. Who-who-report, Global Tuberculosis Control, 2011.

F. J. Lopez-de-saro, R. E. Georgescu, M. F. Goodman, and M. Donnell, Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair, Embo J, vol.22, issue.23, pp.6408-6418, 2003.

D. Y. Burnouf, V. Olieric, J. Wagner, S. Fujii, J. Reinbolt et al., Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases, J Mol Biol, vol.335, issue.5, pp.1187-1197, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00188922

R. E. Georgescu, O. Yurieva, S. S. Kim, J. Kuriyan, X. P. Kong et al., Structure of a small-molecule inhibitor of a DNA polymerase sliding clamp, Proc Natl Acad Sci, issue.105, pp.11116-11121, 2008.

P. Wolff, V. Olieric, J. P. Briand, O. Chaloin, A. Dejaegere et al., Structure-based design of short peptide ligands binding onto the E. coli processivity ring, J Med Chem, vol.54, issue.13, pp.4627-4637, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00604997

G. Wijffels, W. M. Johnson, A. J. Oakley, K. Turner, V. C. Epa et al., Binding inhibitors of the bacterial sliding clamp by design, J Med Chem, vol.54, issue.13, pp.4831-4838, 2011.

A. Kling, P. Lukat, D. V. Almeida, A. Bauer, E. Fontaine et al., Antibiotics. Targeting DnaN for tuberculosis therapy using novel griselimycins, vol.348, pp.1106-1112, 2015.

Z. Yin, M. J. Kelso, J. L. Beck, and A. J. Oakley, Structural and thermodynamic dissection of linear motif recognition by the E. coli sliding clamp, J Med Chem, vol.56, issue.21, pp.8665-8673, 2013.

Z. Yin, L. R. Whittell, Y. Wang, S. Jergic, M. Liu et al., Discovery of Lead Compounds Targeting the Bacterial Sliding Clamp Using a Fragment-Based Approach, J Med Chem, 2014.

X. P. Kong, R. Onrust, M. O'donnell, and J. Kuriyan, Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp, Cell, vol.69, issue.3, pp.425-437, 1992.

P. J. Fay, K. O. Johanson, C. S. Mchenry, and R. A. Bambara, Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli, J Biol Chem, vol.256, issue.2, pp.976-983, 1981.

J. Wagner, S. Fujii, P. Gruz, T. Nohmi, and R. P. Fuchs, The beta clamp targets DNA polymerase IV to DNA and strongly increases its processivity, EMBO Rep, vol.1, issue.6, pp.484-488, 2000.

O. J. Becherel, R. P. Fuchs, and J. Wagner, Pivotal role of the beta-clamp in translesion DNA synthesis and mutagenesis in E. coli cells, DNA Repair (Amst), issue.9, pp.703-708, 2001.

N. Lenne-samuel, J. Wagner, H. Etienne, and R. P. Fuchs, The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo, EMBO Rep, vol.3, issue.1, pp.45-49, 2002.

F. J. Lopez-de-saro and M. Donnell, Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I, Proc Natl Acad Sci U S A, vol.98, issue.15, pp.8376-8380, 2001.

B. P. Dalrymple, K. Kongsuwan, G. Wijffels, N. E. Dixon, and P. A. Jennings, A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems, Proc Natl Acad Sci, vol.98, issue.20, pp.11627-11632, 2001.

K. A. Bunting, S. M. Roe, and L. H. Pearl, Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp, Embo J, vol.22, issue.21, pp.5883-5892, 2003.

P. Wolff, I. Amal, V. Olieric, O. Chaloin, G. Gygli et al., Differential modes of peptide binding onto replicative sliding clamps from various bacterial origins, J Med Chem, vol.57, issue.18, pp.7565-7576, 2014.

Z. Yin, L. R. Whittell, Y. Wang, S. Jergic, C. Ma et al., Bacterial Sliding Clamp Inhibitors that Mimic the Sequential Binding Mechanism of Endogenous Linear Motifs, J Med Chem, vol.58, issue.11, pp.4693-4702, 2015.

D. Burnouf, E. Ennifar, S. Guedich, B. Puffer, G. Hoffmann et al., kinITC: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry, J Am Chem Soc, vol.134, issue.1, pp.559-565, 2012.

S. Waltersperger, V. Olieric, C. Pradervand, W. Glettig, M. Salathe et al., PRIGo: a new multi-axis goniometer for macromolecular crystallography, J Synchrotron Radiat, vol.22, issue.4, pp.895-900, 2015.

C. Vonrhein, C. Flensburg, P. Keller, A. Sharff, O. Smart et al., Data processing and analysis with the autoPROC toolbox, Acta Crystallogr D Biol Crystallogr, vol.67, pp.293-302, 2011.

I. Tickle, C. Flensburg, P. Keller, W. Paciorek, A. Sharff et al., , 2017.

A. Vagin and A. Teplyakov, MOLREP: an automated program for molecular replacement, J. Appl. Cryst, vol.30, pp.1022-1025, 1997.

P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Cryst, vol.66, pp.213-221, 2010.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, Acta. Cryst, vol.67, pp.235-242, 2011.

A. H. Marceau, S. Bahng, S. C. Massoni, N. P. George, S. J. Sandler et al., Structure of the SSB-DNA polymerase III interface and its role in DNA replication, Embo J, vol.30, issue.20, pp.4236-4247, 2011.

J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, Journal of Computationnal Chemistry, vol.26, issue.16, pp.1781-1802, 2005.

D. L. Beveridge and F. M. Dicapua, Free energy via molecular simulation: applications to chemical and biomolecular systems, Annu Rev Biophys Biophys Chem, vol.18, pp.431-492, 1989.

A. Pohorille, C. Jarzynski, and C. Chipot, Good practices in free-energy calculations, J Phys Chem B, issue.32, pp.10235-10253, 2010.

A. D. Mackerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J Phys Chem B, vol.102, pp.3586-3616, 1998.

P. Dumas, E. Ennifar, C. Da-veiga, G. Bec, W. Palau et al., Joining Thermodynamics and kinetics by kinITC, Methods in Enzymology

A. L. Biocalorimetry-;-feig and . Ed, Foundations and contemporary approaches, vol.567, pp.281-300, 2016.

R. S. Spolar, M. T. Record, and . Jr, Coupling of local folding to site-specific binding of proteins to DNA, Science, vol.263, issue.5148, pp.777-784, 1994.

J. R. Livingstone, R. S. Spolar, M. T. Record, and . Jr, Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface area, Biochemistry, vol.30, issue.17, pp.4237-4244, 1991.

P. R. Connelly and J. A. Thomson, Heat capacity changes and hydrophobic interactions in the binding of FK506 and rapamycin to the FK506 binding protein, Proc Natl Acad Sci, vol.89, issue.11, pp.4781-4785, 1992.

P. R. Dohrmann and C. S. Mchenry, A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme, J Mol Biol, vol.350, issue.2, pp.228-239, 2005.

I. Bruck and M. O'donnell, The DNA replication machine of a gram-positive organism, J Biol Chem, vol.275, issue.37, pp.28971-28983, 2000.