Design of a new gain-scheduled LPV/Hinf controller for vehicle’s global chassis control - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2019

Design of a new gain-scheduled LPV/Hinf controller for vehicle’s global chassis control

Résumé

This paper investigates new achievements in chassis control. Active Front Steering (AFS) and Direct Yaw Control (DYC) are optimized together to improve -at once- vehicle’s maneuverability, lateral stability and rollover avoidance. The novelty of this work with respect to other works in the field of chassis control is that the controller relies on one single centralized approach, where the additive steering angle provided by the AFS and the differential braking provided by the DYC are generated to control the vehicle yaw rate, side slip angle and roll motion. The optimal H-infinity control technique based on offline Linear Matrix Inequality (LMI) optimal solutions, in the framework of Linear-Parameter- Varying (LPV) systems, is applied to synthesize the controller. A decision making layer instantly monitors two criteria laying on the lateral stability and the rollover. It sends two endogenous weighted parameters, function of the vehicle dynamics, to adapt the controller dynamics and performances according to the driving conditions. The gain scheduled LPV/H-infinity new control strategy is tested and validated on the professional simulator “SCANeR Studio”. Simulations also show the advantage of introducing the roll motion and rollover criteria in the control architecture, comparing to other powerful controllers neglecting these features
Fichier principal
Vignette du fichier
CDC2019.pdf (1.42 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02380018 , version 1 (06-09-2021)

Identifiants

Citer

Abbas Chokor, Moustapha Doumiati, Reine Talj, Ali Charara. Design of a new gain-scheduled LPV/Hinf controller for vehicle’s global chassis control. 58th IEEE Conference on Decision and Control (CDC 2019), Dec 2019, Nice, France. pp.7602-7608, ⟨10.1109/CDC40024.2019.9029341⟩. ⟨hal-02380018⟩
140 Consultations
56 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More