence while minimizing the number of iterations.
This study aims to investigate the performance of convergence
algorithms to solve the DTA problem.
Multiple convergence algorithms have been proposed in the

literature to solve this problem. There are twomain approaches
to determine howmany users at each step should be reassigned:
analytical and simulation-based. The analytical approach, e.g.,
(Jiang & Xie, 2014; Mounce & Carey, 2011; Wang, Szeto,
Han, & Friesz, 2018), is very accurate but can only be applied
in practice to small networks with few ODs. Several studies
proposed exact decomposition techniques to reduce the com-
putational complexity of the traffic assignment problems in
static (Jafari, Pandey, & Boyles, 2017) and dynamic cases
(Mehrabipour, Hajibabai, & Hajbabaie, 2019). However, con-
gestion patterns are almost intractable analytically due to mul-
tiple non-linear interactions inside the network (Taale & Pel,
2015). Simulation-based approaches can match any given net-
work, but obviously the simulation time increases with the
number of nodes/links and vehicles inside the network.
Traffic simulators can be divided into two classes: Flow-

based models, which consider the flow on each path and
Trip-based models, which define howmany travelers take each
path. Macroscopic traffic flow models fall into the first cat-
egory while microscopic models belong to the second. In
other words, the flow-based models have a continuous solu-
tion space while trip-based ones have a discrete solution space
(Ramadurai & Ukkusuri, 2011). Both kinds of simulators can
be coupled with convergence algorithms. The macroscopic
approach and flow-based models usually converge faster as the
path flow discipline is more flexible (flows are not necessarily
equivalent to vehicle units), but without adding integrality con-
straints, they are less realistic for OD pairs with low demand

as vehicles are split into parts in practice. In this study, we
decide to focus on the trip-based approach because it is more
realistic as each vehicle is reproduced individually. Micro-
scopic traffic simulators are now widely used for operational
studies, and we have chosen to focus on DTA performance
for this kind of model. In summary, trip-based DNL attempts
to assign particle-discretized time-dependent origin/destina-
tion (OD) flows in a dynamic network equilibrium framework
(Jayakrishnan & Rindt, 1999).
Regarding the real-world application, there are several com-

puter packages in the literature. Jeihani (2007) reviewed the
DTA models used in the most well-known. Indeed, a lot of
effort has been paid in providing a newmathematical represen-
tation to solve the DTA problem; however, it is also essential to
have an idea about the overall efficiency of different computa-
tional methods. Here, we consider the simulator as a black box
to make this study compatible with any existing traffic simula-
tion software. We then focus on solution methods. This study
reviews existing algorithms to solve the fixed-point problem
and proposes multiple improvements to speed-up the conver-
gence for a given level of accuracy. Particularly, for large-scale
networks as computation times usually count in hours or even
days; therefore, slight improvements may be valuable. This
study aims to address the following questions:

• Which solution algorithm is efficient to find the DTA
solution by considering the size and loading of the
network?

• Is there a way to improve the existing methods to find a
good quality solution in terms of optimality and feasible
computation time for large-scale?

This study considers common convergence algorithms in the
literature and attempts to overcome the drawbacks of existing
methods to improve the performance of the solution algorithm
for simulation-based DTA problems. We aim to provide guid-
ance to practitioners about the best settings to solve simulation-
based DTA problems.
The next section, Problem statement, provides a discus-

sion on the mathematical conditions for the UE solution. It
also presents the two indicators that will be used to assess
the algorithm’s performance. The benchmark of the solution
algorithm for finding the UE is presented in the Methodol-
ogy section. The improvements made to the solution algorithm
with the new swapping algorithms are presented in the
section Investigating the solution algorithm. The experimen-
tal design is presented in the section Numerical experiment.
The results obtained are discussed in the section Numerical
results. Finally, we provide concluding remarks and introduce
the future directions of work in the Conclusion section.
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2 PROBLEM STATEMENT

2.1 Mathematical formula for UE
Let us consider a network G(N, A) with a finite set of nodes
N and a finite set of directed links A. The demand is given
and time-dependent. The period of interest (planning horizon)
of duration H is discretized into a set of small time intervals
indexed by � (� ∈ T = {�0, �0 + �, �0 + 2�, ..., �0 +M�} and
�0 +M� = H). � is the duration of the time intervals. In an
interval �, travel times and traffic conditions are estimated on
average and are assumed constant for the DTA. Note that the
departure time of users are fixed in this study. In the sequel,
the minimum cost path is considered as the shortest path.
The important notations which must be introduced for the
dynamic equilibrium model are as follows:

W : OD pairs, subset of origin × destination nodes, W ⊂
N ×N .
w: index of origin-destination (OD) pair, w ∈ W .
Pw, � : set of paths for w in departure time interval �.
P ∗w, � : set of shortest paths for w in departure time interval �.
p: index of path, p ∈ Pw, � .
p∗: index of shortest path, p∗ ∈ P ∗w, � .
Dw: total demand for w pair.
T rw, � : list of trips which travel for w in departure time inter-
val �.
T rp, � : list of trips which travel for w on path p in departure
time interval �, T rp, � ⊂ T rw, � .
tr: index of trip, tr ∈ T rw, � .
Ctr,p, � : experienced travel cost of trip tr on path p in departure
time �.
C∗w, � : minimum experienced travel cost forw in departure time
interval �.
Ĉp, � : mean travel cost of trips on path p in departure time �.
Ĉ∗w, � : mean travel cost of trips on minimum cost path(s) of OD
pair w in departure time �.
n(A): cardinality of a set A.

According to the definition, we have:

Ĉp, � =

∑

tr∈T rp, �
Ctr,p, �

n(T rp, �)
; ∀p ∈ Pw, � , � ∈ T (1)

Ĉ∗w, � =

∑

p∗∈P ∗w, �

∑

tr∈T rp∗ , �
Ctr,p∗, �

n(T rp∗, �)
; ∀w ∈ W , � ∈ T (2)

Equation (1) presents the calculation of mean travel cost
of path p and equation (2) is the same presentation for the
shortest path p∗. For each OD pair w ∈ W and for all paths
p ∈ Pw, the dynamic traffic network equilibrium conditions
with given travel demand and the users’ departure time for the

aforementioned traffic network equilibrium problem are:

Ĉp, � − Ĉ∗w, � ≥ 0 ; ∀w ∈ W , p ∈ Pw, � , � ∈ T (3)

n(T rp, �)(Ĉp, �−Ĉ∗w, �) = 0 ; ∀w ∈ W , p ∈ Pw, � , � ∈ T (4)

n(T rp, �) ≥ 0 ; ∀p ∈ Pw, � , � ∈ T (5)
According to constraint (3), the shortest path p∗ has the mini-
mum travel cost for the related OD pair. Equation (4) indicates
that all users travel on shortest path with minimum travel cost
at UE state and the flow of paths cannot be negative, according
to constraint (5).
Lu et al., 2009, extended the work of Smith, 1993, and

reformulated the problem as a non-linear problem in order
to minimize the gap function. The gap function is defined as
the gap between average path travel time and average shortest
path travel time. Consequently, the solution to this fixed-point
problem is equivalent to finding the solution to the following
variational inequality:

∑

w∈W

T
∑

�=1

∑

p∈Pw,�

C i
w, p, �

∗ [n(T rw, p, �) − n(T rw, p, �∗)
]

≥ 0 (6)

where n(T rw, p, �∗) is the optimal number of trips from OD
pair w that are assigned to path p at departure time � and
n(T rw, p, �), n(T rw, p, �∗) ∈  satisfy the equilibrium. 
denotes the flow constraints based onDw. In equation (6), both
n(T rw, p, �) and n(T r∗w, p, �) are decision variables and hence the
gap function is a function of both variables.
Then a vector of n(T r∗w, p, �) solves equation (6) if and only if

it is a fixed-point of the following mapping (Marcotte, 1985):

Γ ≜ arg minn(T rp, � )∈[n(T rp, �)]
T [Ĉp, �] (7)

where [n(T rp, �)] denotes the vector of n(T rp, �); ∀p ∈
Pw, � , � ∈ T and [Ĉp, �] denotes the vector of Ĉp, � ; ∀p ∈
Pw, � , � ∈ T . For the proof and details, see Kaufman, Smith, &
Wunderlich (1998). Before presenting the solution algorithm,
we need to present the convergence indicators used in this
study to evaluate the quality of the solution for the trip-based
dynamic network user equilibrium.

2.2 Convergence quality
In the trip-based DTA problem, the goal is to minimize the
left side of the Equation (8) for all paths and OD pairs. In
other words, finding the UE situation is equivalent to minimiz-
ing the delay of each user compared to the optimal option of
the associated OD pair (shortest path) in the network. By this
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definition we can define a quality indicator for solutions which
is calculated as the average delay of each user (Janson, 1991):

AGap =

∑

w∈W

T
∑

�=1

∑

p∈P (w,�)

∑

tr∈T rp, �
(Ctr,p, � − C∗tr,w, �)

∑

w∈W

T
∑

�=1
n(T rw, �)

(8)

Note that this formula uses the experienced travel time to cal-
culate the gap rather than the path travel time. The AGap is
zero for the perfect UE path flow distribution, so the best opti-
mization algorithm obtains minimum AGap. Equation (8) has
physical meaning for measuring the distance between solution
and UE. The second indicator is a characterized assignment
violation, i. e. users that are assigned on (a) non-optimal
path(s). The violation indicator is calculated by the following
steps:

1. Calculate the user violation: it is defined by considering
the gap of each user (UV tr

w ):

UV tr
w =

{

1; if Ctr,w−C∗w
C∗w

≥ �

0; o.w.
(9)

where Ctr,w denotes the experienced travel time of the
user tr who travels for OD pair w and C∗w denotes the
shortest path of OD pair w. If the gap between the user
perceived travel time and the shortest path travel time is
bigger than � of the shortest path travel time, the user
is in violation. � = 0 means perfect UE, but in practice
with trip-based simulation, it is more appropriate to set
up a margin to count users that are miss-assigned.

2. Compute the OD violation: the OD pairw is in violation
when more than �′ of the users on w are in violation.
The function ODVw defines the OD violation:

ODVw =

⎧

⎪

⎨

⎪

⎩

1; if
∑

i∈Iw
UV i

w

n(T rw)
≥ �′

0; o.w.
(10)

where T rw denotes the set of users, who travel for OD
pair w.

3. The violation indicator of network G is the share of
ODs in violation. The second indicator for the quality of
solution (Violation) is defined as follows:

V (G) =
∑

w∈W ODVw
n(W )

(11)

The value of � and �′ are fixed at 10% in this study to evaluate
the quality of the solution from a different angle as AGap. The
violation index provides a more threat assessment of how the

equilibrium is achieved on the OD-basis. Note that, similar to
AGap, the perfect UE means V (G) = 0 with � = �′ = 0.
While AGap gives an idea about the average level of the

convergence for the solution in a continuous way, the violation
index defines how many out-liners we can accept. The two cri-
teria represent the level of confidence we want to achieve at
the OD level (�) and then at the network level (�′). Please note
that we do not use V (G) in the convergence loop and simply
calculate it afterwards to assess how the process is doing.

3 METHODOLOGY

In large-scale DTA problems, there are three costly steps in
terms of computation in simulation-based DTA models: traf-
fic simulation, shortest path discovery, and optimization. Here,
we focus on the optimization step. According to the state of the
art, it appears that themost advanced framework for solving the
simulation-based DTA problem as a black-box optimization
problem is that proposed by Lu, Mahmassani, & Zhou (2009)
with a clear decomposition between outer and inner loops.
The outer loop is responsible for path discovery and does not
include any traffic simulation. The inner loop determines path
flow distribution for all OD pairs in the network and includes
multiple DNL. The classic approach executes both steps in one
top loop. In large-scale network problems, it is extremely costly
to keep the data of all possible paths between each OD pair.
With Lu et al. (2009)’s framework, the simulator simply keeps
the feasible paths discovered by the outer loops.
The outer loop is only about path discovery. Therefore,

improving the computation time there means finding a more
efficient shortest path algorithm, which is not in the scope of
this study. This study focuses on path flow distribution, which
is the role of the inner loop and plays a pivotal role in the overall
UE calculation by reducing the number of simulation run we
have to launch to get the equilibrium. The solution algorithm
is presented in Figure 1 and is detailed in the following:

Step 1. Initialization: Load the network and the OD matrix,
with real data or simple assignment models (e.g., All-
or-nothing algorithm).

Step 2. Time-dependent shortest path Calculation: Calcu-
late the time dependent shortest path(s) for each OD
pair w.

Step 3. Update the cost functions: Read the information from
the simulator output and update the cost of paths
(links) on the network graph and update the quality
indicators.

Step 4. Outer loop convergence test: Check the stop condi-
tions:
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FIGURE 1 Solution algorithm for trip-based dynamic net-
work equilibrium

a. Maximum number of outer loop iterations (jmax) is
reached OR

b. No new shortest path for adding to path set AND
good solution quality: AGapj ≤ �; where AGapj
is the AGap of outer loop iteration j (∀j ∈
{1, ..., jmax}). � is a small and fixed value. Other-
wise go to the next step.

If it has converged, the process is stopped (END). Note
that the path set is a set of paths that contains used
path(s) (n(T rp,�) > 0) and shortest path(s) which have
been used or not (n(T r∗p,�) ≥ 0) for all ODs which
come from step 2.

Step 5. Inner loop Initialization: Load the path flow distribu-
tion of Step 1 by (Lu et al., 2009) or other initialization
methods (this study) in order to generate the initial
assignment to start the inner loop.

Step 6. Update the path assignment: Swapping trips from a
path to another(s) based on an optimization method in
order to load the flow to the different path candidates.

Step 7. Simulation: Command the simulator to simulate the
new assignment pattern provided by Step 6.

Step 8. Identify the shortest path(s): The simulator returns
the experienced travel time of all the users on different
ODs. The shortest path travel time can be changed, and
it is possible that we have another shortest path from
the path set based on the simulation results. Note that
we have a fixed path set in this step and we do not need
to use the shortest path algorithm.

Step 9. Update the cost function: Update the network data
from the simulator run in Step 3.

Step 10. Inner loop convergence test: Check the stop condi-
tions:

a. Maximum number of inner loop iterations (imax) is
reached OR

b. small enough variation in solution quality:
|AGapi − AGapi−1|

AGapi−1
≤ Λ ; ∀i ∈ {1, ..., imax}

(12)
where AGapi is the quality of the solution of inner
loop iteration i and Λ is a fixed threshold (Λ = 1%)
for comparing the relative AGap .

At the end of each Inner Loop, if there is insufficient
variation in solution quality, we converge and go to
step 12. Otherwise, we continue to Step 11.

Step 11. Keep the best solution: Compare the solution quality
(AGapi) of the current inner loop iteration (i) with the
best solution of the current outer loop (AGapjmin). Note
that if we are in the first inner loop iteration (i = 1),
we consider the AGap of Step 4 as the initial best and
compare it with the current solution. If the solution
has better quality, we replace the best solution by the
current solution. Otherwise, the best solution is kept.
The solution contains the path assignment pattern and
solution’s AGap. Afterward, we continue iterating in
the inner loop by going back to Step 6.

Step 12. Best solution check: The goal of this step is to ensure
that our last solution is the best solution of the current
outer loop. We compare the last solution with the cur-
rent best solution from Step 11. If the last solution is
the best (AGapi ≤ AGapjmin), go to the outer loop to
explore the network and find (a) new shortest path(s)
(Step 2). Otherwise, a final simulation is executed in
the next step for the best assignment pattern which is
not the last one we obtain.

Step 13. Simulation of the best solution: simulate the traffic
state (like Step 7) with the best assignment pattern of
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the inner loop provided by Step 11 to move to the next
time period or the next outer loop iteration (Step 2).

Note that in the inner loop convergence test (Step 10), the
stop conditions are the maximum number of iterations and
variations of the gap, so the last iteration solution is not nec-
essarily the best solution of the inner loop. Therefore, Steps
11-13 are keeping the best solution of the inner loop when the
algorithm goes back to the outer loop. This will be even better
when using trip-based approaches because their discrete nature
makes them less stable and we will, therefore, have more cases
where the solution of the last iteration is not the best over the
current inner loop.

4 INVESTIGATING THE SOLUTION
ALGORITHM

In this section, we focus on improving the inner loop (in Figure
1). They correspond to steps 5 and 6.

4.1 Swapping algorithms
Swapping algorithms corresponds to Step 6 in Figure 1, where
the solution algorithm updates the path assignment. Here, we
benchmark different algorithms that exist in the literature and
also propose new ones. Table 1 gives a complete summary of
all the algorithms with their references.

4.1.1 Method of Successive Average (MSA)
The method of successive average (MSA) is the best known
algorithm for solving the fixed-point problem. Most of the
studies in the literature used MSA as a reference algorithm.
TheMSAwas presented for the first time by Robbins &Monro
(1951). TheMSA is still widely used in simulation-based DTA
(e.g., (Zhang, Liu, & Waller, 2019)), because it is simple to
implement and does not require the derivative information of
the flow cost function (Nagel & Flötteröd, 2012). The MSA
updates the path flow by using a descent direction and a pre-
determined step size. Mounce & Carey (2014) investigates
different descent direction methods for theMSA algorithm and
concludes that MSA works well on large networks when com-
bined with a swap towards the least costly route(s). Therefore,
the classic descent direction (yip) of the iteration (i) for path p
is extracted from the auxiliary path assignments obtained by
All-or-nothing discipline, i.e., everyone is put on the active
shortest path. Consequently, in iteration i, the MSA algorithm
swaps a fraction �i of users to the shortest path(s) from each
non-shortest path (Equation (1)). Mathematically, a fraction �i

of the total number of users on non-shortest paths is added to
the shortest path(s).

ni+1p,w = n
i
p,w + �

i
MSA(y

i
p,w − n

i
p,w) (13)

where nip,w is the number of trips for OD pair w which travel
on path p in iteration i at each time step. �iMSA denotes the
step size of the MSA algorithm. The MSA step size satisfies
the following (Sheffi, 1985):

∞
∑

i=1

(

�i
)2 <∞ (14)

∞
∑

i=1
�i = ∞ (15)

The classic MSA uses one over the iteration index plus one as
a step size (Equation (4)) to ensure the algorithm converges.
The step size can be defined with respect to Equations (2) and
(3).

�iMSA =
1

i + 1
(16)

The first drawback of the MSA is that it swaps a fixed number
of users from all non-shortest paths to the shortest one without
considering the actual travel time on these paths; it does not
consider the gap between the shortest and other paths. First,
Sbayti, Lu, & Mahmassani (2007) implemented the classic
MSA method in trip-based DTA, using the random selection
technique in view to reducing memory requirements. Second,
they attempted to overcome the first drawback by propos-
ing a criterion-based selection that ranks the users based on
experienced travel time. They showed that on a real network,
both methodologies were observed to converge, and that the
criterion-based technique also produced a better solution than
MSA in terms of closeness to optimal. However, by increas-
ing the number of users in a large-scale network, ranking
them based on travel cost is a computationally costly approach.
Moreover, Sbayti et al. (2007) uses the same predetermined
step size as the MSA method.
The second drawback is about predetermining the step size.

The step size rule pushes the process to stabilize. There may
be a risk of stabilizing before reaching the optimal solution.
The step size has a direct impact on the number of iterations
(computation time) and convergence speed. There is no exact
method for determining the step size in the literature (Huang
& Lam, 2002; W. Szeto & Lo, 2005). The step size does not
guarantee the quality of the solution at the end, which may not
be the actual UE (Levin, Pool, Owens, Juri, & Waller, 2015).
One of the goals of this study is to improve the performance
of the optimization process by proposing new methods for
step size determination in the simulation-based optimization
framework. There are several extensions for MSA algorithm
in the literature, which attempt to overcome the drawbacks of
existing methods to improve the performance of the solution
algorithm for simulation-based DTA problems.
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4.1.2 MSA Ranking
As mentioned in the previous section, the first drawback of the
MSA algorithm for DTA application is that the MSA does not
consider the travel time of the non-shortest path and simply
swaps a fixed fraction of users to the shortest path. In other
words, the MSA does not take into account the quality of the
path in terms of travel time. To overcome this drawback of the
MSA algorithm, there is an extension of the MSA in the lit-
erature called MSA ranking (Sbayti et al., 2007). The idea of
MSA ranking is that the users are first ranked by experienced
travel time then a maximum number of users with long expe-
rienced travel time are swapped to the shortest(s) path, based
on the MSA algorithm’s step size. The maximum number of
swapsNS imax is observed when no users have been previously
assigned to the shortest path.

NS imax = �
i
MSA.Dw (17)

The advantage of this algorithm is that it swaps users from
the most expensive paths to the shortest path so the direction
of solution searching can be improved to obtain a good solu-
tion in terms of quality for the trip-based UE problem. On the
other hand, with a large number of users traveling between
manyODs bymany possible paths, ranking the users is a costly
process in a large-scale problem. However, it is a good refer-
ence when taking all the MSA-based algorithms into account
because it usually provides the best solutions (low AGap and
Violation values).

4.1.3 Projection-based algorithms
Here, we adapt two swapping algorithms with an extension of
the MSA-based formula.
1- The within-day fixed-point algorithm is a projection-
based algorithm designed for non-linear fixed-points of non-
expanding maps. Friesz & Han (2019) applies this algorithm
to flow-based (continuous) dynamic user equilibrium problem
by differential variational inequalities. We adapt this algorithm
as a Projection method (PM) to the trip-based DTA problem.
The validation of the algorithm for the fixed-point problem is
well defined in Halpern (1967). The swapping algorithm of the
Projection method is based on the transformation of the cost
to the flow by a constant (�), which is the time step size of
the algorithm. From the standpoint of application, the unit of
� is time

flow
and measures users’ sensitivity to travel costs. The

swapping algorithm for trip-based DTA is as follows:

NSpPM = min
{

n(T rp), �.(Ĉp, � − Ĉw, �)
}

(18)
where Ĉw, � denotes themean travel time of all paths of OD pair
w in time interval �. At every iteration, the algorithm attempts
to swap users from the path with longer travel time compared
to mean travel time to the shortest path and other low-cost
paths. Note that � is determined in the light of the recent study

of (K. Han, Eve, & Friesz, 2018) in which this algorithm is
applied to a flow-based DTA problem. Note that in equation
(18), we can have a negative number for swapping, meaning
that users should be added to this path. It also gives an indica-
tion of how many should be added. This only concerns paths
whose path travel time is below the mean travel time (Ĉw, �).
2- Friesz, Kim, Kwon, & Rigdon (2011) extended the Projec-
tion algorithm by using a common method for speeding up
the convergence in Hilbert space when solving the fixed-point
problem. The idea is to retrieve the initial solution at each iter-
ation by using a weighted coefficient based on a second step
size for calculating the Projection algorithm solution. Let us
consider zi as the assignment pattern in iteration i of the Pro-
jection algorithm. The solution of this algorithm, labelled as
Projection Initialization (PI) algorithm, will be:

ziP I = �
i
P Iz

0 + (1 − �iP I )z
i (19)

where z0 is the initial flow pattern at the beginning of the
process and �iP I is the step size determined by the following
formula:

�iP I = (
1

1 + i
)
q

(20)

where q is a parameter to be designated and which must satisfy
0 < q < 1.
3- The third algorithm in this category is developed based
on the Projection Initialization algorithm. The same proce-
dure is applied for the MSA algorithm to evaluate the impact
of sticking to the initial solution on the optimization process.
Therefore, the flow formula of the Initialization MSA (IMSA)
algorithm is as follows:

ziIMSA = �
i
P Iz

0 + (1 − �iP I )z
i
MSA (21)

where zi in equation (19) is replaced by ziMSA, which is the
solution of the MSA algorithm in iteration i. As with the Pro-
jection initialization algorithm, �iP I is determined by equation
(20).

4.1.4 Gap-based algorithm and Gap-based
normalized algorithm
Lu et al. (2009) proposed the gap-based step size and proved
that it satisfies the step size conditions. The volume of swap-
ping is proportional to the gap (the difference between the
non-shortest path and shortest path cost) over the path cost
multiplied by MSA step size:

�iGB =
Ĉp, � − Ĉ∗w, �

Ĉp, �
.�jMSA (22)

�jMSA =

{

�jMSA; if i = 0
1; o.w.

(23)
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We recall that j is the outer loop iteration index. This algorithm
solves the problem of sorting and also circumvents the first
drawback of theMSA formula (Section 4.1.1). However, it also
uses the step-size which can induce the convergence of the
algorithm to a non-optimal solution. Moreover, the multiplica-
tion of the gap indicator and the MSA step size can provide a
small step size for this algorithm. Here we normalize the gap
indicator to provide a relative fraction for the step size which
gives the algorithm more flexibility in swapping at each itera-
tion. The algorithm can swap more or fewer users from path p
with respect to the gap of other paths of OD pair w:

�iGBN =
Ĉp, � − Ĉ∗w, �

∑

p∈P (w,�)(Ĉp, � − Ĉ∗w, �)
.�iMSA (24)

This swapping algorithm is applied for each OD pair. This
algorithm attempts to normalize the gap indicator of the
Gap-Based algorithm (GB), which is called the Gap-based
normalization (GBN) algorithm in this study.

4.1.5 Probabilistic algorithm
We first introduced the Probabilistic algorithm in Ameli,
Lebacque, & Leclercq (2017) for solving the multi-class mul-
timodal equilibrium, but we never investigated it in detail. This
algorithm calculates for each user the probability of swapping
(SPtr) by equation 25. Then the Bernoulli trial is implemented
in simulation for a user tr in order to decide to swap or not
according to the result of the trial.

SPtr = P (trswap = 1) =
Ctr, � − C∗w, �

Ctr, �
(25)

where trswap denotes the binary swap decision variable. This
algorithm is the only one which does not use step size. More-
over, it avoids the ranking process and saves computation time.
The Probabilistic algorithm can be considered as an implemen-
tation of the Gap-based algorithm to a trip-based approach if
we adjust the probability of reducing the impact of the descent
step. However, here we basically relax the step size. The Proba-
bilistic algorithm is totally flexible when searching the solution
space based on the probabilistic process.

4.1.6 Hybrid algorithms
Hybrid algorithms are different combinations of Gap-based,
Probabilistic and MSA algorithms for each individual step of
the calculation.
1- Halat, Zockaie, Mahmassani, Xu, & Verbas (2016) applied
a hybrid algorithm for a dynamic activity-based model. The
algorithm is a similar to the Probabilistic method as it adds a
step size to equation (25). This algorithm is called Step size

Probabilistic (SSP), and calculates the swap probability by the
following formula:

SP SSP
tr =

Ctr, � − C∗w, �
Ctr, �

.�iMSA (26)

The first hybrid algorithm uses a randomnumber and compares
it with SP SSP

tr to make the swap decision for each user.
2- Verbas, Mahmassani, & Hyland (2015) applied the Gap-
based algorithm for transit network assignment problems and
used the probabilistic algorithm for each user on each path to
swap more users with high travel cost without ranking. The
algorithm is called Gap-based Probabilistic (GBP). For path
p, the number of swapping users is determined by equation
(22) and the users are selected by Equation (25) for swapping.
Verbas,Mahmassani, &Hyland (2016) showed that this hybrid
algorithm obtains better solutions than the MSA algorithm in
large-scale transit assignment problems.
3- The third hybrid algorithm is the Boost-up Gap-based
(BGB) algorithm and is proposed by this study. The idea is to
boost step size of the Gap-based algorithm. For path p, wemul-
tiply the number of swaps by a fraction of the swap number of
the Gap-based and MSA algorithms:

NSpBGB = min

{

n(T rp), [�iGB .n(T rp)].
�iGB
�iMSA

}

(27)

This section presents different alternatives for Step 6 of the
solution algorithm.

4.2 Inner loop initialization
The solving process in the inner loop should start with an initial
path flow distribution to first estimate travel times by simu-
lation (Step 5 in Figure 1). The usual approach is to assign
the total demand to the shortest path(s), using free-flow travel
times (All-or-nothing initial assignment). In Step 5, at the
beginning of each outer loop before entering the inner loop,
the assignment pattern is initialized and reset to the assignment
pattern in Step 1 (Lu et al., 2009). We investigate an alternative
approach for the assignment pattern initialization.
Keeping the assignment pattern approach removes Step 5

from the solution algorithm. Consequently, the algorithm starts
the outer loop j with the optimal solution from the previous
outer loop (j−1). Obviously, this will be very efficient for solv-
ing static situations, but we want to investigate its performance
with dynamic loading.

4.3 Initial step size selection
The third investigation is the definition of the descent step
size. The initial step size (�1) defines how many users can be
swapped during the first iteration. It is the largest step size dur-
ing the inner loop and determines the exploration domain of
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the solution space. In two-level simulation-basedmethodology
(Lu et al., 2009), the initial step size of the first inner loop of
the outer loop j (�1, j) is calculated by the iteration counter of
the outer loop (j):

�1, jInitial =
1

j + 1
(28)

This setting improves the speed of convergence because
increasing j decreases �1, jInitial, so the largest number of swaps
for the current inner loops in outer loop j + 1 begins with a
smaller value in comparison with outer loop j. On the other
hand, increasing j reduces the exploration domain of the inner
loop. In order to overcome this drawback, this study proposes
two new approaches to set up the step size.

4.3.1 Re-initializing the step size
The idea of re-initializing the step size (Reset) method is to
reset the step size by the inner loop iteration index:

�i, jReset =
1

i + 1
(29)

This approach at the beginning of each outer loop starts the
optimization with �1, jReset = 1

2
to have more flexibility for

searching the solution space. In other words, this approach can
increase the maximum number of swaps at each iteration in
comparison to the initial approach (�1, jReset ≥ �1, jInitial).

4.3.2 Smart step size
Here we design an approach that uses adaptive step size for
each OD pair w. First, all the inner loops are initiated with the
same step size whatever the OD pair. At the end of the first
iteration (i = 1), the OD gap for OD pair w is calculated as
follows:

Gapiw =
∑

p∈P (w,�)
[n(T rw, p).(Ĉp − Ĉ∗w)] (30)

Then, we keep the step size and run the second loop (i = 2). At
the end of the second loop, we update the OD gap and compare
it with the previous OD gap. If the OD gap is improved, we
keep the step size to swap the same fraction of users for a pos-
sibly better solution, otherwise we decrease the OD step size
to decrease the number of swaps. The step size for OD pair w
at inner loop iteration i is:

�iw =

⎧

⎪

⎨

⎪

⎩

�i−1w

�i−1w +1
; if Gapiw ≥ Gapi−1w

�i−1w ; o.w.
;

∀i ∈ {2, ..., imax}, �1 = 1
2

(31)

Equation (31) adapts the step size for each OD pair depending
on how the quality of the solution is improved. This method
mimics the Newton−Raphson method in numerical analysis

(Ypma, 1995). It has been proven to be very efficient for contin-
uous problems, but this is the first time it is used in the context
of DTA and for the discrete formulation (trip-based model).
To conclude this section, we present all the methods consid-

ered in this study in Table 1. Before comparing the methods,
we need to present the dynamic trip-based simulator and test
cases.

TABLE 1 All the methods in the inner loop considered in this
study

Method Abbreviation Reference
Swapping algorithms (Step 6)

MSA MSA Robbins & Monro (1951)
MSA ranking MSAR Sbayti et al. (2007)
Projection
method PM Adapted

Halpern (1967)
Projection
Initialization PI Adapted

Friesz et al. (2011)
Initialization
MSA IMSA New

Gap-based GB Lu et al. (2009)
Gap-based
Normalized GBN New

Probabilistic Prob. Ameli et al. (2017)
Step size
Probabilistic SSP Halat et al. (2016)

Gap-based
Probabilistic GBP Verbas et al. (2015)

Boost up
Gap-based BGB New

Inner loop initialization (Step 5)
Default
method All-or-nothing Lu et al. (2009)

Keep the
assignment Keep solution New

Initial step size selection (Step 6)
Default
method Initial Lu et al. (2009)

Re-initializing
the step size Reset New

Smart
step size Smart New
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5 NUMERICAL EXPERIMENTS

In this work, we use Symuvia1 as a trip-based simulator for
calculating travel time in traffic networks. Symuvia is a micro-
scopic simulator based on the Lagrangian resolution of the
LWR model (Leclercq, Laval, & Chevallier, 2007). This car-
following law has been further extended to account for all
the features of urban traffic: bounded acceleration (Leclercq,
2007a), lane-changing with relaxation (Laval & Leclercq,
2008), multi-class (Leclercq & Laval, 2009), signalized and
unsignalized intersections (Chevallier & Leclercq, 2009a),
roundabouts (Chevallier & Leclercq, 2009b). The simulation
time-step is equal to 1 second, and we retrieve the travel time
information at the link and node level every 1 minute. This
study considers three networks with different topologies to
investigate if the network size influences the algorithm set-
tings. Note that all the networks in this study are mono-modal,
i.e., with car-traffic only. A 5 × 5 grid network (5by5) is used
for the smallest scale network, see Figure 2(a). All the inter-
sections are signalized, and the green and red light duration
is set to 30 seconds. The simulation period is 2 hours for 19
origins and 16 destinations. The medium-scale network exem-
plifies a Manhattan type city with a ring road (Ring city), see
Figure 2(b). This network corresponds to 14×14 two-way reg-
ular roads with a speed limit of 50km/h. These roads delimit
blocks that are grouped 3 by 3 to form 5×5 zones. A two-way
ring roadwith a speed limit of 90km/h has 12 interchangeswith
peripheral zones. All the intersections are signalized except the
interchanges with the ring road, and the green and red light
duration is set to 30 seconds. Ring city is simulated for 50
minutes with 26 origins and 24 destinations.
The large-scale network of this study is the network of two

French cities: Lyon 6e +Villeurbanne (Lyon6V). This network
has 1,883 Nodes, 3,383 Links, 94 Origins, 227 Destinations.
All the signalized intersections in the real field have been
implemented in the simulator with their actual signal timing.
It is illustrated in Figures 2(c) and 2(d). The network is loaded
with travelers of all ODs with given departure times in order
to represent 2.5 hours of the network with the demand of three
levels of saturation based on the study of (Krug, Burianne, &
Leclercq, 2017).
The Macroscopic Fundamental Diagram (MFD) shows the

rapid evolution and gives a synthetic overview of network
states. It usually distinguishes three situations. First, the curve
increases from (0, 0) and traffic states remain under-saturated
when demand is light. This is referred to as the Under Satura-
tion (US) scenario. Travel production, which is equivalent to
the total travel distance for a given period of time, stabilizes
while the accumulation (or total travel time) still increases,

1Note that Symuvia is an open-source simulator which will be made freely
available during summer 2019 (http://www.licit.ifsttar.fr).

(a) 5by5 (b) Ring city

(c) c©Google (d) Lyon6V

FIGURE2 The three traffic networks of this study. (a): Small-
scale network. (b): medium-scale network. (c) and (d): Large-
scale network.

i.e., the network progresses to maximal capacity and then it
quickly becomes unloaded. This corresponds to the Saturation
(S) scenario when we reach to the maximal capacity of the net-
work, and then unload it. Finally, production decreases when
the total travel time continues increasing. This is the Over Sat-
uration (OS) scenario where the network is heavily congested
and remains at the maximum capacity of the network for a
long time. We tune the demand to observe all three levels of
saturation in numerical experiments to assess the impact of net-
work loading on the performance of the fixed-point algorithm.
Table 2 presents the total demand for all the test cases of this
study. The MFDs of each demand scenario for all the networks
are presented in Figure 3. The points in the figures represent
the state of the network at each successive 5-min time period.
The MFD of the US scenarios shows the evolution of the state
of the networks with almost free-flow travel time during the
simulation for each network (Figures 3(a), 3(d) and 3(g)). The
saturated MFD diagrams for each network (Figures 3(b), 3(e)
and 3(h)) show that the S demand scenarios put the states of the
networks in saturation level during the simulation. Finally, the
OS scenario moves the network states to a heavily congested
situation in which the saturation level is very high (Figures
3(c), 3(f) and 3(i)).
Demand is constant, but the network state evolves dynami-

cally due to spreading congestion in all three scenarios.
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(a) 5by5 network US (b) 5by5 network S

(c) 5by5 network OS (d) Ring city network US

(e) Ring city network S (f) Ring city network OS

(g) Lyon6V network US (h) Lyon6V network S

(i) Lyon6V network OS

FIGURE 3 The macroscopic fundamental diagram of 9
demand scenarios of the three traffic networks. There are 3 dif-
ferent saturation levels per network: Under Saturation (US),
Saturation (S) and Over Saturation (OS).

TABLE 2 Total demand for all test cases

Level of saturation 5by5 Ring city Lyon6V
Under Saturation (US) 3,520 12,000 20,000

Saturation (S) 5,197 19,000 54,190
Over Saturation (OS) 8,100 22,500 100,000

6 RESULTS

All the experiments are first initiated with the All-or-nothing
assignment algorithm (see Step 1 in Figure 1). In this study, we
impose a limit on the maximum number of iterations and com-
pare the final solutions obtained by the different algorithms.
This is to contain the computational cost and to bring the exper-
iments closer to usual practice in which traffic engineers try
to control maximum computation times. Each scenario is exe-
cuted for five outer loops (jmax = 5). This means that users
have to finally choose between aminimumof six paths (the first
path comes from Step 1) for each OD pair. Note that the max-
imum number of the outer loop iterations is not the limitation.
At one point, increasing the number of discovered paths will
simply add close alternatives that do not improve the solution.
To confirm this intuition, we rerun the large-scale scenario
with the saturated level of demand with an increasing num-
ber of the outer loop. It appears that the final gap values, even
when the number of outer loop iterations reaches 20, remain
very close to the original one with five outer loop iterations
only. So, we keep jmax = 5 for all scenarios.
The inner loops run for a maximum of ten iterations (imax =

10) for a small network, twenty for Ring city (imax = 20), and
thirty for a large-scale network (imax = 30). We restrict the
number of inner loop iterations for each network to obtain a
complete comparison of the performances of the algorithms in
the same settings. The different values of imax are determined
as a function of the size of the network, based on the studies
of Halat et al. (2016); Verbas et al. (2016). All the exper-
iments are conducted on a 64-bit personal computer with a
12-core central processing unit of 2.10 GHz speed, and a mem-
ory of 128 GB. The experiments are conducted in three stages.
First, we compare all the swapping algorithms. Then the best
swapping algorithms are chosen for the second stage. The
initialization methods are tested in the second stage. Finally,
the best combinations of swapping algorithms and initializa-
tion methods are considered for the third stage. The step size
methods are examined in the third stage.

6.1 Comparison of swapping algorithms
The first stage of the numerical experiments entails finding the
best swapping algorithm. We track AGap and Violation indi-
cators to assess the performance of each swapping algorithm.



12 AMELI ET AL

The final values are presented in Table 3 for the nine scenarios.
Metal colors highlight the top three algorithms (Gold = first,
Silver = second, Bronze = third) for each scenario. Moreover,
Figure 4 presents a bar chart of the computation times.
Regarding the uniqueness of the UE, this is the case for

the DNL problem when users have the same characteristic
(homogeneous demand) and travel time functions are increas-
ing (Ameli, Lebacque, &Leclercq, 2018; Iryo&Smith, 2017).
Monotonicity exists at the link level for the traffic simulator of
this study (Leclercq, 2007b) but not at the node because most
of the intersections are signalized. Therefore, we cannot claim,
on the basis of the literature, that we have unicity; however,
we have a similar solution in terms of path flow distribution
whatever the algorithm used in each case. In particular, in the
small-scale network (5by5), MSA ranking, Probabilistic, and
Projection initialization algorithms lead to optimal values for
the US scenario (Table 3). Furthermore, the path flow distri-
butions are equal, possibly providing the optimal UE for this
scenario.
According to Figure 4(a), the Projection initialization

algorithm converges fastest to the best solution. In the satu-
ration scenario, the best solution is obtained by Probabilis-
tic algorithm, but Gap-based normalization algorithm is the
fastest algorithm to converge (Figure 4(b)) while the AGap by
this algorithm is ranked second among all the algorithms. In
the saturation scenario, the results provided by the Gap-based,
Boost-up Gap-based, Projection initialization, and Initializa-
tion MSA algorithms are poor in comparison with the best
solution. In the over-saturation scenario, the Gap-based nor-
malization and Boost-up Gap-based algorithms perform well
in terms of solution quality and CT.
Table 3 shows that the Probabilistic algorithm provides the

best solutions in all the scenarios of the medium-scale network
(Ring city). For the US scenario, the Gap-based Probabilis-
tic algorithm converges fast (Figure 4(d)) and also to a good
solution, with a AGap only 0.28 second longer than the best
solution. In the S scenario, the Probabilistic algorithm is sig-
nificantly better than the others in terms of solution quality.
Initialization MSA algorithm converges fast (Figure 4(e)) but
to a bad solution, which is more than 25 times bigger than the
best solution.
In the large-scale network (Lyon6V), The results show that

many algorithms with low CTs converge to solutions far from
the best solution. This happens because the solution space for
the large-scale is more complicated than the solution space of
smaller networks, and most of the solution algorithm with step
size can be stick to the local optimum and cannot explore very
different path flow distribution. For instance, in the OS sce-
nario, the MSA ranking, Gap-based and Step size Probabilistic
algorithms converge faster than the others (Figure 4(i)), but
the AGap and Violation are very poor in comparison with the
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(a) 5by5 network US (b) 5by5 network S (c) 5by5 network OS

(d) Ring city network US (e) Ring city network S (f) Ring city network OS

(g) Lyon6V network US (h) Lyon6V network S (i) Lyon6V network OS

FIGURE 4 The computation time bar chart of 9 demand scenarios of the three traffic networks. There are 3 different saturation
levels per network: Under Saturation (US), Saturation (S) and Over Saturation (OS)

best solution. The same observation can be made for the MSA,
Gap-based, Gap-based Probabilistic, and Boost-up Gap-based
algorithms in the saturation scenario and for the Gap-based
Normalized in the US scenario. In the OS scenario, no algo-
rithms except the Initialization MSA can find solutions with a
AGap less than a minute. The CTs are also long for two top
algorithms.
Moreover, the results in Table 3 show that the performance

of the swapping algorithms depends not only on the scale of
the traffic network but also on the saturation level. Because the
solution space of the fixed-point problem becomes more com-
plex when the level of saturation is increased. As a result, the
intermediate solutions of the inner loop are not stable. In other
words, when the level of congestion increases, the correlation
of ODs, which share links, is increased. Therefore, any change

in the reassignment process can change significantly the qual-
ity indicators. The performance analysis of the algorithms is
analyzed as follows:

• The MSA method works well in small-scale, but by
increasing the size of the traffic network, it obtains
poor results forAGap and Violation in comparison with
the other algorithms. It is noteworthy that the MSA
algorithm is one of the worst algorithms on the large-
scale, particularly for the US scenario. The reasons for
this performance of the drawbacks of MSA algorithms
(Section 4.1.1), but its CT is comparable with other
algorithms in the US and S scenario.

• The MSA ranking algorithm is not among the top three
algorithms in the large-scale. However, because of the
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ranking process, it provides good enough solution com-
pared to the best algorithm except in the OS scenario,
where the MSA ranking algorithm converges faster than
the others but to a bad solution. This algorithm is still
suffering the drawback of predefined step size, which
force this algorithm to converge.

• The Gap-based algorithm does not appear in the top
three algorithms for all the scenarios, but it obtains solu-
tions with small AGap for all the US demand scenarios.
In these test cases, when increasing the level of network
saturation, the Gap-based algorithm cannot converge to
a high-quality solution. Using the gap indicator in the
step size formula helps to converge to the local optimum
while preventing the algorithm from exploring a wide
range of solutions for the global optimum.

• The Gap-based Normalized algorithm performs better
than the Gap-based algorithm in most of cases. The nor-
malization techniques improve the performance of the
Gap-based method, especially in the saturation and OS
scenarios.

• Generally, the Probabilistic algorithm is the best
algorithm in the US and S scenarios of all the networks
and also it also provides good performance for the OS
scenario in the small and themedium test cases. It should
be recalled that the Probabilistic algorithm is the only
step size free algorithm of this study. It can explore the
solution space without limitation, which makes it more
robust than other algorithms. However, in the large-
scale and OS scenario, the CT of Probabilistic algorithm
is very high, and it could not provide a good solu-
tion compared to the best algorithm. It means that this
algorithm does not fully cover the solution space under
the determined computation budget.

• The hybrid algorithms (Section 4.1.6) work better than
MSA and Gap-based algorithms in the large-scale and
US scenario, but they are dominated by Probabilis-
tic algorithm because the step size still limits them.
The Step size Probabilistic algorithm, which is a com-
bination of MSA and Gap-based algorithms, provides
better results than both methods in the medium- and
the large-scale networks with US and saturation levels
of demand. When the saturation level of the network
increase, the Gap-based Probabilistic algorithm cannot
provide a good solution. The Step size Probabilistic and
Gap-based Probabilistic algorithms are dominated by
the Probabilistic algorithm in all test cases. The Boost-
up Gap-based algorithm, which used the boost-up step
size performs better in OS scenarios where there is a
large number of trips to optimize.

• The projection-based algorithms (Section 4.1.3) are
good for small scale. Their CT is increased significantly
by the saturation level of the network. In addition, they
have a high CT in the large-scale network compared to
other algorithms. Using the initialization technique in
the swapping formula increases the algorithmCT signif-
icantly, particularly in saturated level and does not help
that much the algorithm to provide a better solution.

Figure 5 presents the convergence pattern of swapping algo-
rithms. Top five algorithms in terms of the AGap indicator for
each saturation level of small- and medium-scale networks are
presented in Figures 5(a)-5(f). For the large-scale network, we
present more swapping algorithm convergence pattern (Figure
5(g)-5(i)) to analyze more algorithms.
According to Figure 5, the saturation level has an impact on

the scale of AGap at each level of the outer loop during the
optimization process. In the US scenario, the value decreases
suddenly for the first outer loop but for more saturated scenar-
ios adding the new shortest path changes AGap scale of users,
particularly in the large-scale network. As shown in figure 5(i),
the gap value slumps for the outer loop five, where users have
six alternatives per OD to choose.
In addition to the quality of the final solution, converging

with the less number of outer loops (j < 5 in this study) to a
solution with good quality is important in practice. In other
words, the algorithm with a minimum number of outer loops
and good solution in terms ofAGap can bemore efficient. Note
that the solutionwith good qualitymeans theAGap of the solu-
tion is below a predetermined satisfaction threshold. Here, we
consider a given satisfaction threshold (
) for the quality of the
solution at outer loop iteration j (AGapj) in order to investigate
which algorithms can reach faster this threshold (AGapj ≤ 
).
The values of 
 for US and S scenarios are approximately equal
to ⌈2 × AGap∗⌉ + 1 where AGap∗ denotes the best quality of
the final solution obtained by swapping algorithm in second.
For the OS scenarios in large-scale, we set the 
 to 9 minutes
based on the initial AGap (≈ 15min) which is obtained by the
All-or-nothing algorithm. Figure 5 presents the 
 values for
each scenario. We can see in this figure, the first time that each
algorithm is positioned below 
 threshold before the last itera-
tion and then determine the minimal number of the outer loop
to guaranty a given level of performance. The Probabilistic
algorithm can converge faster in the small and medium net-
works according to the 
 value. For instance, about the Ring
city network saturated scenario, if we want to reach the level of
AGapj = 1minute (
 = 60), we need to do only one outer loop
iteration with the Probabilistic algorithm. In the large-scale
considering the 
 threshold helps to save CT. In the large-scale
network, theMSA algorithm for the saturated scenario, and the
MSA ranking algorithm for OS scenario are much faster than
others and need only two outer loops to reach the threshold.
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(a) small network US; 
 = 2 second (b) small network S; 
 = 20 second (c) small network OS; 
 = 2 second

(d) Ring city network US; 
 = 10 second (e) Ring city network S; 
 = 60 second (f) Ring city network OS; 
 = 60 second

(g) Lyon6V network US; 
 = 100 second (h) Lyon6V network S; 
 = 200 second (i) Lyon6V network OS; 
 = 600 second

FIGURE 5 Convergence patterns for the swapping algorithms of all scenarios. There are 3 different saturation levels per each
network: Under Saturation (US), Saturation (S) and Over Saturation (OS). 
 denotes the satisfaction threshold.

TABLE 4 Best swapping algorithms

Network 5by5 Ring city Lyon 6V
Scenario US S OS US S OS US S OS
MSA ✓ ✓

MSAR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GB
GBN ✓ ✓ ✓ ✓

Prob. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SSP ✓ ✓

GBP ✓ ✓ ✓

BGB ✓ ✓

PM ✓ ✓ ✓

PI ✓ ✓

IMSA ✓

All our analyses give good hints about which are the best
swapping algorithms. As we discussed in Section 4, there are
different components in the optimization process, which can
help the swapping algorithm to find a better solution. Conse-
quently, the swapping algorithms with good quality indicators
(AGap and Violation) for the final solution and CT in each sce-
nario (all the golden cells in Table 3) are chosen for the next
stage of the numerical experiment. We also consider all algo-
rithms which obtain a solution with a similar value for AGap
and Violation to the best algorithms solution for the next stage.
For more investigation in the large-scale, we choose at the
swapping algorithms including all colored cells in Table 3 and
algorithms with AGapj ≤ 
; ∀j < jmax in Figure 5 for each
saturation level. In other words, we also consider the swapping
algorithms which converge to the 
 before the last outer loop.
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Table 4 presents which algorithms are selected in each scenario
for further investigation. MSA ranking and Probabilistic algo-
rithms are suitable for all scenarios. MSA algorithm is efficient
for small network, and Projection method and Step size Prob-
abilistic algorithm are efficient for the large-scale network.
Gap-based Normalized and Boost-up Gap-based algorithms
provide good results in more saturated scenarios, while Gap-
based Probabilistic algorithm is good for US scenarios and
larger networks.

6.2 Initialization methods
The second stage of the numerical experiments corresponds
to Step 5 in the solution algorithm (Figure 1). The method-
ology improvements to this step are discussed in Section 4.2.
Now, an alternative initializationmethod (Keep solution; Table
1) for the inner loop is applied for all numerical experiments.
The results for combinations of swapping algorithms and ini-
tialization methods are presented in Tables 5 and 6. Table
5 presents the quality indicators of final solutions for initial-
izationmethods in all networks. About 5by5 network, in theUS
scenario, it is shown that Keep solution initialization obtains
the optimal solution for all best three algorithms. Also, in S
and OS scenarios, this method improves the performance of all
swapping algorithms in comparison with the same swapping
algorithm and All-or-nothing initialization. The results on the
small network show that the Probabilistic and Keep solution
combination provides the best solution in all saturation levels.
In Ring city network, same as 5by5, the Keep solution

method improves the performance of swapping algorithms
in particular for the Probabilistic method. The differences
between All-or-nothing and Keep solution violation value of
two closed AGap solution in Table 5, box of MSA ranking
and S scenario, shows the different direction of searching by
swapping algorithm and the impact of the starting point at the
beginning of each outer loop on the final result of optimization
methods.
In the large-scale test case, the impact of the initializa-

tion is significant. It means that the quality of the solution
by keep solution method is always better than All-or-nothing
with a considerable difference ofAGap, e.g., the Keep solution
method obtains a better solution (more than 50% lower AGap)
for Step size Probabilistic and Probabilistic algorithms in US
and saturation levels.
Table 6 presents the CT of all experiments in this stage.

First, the results prove that the initialization method has an
impact on CT. Second, the Keep solution method which is
indicated by "Keep" in the Table 6 improves the speed of
convergence for all swapping algorithms in comparison with
the All-or-nothing method which is the default method in the
literature. Third, the combination of Probabilistic and Keep
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TABLE 6 Computation time of initialization methods (second)

Network
Scenario

5by5 Ring city Lyon 6V
US S OS US S OS US S OS

MSA AoN - 1384 2451 - - - - - -Keep 713 1184
MSAR AoN 956 1021 2430 22962 42973 42447 137527 139232 371695

Keep 730 624 2306 18130 39262 39418 154138 132750 333751
GBN AoN - 754 2406 - - - - 206912 677682

Keep 739 1965 197719 556489
Prob. AoN 1003 1093 - 22586 46536 38015 187394 141885 754640

Keep 595 664 15431 28517 36462 138046 111598 291486
SSP AoN - - - - - - 194636 111824 -Keep 135540 106705
GBP AoN - - - 17541 42839 - 177725 - -Keep 23140 36431 121653
BGB AoN - - 2349 - - 44461 - - -Keep 1899 27358
PM AoN - - - - - - 234809 287847 693828

Keep 155722 179288 653254
PI AoN 731 - - - - - - - 809785

Keep 492 741501
IMSA AoN - - - - - - - - 754350

Keep 671548

solution method is faster than other methods in most of the
cases as we can observe that this method is always in the top
two fastest methods in all scenarios (gold and silver cells in
Table 6).
In order to have a better comparison between the per-

formance of different initialization methods, the inner loop
convergence patterns of MSA ranking and Probabilistic algo-
rithms with both initialization methods are presented in Figure
6. The results correspond to the saturation scenario for the
large-scale network. The default setting, which is the "All-
or-nothing" method, starts at each outer loop with the same
assignment pattern. It works like as handbrake at the begin-
ning of each outer loop and forces the algorithm to start from
the assignment with a high AGap. Therefore, the swapping
algorithm should attempt to come back to the optimal region
by several iterations.
It is obvious that "All-or-nothing" method needs more iter-

ation (CT) compared to the Keep solution method to find the
new optimal solution for each outer loop. The Keep solution
method converges faster than the other one and also provides
a better solution (Table 5). For instance, in Figure 6, The
Keep solution method prevents the MSA ranking method from
spending several iterations in order to come back to the lower
range of AGap and also helps this swapping algorithm to con-
verge faster than the initial version. Note that the first outer
loop is the same for both methods and then from the second
one "MSA ranking + Keep solution" continue with previ-
ous path flow distribution, but the initial version of the MSA
ranking starts the second outer loop with the All-or-nothing
assignment.

Moreover, Figure 6 shows the flexibility of probabilis-
tic algorithm to search the solution space. The probabilistic
algorithm moves in a larger range of AGap during each outer
loop, and it does not improve the solution sequentially except
when the probability of swapping (equation (25)) is very low
for all users, i.e., the algorithm is close to the optimal solution.

6.3 Step size methods
In the previous stage, we presented and discussed the results
of the initialization method, i.e., Step 5 in Figure 1. Here, we
will present and discuss the results for the step size methods
(Step 6). For the final stage, we select the best methods (col-
ored in Tables 5 and 6) except the Probabilistic algorithm. The

FIGURE 6 Convergence patterns of the inner loops with ini-
tialization methods for Saturation (S) scenario on Lyon6V
network. [default is All-or-nothing initialization]
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Probabilistic method is excluded simply because it does not
have a step size (Section 4.1.5). For methods with step size, the
one or two best combinations in all test cases are chosen. The
new methods for step size initialization are compared with the
initial method (Section 4.3). Note that we fix the seed for prob-
ability functions in the Step size Probabilistic and Gap-based
Probabilistic in order to compare the impact of step sizes. The
results of applying the three methods on the three networks
are presented in Tables 7 and 8. Medal colors highlight the top
three combinations for each scenario.
Table 7 presents the quality indicators for the final solu-

tion of all experiments for all networks. Smart step size
improves the performance of theMSA andGap-basedNormal-
ized algorithms. The Reset method improves the MSA for the
small network. For the medium-scale network (Ring city), the
results show that the Reset method improves the MSA ranking
algorithm, and the Smart method works well with Gap-based
Probabilistic algorithm (Table 7). In the Boost-up Gap-based
algorithm, the step size of this method is already modified at
each inner loop by boost-up techniques. The result shows that
applying the alternative step size methods cannot improve the
performance of this algorithm.
The results in Table 7 for the large-scale show that the

Smart method improves the solution of Gap-based Probabilis-
tic and Initialization MSA algorithms compared to the Initial
method which is the default setting for step size initializa-
tion and Reset method. Same as Ring city network, the Reset
method improves the performance of Step size Probabilistic
algorithm. The CT for all experiments of this stage is pre-
sented in Table 8. The Smart and Reset methods converge
slowly in the small network, but they converge faster than
the Initial method in the large-scale network particularly the
Smart method for Initialization MSA and oversaturated sce-
nario compared to other methods with which we can save a
minimum of one day of computation.

7 CONCLUSIONS

This paper focuses on improving the solution algorithms for
finding the user equilibrium considering trip-based dynamic
network loading. We highlight the current drawbacks of exist-
ing swapping algorithms and propose several solutions to
overcome them, and speed up the convergence. A significant
contribution of this paper is the full benchmark of all algo-
rithms for different network size and level of saturation. We
compare the performance of the solution algorithms (see Table
1 as a synthesis of main algorithms and methods in this study)
based on the quality of solutions and computation times. Table
9 presents the best configuration of the solution algorithm that
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TABLE 8 Computation time of initial step size methods (second)

Network
Scenario

5by5 Ring city Lyon 6V
US S OS US S OS US S OS

MSA
Initial

-
713

- - - - - - -Reset 337
Smart 705

MSAR
Initial 730

- -
18130 39262 39418

- - -Reset 2430 9086 34439 35562
Smart 3381 11033 24550 19506

GBN
Initial

- -
1965

- - - - - -Reset 2337
Smart 2219

SSP
Initial

- - - - - -
135540 106705

-Reset 81498 101141
Smart 103695 89258

GBP
Initial

- - -
23140 36431

-
121653

- -Reset 3878 37892 107142
Smart 13927 25805 92989

BGB
Initial

- -
1899

- -
27358

- - -Reset 2796 26114
Smart 2747 27557

PI
Initial 492

- - - - - - - -Reset 1908
Smart 3270

IMSA
Initial

- - - - - - - -
671548

Reset 571493
Smart 485980

makes the best compromise between quality and computation
time for all network size and saturation levels.
According to Table 9 and the results, this study shows that:

• The network size and saturation level has an impact on
the performance of solution algorithms to solve the DTA
problem.

• The combination of Probabilistic approach (without step
size) and Keep solution initialization appears in most of
the cases in Table 9 as the best algorithm.

• The initial assignment and step size at the beginning
of the outer loop have a significant impact on the final
solution and convergence speed of the algorithm.

• An alternative method, proposed by this study, to initial-
ize the assignment pattern at the beginning of the outer
loop (Section 4.2) improves the performance of all swap-
ping algorithms compared to the recent methodology in
the literature (Table 9).

• Two new methods, proposed by this study, for the ini-
tialization of the step size (Section 4.3) ensures that the
algorithm converges and it has a direct impact on the
speed of convergence. However, the step size cannot
guarantee the quality of the final solution.

The analysis for the impact of The network size and satu-
ration level on the convergence process shows that the classic
algorithms (e.g., MSA) exhibit good performance in the small-
scale network, but they do not provide a good solution in

the large-scale network. The computational cost of the classic
algorithms are also prohibitive for the large-scale network. One
of the hybrid algorithms, Step size Probabilistic (see section
4.1.6), works faster in the large-scale network (Table 9). The
MSA ranking is efficient for small- and medium- scale net-
works, but it cannot provide good results for the large-scale
network. Moreover, the results show that some algorithm such
as Gap-based algorithm, and Projection method are dominated
by other algorithms for all scenarios.
The combination of Probabilistic approach (without step

size) and Keep solution initialization is not necessarily always
the best in terms of quality and speed, but it is the one that is
most likely to obtain the best solution in all scenarios and can
be considered as the most robust alternative. If the focus is only
on the quality of the solution, more than one configuration can
be used in most of the cases (Table 9). However, the compu-
tation time is very important, particularly for the large-scale
network. For instance, in the large-scale and oversaturated sce-
nario, Probabilistic algorithm cannot provide a better solution
than InitializationMSA algorithm, but it is more than two days
faster than Initialization MSA algorithm in computation time
(Table 6).
About the two new methods for step size, they provide a

better solution with a combination of different swap formulas
than the classic method in the literature. The algorithms based
on MSA are improved by the Reset step size method. Besides,
the Smart method improves the algorithm based on the gap
function and projection method. The new step size methods
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TABLE 9 Best algorithms and settings with respect to the network size and loading

Network Saturation
level

Best
algorithm

Initialization Step size methods Ranking for Best
compromiseAoN Keep Initial Reset Smart Quality Speed

5by5

US
MSAR ✓ ✓ ✓ ✓ 1 3
Prob. ✓ 1 2
PI ✓ ✓ 1 1 ✓

S MSA ✓ ✓ 2 1 ✓

Prob. ✓ 1 3

OS
MSA ✓ 4 1 ✓

GBN ✓ ✓ 1 4
BGB ✓ ✓ 1 6

Ring city

US
MSAR ✓ ✓ 1 2
Prob. ✓ 1 3
GBP ✓ ✓ 1 1 ✓

S Prob. ✓ 1 1 ✓

OS MSAR ✓ ✓ 2 1 ✓

Prob. ✓ 1 5

Lyon 6V

US Prob. ✓ 1 2
SSP ✓ ✓ 1 1 ✓

S Prob. ✓ 1 4
SSP ✓ ✓ 2 1 ✓

OS Prob. ✓ 9 1 ✓

IMSA ✓ ✓ 1 4

speed up the convergence of all algorithms, especially in the
large-scale (Table 8).
For future work, the authors are looking for meta-heuristic

algorithms for DTA problem in order to speed up the optimiza-
tion process with parallel computation. In addition, designing
the framework to predetermine the computation budget based
on network size, topology, and saturation level is an interesting
topic.
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