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Abstract

In this paper, we define a generic gradient for color and spectral
images, in regards to a proposed taxonomy of the state of the art.
The full-vector gradient, taking into account the sensor’s characteris-
tics, respects the metrological properties of genericity, robustness and
reproducibility. We construct a protocol to compare gradients from
different sensors. The comparison is developed simulating sensors us-
ing their spectral characteristics. We develop three experiments using
this protocol. The first one shows the results consistency for similar
sensors. The second one demonstrates the genericity of the approach,
adapted to any kind of imaging sensors. The last one focuses on the
channel inter-correlation considering sensors as in the color vision de-
ficiency case.

1 Introduction
Gradients are a primary step for a lot of computer vision tasks such as edge
detection [1], corner detectors [2], segmentation [3] and attributes [4, 5] ex-
traction. Needs and uses are not restricted to the visible range. Combination
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(a) Edges area (b) Shading area (c) Uniforme area (d) Obtained gradients

Figure 1: Different types of areas and their associated gradient response using
a log representation for the vertical axis. Images extracted form Fig. 5d.

of visible, near-infrared and infrared bands are now expected [6]. The for-
mulation of the gradient has to be generic, whatever the number of channels,
their positions and correlations. In this article, we restrict the purpose to the
metrological gradient assessment, i.e. in the acquisition space of the sensor
defined by its spectral sensitivity curves.

1.1 What is a color/spectral gradient?

The mathematical definition of a gradient is “the vector composed of the
partial derivatives of each basis vector”. It is far from a concrete definition.
In physics, the gradient coincides often with a speed concept. Except gradient
variations are note necessarily along the time axis. With he same analogy,
we depict an image gradient as the speed of the image variations generally
in the spatial dimension. Figure 1 illustrates this notion. Figures 1a to 1c
represent the norm or magnitude of the gradient measured on the colored
line from figure 1d. Any areas, edges or flat tints, generate gradients. An
edge will have a stronger magnitude than a flat tint. A shading will present
a medium magnitude through all the area.

Gradient is too often used as a synonym of edge. Gradients are usually
estimated to extract edges, hence the confusion. Edges are continuous lines
of high magnitude gradient. It is opposed to noise that can be defined as a
spatial distribution of high gradient without coherence. Indeed, this property
is used to define texture features based on histograms of local gradients in
the visible range [7] or outside the visible range [8].
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Figure 2: Difference between existing approaches and a gradient taking into
account the sensor characteristics: the full-vector gradient (FVG).

1.2 What to expect from a metrological gradient ?

Changing the technology of a length measuring tools (lasers, rulers, mea-
suring tapes, calipers. . . ) will not change the measurement range, only the
accuracy. Similarly, we expect that similar imaging sensors (same number of
channel covering the same total band width) will extract the same gradients,
to the magnitude range. This metrological constraint implies to define a sin-
gle definition embedding the sensor characteristics in order to be independent
of it. This question is recurrent since Cumani [9], who adapted Di Zenzo [10]
solution to multi- and hyper-spectral case. However, it suffers from the same
limitations as the Di Zenzo expression considering the color/spectral chan-
nels as independent. More recently, Chen and Shen [11] proposed a solution
for multi-spectral registration. Nonetheless, they do not answer on how to
combine the different channels.

Combining the scene and sensor informations forbid to naturally compare
and combine gradients calculated by sensors in different spectral ranges or
using different spectral combinations (Fig. 2a). The proposed approach em-
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beds in the processing the sensors spectral sensitivity curves to focus only on
the gradients present in the scene (Fig. 2b).

1.3 Content and notation

The section 2 presents a re-reading of the state of the art in light of our
proposition: the full-vector gradient. In section 3, we define mathematically
the notion of gradients and extend it to the multivariate case, introducing
Di Zenzo expression and the generic full-vector gradient. For clarity, we de-
cided to present the complete mathematical construction. Section 4 presents
the calculated gradients for different sensors simulated from the same scene.
Firstly we compare theoretical colour sensors, then different sensors with the
same bandwidth and finally we open on Color Vision Deficiency (CVD) con-
sidering the same spectral sensitivity functions as the eye. We conclude in
the last section.

A table of notation is provided to help the reader with the mathematical
expressions (Tab. 1).

2 Colour gradients state of the art
A lot of surveys were published on color and multi-spectral gradient calcu-
lation, including some recent ones [12, 13]. According to the article focus on
the metrological use of gradients, we selected to organize the bibliographic
entries according to the color and spectral domain of gradient calculation
(Fig. 3). As the gradient extraction has very few developments in the spec-
tral domain, the state of the art is mainly developed for the color domain.

In order to use color information, some authors [25, 26] combined in an
empirical manner the marginal gradients in order to estimate the color gra-
dient norm. Di Zenzo [10] proposed to take into account color by using the

4



Table 1: Notations.

Notation Meaning
x, y, z Spatial location in Rn (e.g. x = (x1, x2)).

a, b, c
Color/multivariate coordinate in Rm

(e.g. c = (c1, c2, c3)).

si, Si(λ)
Channel band si, i ∈ [0,m− 1]
defined by its spectral sensitivity curve Si(λ).

I, F,G
Set or image, a color image definition:
I : Rn → Rm

x 7−→ I(x) = c = (c1, c2, c3).

X , C, F
Support of the specified variable x, c, f :
x ∈ X = {xi ∈ [xmini;xmaxi]; i ∈ [0;n]}.

〈., .〉p Scalar product: 〈x, y〉p =
n∑
i=1

(xiyi)
p.

‖.‖p
Lp norm (order-p Minkowski norm):
‖x‖p = p

√
〈x, x〉p.

∗ Convolution product:
(f ∗ g)(x) =

∫
F f(t)g(x− t)dt.

Continuous space
∂I(a)

∂b

Partial derivative of I(a) with respect to b:
∂c2
∂x1

: x1 part of gradient measured at c2.

Discrete space

∆bI(a)
Partial derivative of I(a) with respect to b:
∆x1c2 = is the difference of two c2 along x1.

spatial correlation matrix to measure the gradient:

MSC =


∥∥∥∂I(x)∂x1

∥∥∥2
2

〈
∂I(x)
∂x1

, ∂I(x)
∂x2

〉
2〈

∂I(x)
∂x1

, ∂I(x)
∂x2

〉
2

∥∥∥∂I(x)∂x2

∥∥∥2
2

 , (1)

with
〈
∂I(x)

∂xi
,
∂I(x)

∂xj

〉
2

=
m∑
k=1

〈
∂ck
∂xi

,
∂ck
∂xj

〉
2

.

In an implicit manner, he considered RGB color spaces as orthogonal (eq.
12a to 12c [10]). Unfortunately, this hypothesis is never or rarely satisfied in
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Figure 3: Gradient state of the art organized according to their domain of
calculation.

the case of color and spectral imaging sensors. Cumani [9] presented an ex-
tension to multi-spectral data of Di Zenzo approach. Nonetheless, he did not
take into account the correlation between channels. This inter-correlation be-
tween the acquisition channel was considered by some authors, as Ehrhardt
and Arridge [38] in the color domain, or by Qin and Clausi [39] in the mul-
tivariate context, but without embedding information from the sensor char-
acteristics as in figure 2b.

Rivest et al. [30] introduced mathematical morphology in gray level, and
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defined the Beucher’s gradient as the difference between two morphologi-
cal results. If the mathematical morphology was developed for metrological
purposes, the extension to extend to nD spaces is not straightforward. It
demands to define order in these nD spaces. An approach based on median
filtering was proposed in the color domain from Astola et al. [28]. To solve the
difficulty of order n-dimensional vectors, numerous authors [31, 32, 40] pre-
sented the necessity to choose references. Selecting automatically the right
reference is always an open question.

Since Ohta et al. [14], authors have searched color spaces with indepen-
dent axis based on statistical transformations. In the hyper-spectral do-
main [15–17], PCA, ICA, LDA. . . approaches have been used to obtain new
representation spaces reducing the initial complexity of the obtained data.
In both cases, these approaches are data-dependent: the obtained results are
directly related to the image content. It forbids a direct comparison between
processed gradients from different images with the same object of interest
but different background.

Due to an important literature related to the gradient perception by hu-
mans, we chose to have an entry on this question. In the physical domain,
images are considered as acquired in RGB color space, using multi- or hyper-
spectral sensor. In the perceptual domain, the gradient estimation is assumed
to be processed in a well-calibrated manner to avoid bias. From RGB color
space, several transformed spaces were proposed over the years. These spaces
objective was often to mimic human vision perception. The first propositions
estimated gradients in HLS color space with empirical constructions as Car-
ron and Lambert [20] favoring lightness or hue information depending on
saturation values.

The Human Visual System (HSV) is not considered being very sensitive
to the color changes in presence of shadow or specularity, introducing the
notion of color consistency and color invariant features. Geusebroek et al. [18]
proposed to estimate gradients with color invariant (hue being invariant to
shadow for example). More recently, Ying et al. [19] used the color invariant
directly in RGB color space.

Since 1976, the CIE proposed several color differences, ∆E. Sáez et
al. [34] compared the different color difference functions for the gradient ap-
proximation task. Akinlar and Topal [35] used the Di Zenzo expression in the
CIELAB color space which is defined as being orthogonal by construction.

To go further, Color Appearance Models (CAM) [36, 37] are designed to
embed more complete models of the HSV, including foreground, background,
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surrounding impacts on the local perception of visual elements. Those works
are essential to better understand the HSV but they are not adapted to an
objective metrology.

Working in the Fourier domain is very attractive for intensity images.
Following this idea, Clifford algebra [22–24] offer the use of quaternions to
estimate a gradient. These color spaces are generally rotated from the ini-
tial RGB color spaces. Therefore, the non-orthogonality is preserved in the
Fourier processing.

The gradients are calculated from the image in order to take decisions
for the acquired physical scene. To respect the metrological constraint, the
gradient must be only related to the scene and not the product scene/sensors.
More recently, the full-vector gradient [33] was introduced establishing the
link between the Di Zenzo expression and a generic construction established
in the sensor space domain (color or spectral). By embedding the SSF from
each channel of the sensor, the expression allows calculating the gradient
whatever the channel count and the SSF. Consequently, the gradient pro-
duced by different sensors can be naturally compared.

Beyond these bibliographic references, a recurrent question is always
present without a complete answer: how to assess the quality, the preci-
sion, the robustness of the gradient calculation? These questions induce
two sub-questions: which images for the experiment, and which objective
measurement for the comparison? Generally, these points are associated
with the assessment of a segmentation quality measurement. So, Panetta et
al. [41] proposed different component metrics. Magnier et al. [42] assessed
the quality of the edge detection from two images segmented by a human
observer assisted by a Sobel operator. In all these cases, the results are
limited to the analyzed images color and image content. Under the hypoth-
esis that color gradient is related to the difference between color/spectral
distributions, Chatoux et al. [33] proposed to construct artificial datasets.
The images are mathematically generated, to assess objectively the perfor-
mances of a gradient calculation according to the difficulty to separate the
two distributions.

3 Mathematical recall
This section focuses on the gradient calculation that will be introduced firstly
in one dimension, before being extended to multiple dimensions. To be more
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explicit, we will also explain the computational adaptation of the proposed
expressions.

3.1 1D definition

To define the gradient, we must first define the derivative. The mathematical
definition of the derivative along the x axis is:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (2)

where f(x) is the signal and f ′(x) its derivative. The element h is bound to
be small along x the axis thanks to the limit definition.

This definition requires derivable functions. It is the case of the scene
(Fig. 2) which is continuous but as soon as a sensor captures the scene, it
looses continuity and therefore derivability. We will discuss how to solve this,
in subsection 3.3.

3.2 Toward nD

When there is more than one direction, a derivative becomes a differential
and depends on the chosen direction:

lim
‖h‖2→0

‖I(p+ h)− I(p)−∇Idh(p) · h‖2
‖h‖2

= 0, (3)

where I : E → F is a function (E and F two vector spaces) and ∇Idh
represents the differential with p, h ∈ E. The limit is still present, but h has
an infinite number of directions.

When h is a basis vector, the differential obtained is called partial deriva-
tive. The vector composed of all the partial derivatives is called a gradient.
For a grey level image, the gradient is defined by:

∇I(x) =


∂I(x)

∂x1
∂I(x)

∂x2

 . (4)
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The gradient is only defined for a scalar function. For multichannel im-
ages, I(x) ∈ Rm, we must use the Jacobian that extends the gradient:

JI(x) =

 ∂c1
∂x1

∂c2
∂x1

. . .
∂cn
∂x1

∂c1
∂x2

∂c2
∂x2

. . .
∂cn
∂x2

 . (5)

To estimate a gradient, we are compelled to use a scalar product in a basis
not necessarily orthogonal. The complete scalar product in mD is:〈

∂I(x)

∂xi
,
∂I(x)

∂xj

〉
2

=
m∑
k=1

m∑
l=1

〈
∂ck
∂xi

,
∂cl
∂xj

〉
2

. (6)

With an orthogonal basis, all cross products are null, simplifying the calcu-
lation: 〈

∂I(x)

∂xi
,
∂I(x)

∂xj

〉
2

=
m∑
k=1

〈
∂ck
∂xi

,
∂ck
∂xj

〉
2

. (7)

This is the scalar products used by Di Zenzo [10] and Koschan and Abidi [27]
for their gradient calculation. They consider the channels as orthogonal. In
reality, color or spectral channels are correlated: their Spectral Sensitivity
Functions (SSF) overlap and are positive measures.

To take into account the non-orthogonality of channels, the scalar product
must embed the Gram matrix:

〈I(x), I(y)〉 = I(x)T ·Gm · I(y), (8)

Gm =


‖s0‖22 〈s0, s1〉2 . . . 〈s0, sm〉2
〈s1, s0〉2 ‖s1‖22 . . . 〈s1, sm〉2

...
... . . . ...

〈sm, s0〉2 . . . 〈sm, sm−1〉2 ‖sm‖22

 . (9)

The Gram matrix Gm uses the scalar products defined for the integrable
functions. The functions used are the SSF of each sensor’s channel:

〈si, sj〉2 =

∫
R
Si(λ)Sj(λ)dλ. (10)

The sensitivity curves are always defined on a finite support, i.e. they are
worth 0 outside their support. Finally, the Gram matrix is defined and fixed
for each sensor.
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When the sensor’s spectral sensitivity functions form a partition of the
visible domain, the Gram matrix becomes an identity matrix. Under a signal
processing point of view, it means that the spectral range is sampled in
non-overlapped functions covering the whole spectral range to acquire. In
this case, the expression 8 corresponds to the formulation presented by Di
Zenzo [10] or Koschan and Abidi [27].

3.3 Numerical implementation

The previous paragraph is developed in a continuous world, where the deriv-
ability constraint is assumed. For computational purposes, we must adapt
these to a discrete context. The h step in equation (3) has to be an integer.
The definition limit constraints the h to be small. For h = 1, Roberts [43]
propose:

∆x1I(x) = I(x1 + 1, x2)− I(x1, x2), (11)
∆x2I(x) = I(x1, x2 + 1)− I(x1, x2).

To avoid the asymmetry induced by the previous expression, even values of
h are preferred, starting with h = 2:

∆x1I(x) =
I(x1 + 1, x2)− I(x1 − 1, x2)

2
, (12)

∆x2I(x) =
I(x1, x2 + 1)− I(x1, x2 − 1)

2
.

In equation (3), the vector h can have any direction, that is why we wish to
have a symmetric writing in discrete formulas.

As discussed in the previous subsection, a discrete image does not have
a continuous derivative. This problem is classically solved applying a low-
pass filter before the gradient processing or more generally in combination
with the gradient calculation. Typically, Sobel and Feldman [44] introduced a
binomial low-pass filter working in an orthogonal spatial axis to the derivative
axis:

∂I(x)

∂x1
=

−1 0 1
−2 0 2
−1 0 1

 ∗ I(x), (13)

and
∂I(x)

∂x2
=

−1 −2 −1
0 0 0
1 2 1

 ∗ I(x).

11



A binomial filter is an approximation of Gaussian filters. Therefore, a
Gaussian function and its derivative are more generic. Equation (14) illus-
trates this filter:

∂Filter

∂xi
=


x

y ×
 x

y T

. (14)

The Gaussian function is centered, the spatial filter size (SF ) depends on the
standard deviation σ selected: SF = (6σ + 1)× (6σ + 1).

One way to analyze a spatial gradient is through the spatial correlation
matrix (MSC) [47, 48] of the partial derivatives:

MSC =


∥∥∥∂I(x)∂x1

∥∥∥2
2

〈
∂I(x)
∂x1

, ∂I(x)
∂x2

〉
2〈

∂I(x)
∂x1

, ∂I(x)
∂x2

〉
2

∥∥∥∂I(x)∂x2

∥∥∥2
2

 . (15)

Then the gradient magnitude or norm at each spatial location is extracted
from the spatial correlation matrix (eq. (15)) thanks to the eigenvalues and
eigenvectors [10,46]. Several propositions were made, Koschan and Abidi [27]
proposed to use the maximum eigenvalue:

λ+ =
1

2

(〈
∂I(x)

∂x1
,
∂I(x)

∂x1

〉
2

+

〈
∂I(x)

∂x2
,
∂I(x)

∂x2

〉
2

+ ∆

)
(16)

∆ =

((〈
∂I(x)

∂x1
,
∂I(x)

∂x1

〉
2

−
〈
∂I(x)

∂x2
,
∂I(x)

∂x2

〉
2

)2

+ 4

〈
∂I(x)

∂x1
,
∂I(x)

∂x2

〉2

2

) 1
2

.

Table 2: Summary of proposed expressions for the gradient magnitude with
their specificities.

Expression Reference Extraction use
λ+ Di Zenzo [10] Edges
λ− Shi and Tomasi [45] Corners

(λ+ − λ−)
1
k Sapiro [46] Edges − corners

tr(MSC) our approach Edges + corners
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On the contrary, Shi and Tomasi [45] propose to use the minimum eigenval-
ues:

λ− =
1

2

(〈
∂I(x)

∂x1
,
∂I(x)

∂x1

〉
2

+

〈
∂I(x)

∂x2
,
∂I(x)

∂x2

〉
2

−∆

)
. (17)

But their problematic is defined for key point detection. Sapiro [46] went
further by stating both eigenvalues should be used. One of his propositions
is a function of both eigenvalues:

Mag = (λ+ − λ−)
1
k , (18)

with k > 0. We chose to use the sum of the eigenvalues corresponding to the
trace of the matrix. Indeed, the trace is one of the two matrices invariants.
The table 2 summarize the information attached to the expression.

From the spatial correlation matrix, we can also extract a spatial direction
information [49] that is not studied in this article. From the Jacobian, we
can calculate a color direction.

4 Experiments
To illustrate the generic aspect of the Full-Vector Gradient (FVG), we pro-
pose three experiments. Firstly, we will present the simulation method. The
first experiment compares gradient norms extracted from theoretical color
sensor. Then gradients from a color, multi- and hyper-spectral sensors are
analyzed. In a third experiment, we assess the gradient extracted by an
imaging sensor having the same spectral sensitivity functions as the human
eye.

4.1 Method

In these experiments, we propose to simulate the response of a different
sensors from an acquired hyper-spectral image. Figure 4 presents a scheme
of the proposed method.

The simulated images from the color and multi-spectral sensors are cal-
culated using the following formula:

Ci =

∫ λmax

λmin

Ih(λ)Si(λ)dλ, (19)
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where Ci (resp. Si()) is the value (resp. the spectral sensitivity function) of
the channel i. The image value Ih is the acquisition from a hyper-spectral
sensor:

Ih(λ) = R(λ)L(λ). (20)

the product of the scene’s reflectance R by the illuminant L. Practically,
we do not have continuous curves and approximate the integrals using the
trapezoidal method.

Once we obtained the simulated image, we calculate the full-vector-gradient
using the Gram matrix defined in equation (9) with the sensors Spectral Sen-
sitivity Functions (SSF). No normalizations is applied before the processing.
Hence, the gradient magnitude will be sensor dependent. For each experi-

Acquisitions Simulations Gradients

Hyper-spectral

Multi-spectral

Color 1

Color 2

Figure 4: Method to simulate different sensors from one hyper-spectral ac-
quisition to compare the gradients calculation.
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ment, we will present the sensors, their SSF and comment their Gram matrix
before analyzing the gradient results.

4.2 Proof of concept: different theoretical color sensors

The first experiment compares three theoretical color sensors. The first one
(IS) is modeling an industrial sensor, with small band-width per channel
(Fig.5a). The second (LDS) is lightly discriminant meaning its channel are
sensitive on a large bandwidth (Fig.5b). the last one (MS) represents the
typical sensor from mainstream cameras (Fig.5c). The red channel is also
slightly sensitive in the blue.

The Gram matrix associated to the sensors are displayed on figures 5e
to 5g. For the first two sensors, we modeled on channel by Gaussians and
duplicated it for the other channels changing only the maximum position.
Therefore, all norm are identical and the correlation between green and the
other channel is the same. The coefficients are higher for the lightly discrim-
inant sensors because the sensitivities are larger. For the last channel, the
norm value for the green and the blue channel are the same as previously.
The value associated to the red channel are different because of the pic in
the blue wavelengths.

The figures 5h to 5j show the gradients processed with the Full-Vector
Gradient approach. The three results are very similar (no perceptible dif-
ference are observed), if we except the magnitude range. The magnitude
differences are directly related to the integral of the SSF. On the contrary,
we observe differences between the gradients processed with the Di-Zenzo
expression: the focused areas differ on the yellow card corner, figures 5k to
5m.

To be more objective, for each approach, we calculated the absolute dif-
ference between the normalized gradient norm of each sensor (Tab. 3). The
normalization reduces the impact of the SSF width. As expected, the differ-
ences average 1.3% between the FVG results is almost half the one obtained
using Di-Zenzo 2.3% (idem for the standard-deviation). Secondly, the mean
differences are in the same range for the three FVG results, while they are
very different between the three Di-Zenzo ones. These variations for Di-Zenzo
gradients are related to the SSF shape that are not considered in the Di-Zenzo
approach. These results illustrate the interest of the FVG expression.
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(a) Industrial type of sensor
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(c) Mainstream type of sensor

(d) Initial image

53 3 0
3 53 3
0 3 53


(e) IS

98 42 1
42 98 42
1 42 98


(f) LDS

74 24 12
24 71 20
12 20 71


(g) MS

(h) FVG (i) FVG (j) FVG

(k) Di Zenzo (l) Di Zenzo (m) Di Zenzo

Figure 5: Gradients processed using the Full-Vector Gradient and the Di-
Zenzo approach from three simulated color sensors.
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Table 3: Statistics on the absolute differences between two gradient norms
using the same approach.

5a and 5b 5a and 5c 5b and 5c
Mean Std Mean Std Mean Std

FVG 1.2% 1.9% 1.2% 1.9% 1.5% 0.2%
Di Zenzo 2.7% 3.7% 3.2% 4.4% 0.7% 1.1%

(a) Color sensor (b) Multi-spectral snapshot sensor

Figure 6: Spectral sensitivity functions from two cameras: a trichromatic
Canon 500D and a multi-spectral snapshot CMS-V (SILIOS Technologies).
Multi-spectral data provided by the constructor.

4.3 Application to real color/spectral sensors

The hyper-spectral image, Forest_x350_y2990 (Fig. 8b), comes from the
AVIRIS [50] database. AVIRIS stands for Airborne Visible InfraRed Imag-
ing Spectrometer, it is a 224-bands sensor from 366 nm to 2496 nm. The
simulated color camera is a Canon 500D and its SSF are presented figure 6a.
For the simulated multi-spectral camera, we selected a 9-band snapshot sen-
sor CMS-V by SILIOS Technologies, its SSF are presented figure 6b. The first
eight spectral filters are centered respectively at {561, 596, 638, 673, 722, 758, 801, 838}
nm. The last one is a panchromatic filter.

Figure 7 presents the Gram matrix for the three sensors. The area under
the red sensitivity curve of the color sensor (Fig. 6a) is smaller than the
others which explains a smaller coefficient 20 on the diagonal of its Gram
matrix (Fig. 7a).

In the multi-spectral case (Fig. 7c), the bottom diagonal values are smaller
than the other which is explained by the reduced sensitivity in the red and
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20 23 7
23 80 38
7 38 55


(a) Canon 500 D (b) AVIRIS

3615 2741 1856 1831 1857 1489 1452 1475 2933
2741 4293 2751 2435 1879 1585 1570 1638 3131
1856 2751 3813 2939 2030 1783 1792 1617 3045
1831 2435 2939 3803 2393 2015 1827 1641 3023
1857 1879 2030 2393 3326 2356 1904 1662 2859
1489 1585 1783 2015 2356 2662 2070 1738 2427
1452 1570 1792 1827 1904 2070 2326 1837 2287
1475 1638 1617 1641 1662 1738 1837 1973 2101
2933 3131 3045 3023 2859 2427 2287 2101 3785


(c) CMS-V (SILIOS Technologies)

Figure 7: Gram matrix for the color, multi and hyper-spectral sensors.

infrared channels (Fig. 6b). Secondly, the last row and column (blue values)
have stronger coefficients which correspond to the panchromatic filter. This
filter is relative to the image’s intensity on all wavelengths.

For the hyper-spectral camera, we have only the measurement of the full
width at half maximum (FWHM) for each spectral channel. The spectral
sensitivity of the channels is then modeled as Gaussian function, centered on
the channel wavelength with a standard deviation σ related to the FWHM
by:

FWHM = 2
√

2 ln(2)σ. (21)

For this sensor, the FWHM is almost equal to the distance between two
following wavelengths, hence the Gram matrix is almost diagonal (Fig. 7b).

Figure 8 presents the initial image (Fig. 8a to 8c) and the gradients ob-
tained with the three sensors restricted to the visible range (Fig. 8d, 8e, 8f).
Firstly, the three gradient results shows the main structures.

Then, we study the differences between the results. The sensors spectral
decomposition of the visible range induces these differences. The gradient
norms dynamic differ for each sensor. They are related to the number of
channels but also to the selectivity of these channels. The more selective,
the more diagonal is the matrix, hence a smaller dynamic. It explains the
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(a) 366 nm channel (b) Initial image (c) 773 nm channel

(d) Color sensor (e) Multi-spectral
sensor

(f) Hyper-spectral
sensor

Figure 8: Calculated gradient for a color, multi- and hyper-spectral sensors.

(a) Initial image (b) Initial image
zoom

(c) Normal color vision
SSF

(d) Deuteramomaly SSF (e) Protanomaly SSF

(f) Tritanope SSF (g) Deuteranope SSF (h) Protanope SSF

Figure 9: Zoom from different gradients estimated for normal and deficient
color vision.
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dynamic of the gradient norm from the multi-spectral sensor: a weak channel
selectivity and a panchromatic channel (Fig. 6b, all the SSF cover the range
[500, 1000] nm).

Differences appear between the gradients extracted by the three simulated
sensors (Fig. 8). For example, the top-right corner presents large magnitude
gradients on reduced spectral ranges (they appear on Fig. 8c) that are less
perceptible with the color gradient. The same behavior is observed for the
river/track in the magenta ellipse (Fig. 8f). On the other hand, when the
spatial changes in the image are diffused on a large spectral range (visible
on Fig. 8b), the color sensor is more adapted (red circle). In this case, the
small spatial variations are integrated over a large spectral range allowing to
extract them.

This second experiment allowed to compare gradients extracted by three
different spectral sensors, which was without metrological sense outside the
full-vector gradient expression. The previous experiment has shown, for sen-
sors in the same range and channel count, the FVG allows obtaining closer
results after normalization. This experiment showed the complementarity in
the gradient detection for color, multi- and hyper-spectral sensors. It opens
the door to direct solutions for the fusion of color and spectral images for re-
mote sensing applications [51,52] or for autonomous vehicles perception [53].

4.4 Application to the eye sensor

For this last experiment, we focused on the impact of the channel inter-
correlation. We selected the context of a theoretical sensor based on the
human eye sensitivity. Indeed, color vision deficiency (CVD) can be mod-
eled by shifting the color matching functions (CMF). We obtained the same
curves but different inter-correlation. We considered the CMF as a spectral
sensitivity function (SSF). We simulated six sensors, one with the normal
color vision CMF, and five using CVD’s ones.

The CIE defined the color matching function of the LMS for a standard
observer at 2◦ and 10◦. In this experiment, the LMS curves at 2◦ are used
for normal color vision (Fig. 10a). The CMF corresponding to color vision
deficient are defined using the model proposed by Shrestha [54] (Fig. 10).

One Gram matrix is associated to each case of CMF (Tab. 4). The
diagonal values correspond to the norm of a sensitivity curve, therefore those
values are the same for every matrix.

For the simulated dichromat sensors, the sensitivity curves are the same
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(b) Deuteranomaly color vision
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(c) Protanomaly color vision
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(d) Tritanope color vision
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(e) Deuteranope color vision
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(f) Protanope color vision

Figure 10: Sensitivity curves associated to normal color vision, dichromate
and abnormal L or M cones.

Table 4: Gram matrix for the equivalent sensors to color visions

Normal Anomalous trichromacy Dichromacy

L Channel 85.487 68.859 4.305
68.859 66.054 6.876
4.305 6.876 41.166



85.487 74.211 8.392
74.211 66.054 6.876
8.392 6.876 41.166

 (
66.054 6.876
6.876 41.166

)

M Channel

85.487 74.211 4.305
74.211 66.054 3.320
4.305 3.320 41.166

 (
85.487 4.305
4.305 41.166

)

S Channel

85.487 74.211 4.305
74.211 66.054 3.320
4.305 3.320 41.166

 (
85.487 68.859
68.859 66.054

)

for both remaining channels. Therefore, to obtain the associated Gram ma-
trix, we removed the row and column linked to the missing channel from
the Gram matrix associated to the normal color vision. For the anomalous
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Table 5: Statistics on the absolute differences between edges extracted from
the normal gradient (Fig. 10a) and the estimated CVD gradients.

10b 10c 10d 10e 10f
τ = 50% 0.17% 0.28% 0.04% 0.34% 0.84%

trichromacy simulation, the correlation between the L and M channels is
very high as they almost completely overlap (Fig. 10b and 10c).

For this experiment, we used an image from the HyTexila [55] database.
This database contains images taken under supervised conditions (distance
and light) with a hyper-spectral sensor of 186-bands (405 nm to 996 nm). We
uses the image textile_18_red (Fig. 9a) and more especially a stich (Fig. 9b).

The gradient results for the six simulated sensors are presented figure 9.
The dynamics of the gradient maps are different. For the images with three
channels sensors (Fig. 9c to 9e), the gradients have a more important mag-
nitude. The sensor using the tritanope CMF also has a large dynamic. This
sensor receives informations only from a green and red channels. Yellow is a
combination of red and green, purple is red and blue. The results are coher-
ent. The smallest magnitude is obtained with the Protanope SSF (Fig. 9h).

Despite the dynamic differences, the gradient maps are very similar. To
provide a more objective results, we empirically thresholded the gradient at
50% of the maximum value to obtain an edge map for each sensors. In the
table 5, we computed the difference between the sensor with the normal vision
SSF and the other sensors. There is less than 1% difference in each case.
The edge maps are very similar for every sensors. These results concur with
recent results about the ability of dichromats and trichromats to perceive
patterns and gradients [56], or about the relevance of the chromatic content
for gradient or edge detection [57,58].

This last experimental part doesn’t claim the HVS extract scene edges
in the spirit of the full-vector gradient. This experiment assess the impact
of the channel inter-correlation in gradient processing for the particular case
of sensors simulating the trichromats and dichromats vision. Evidently, con-
sidering rods in the processing would reduce the differences, but in the same
time the cones and rods spatial distribution would have to be considered.
Such questions are directly related to recent results about the HVS sen-
sitivity to chromatic edge detectors [58]. Of course, lots of questions are
induced by these results: the possible correlations between the existing gra-
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dients from a physical scene assessed by the FVG and the perceived gradient
by the human visual system (HVS), or the HSV possibility to consider the
inter-channel correlations. . .

5 Conclusion and perspectives
In this article, we addressed the question of the gradient measurement from
a real surface or scene. We focused on the metrological aspect of the process-
ing, to obtain a measure related only to the observed content by taking into
account the sensors characteristics. The required characteristics are the spec-
tral sensitivity functions of each color or spectral channel from the sensor.
We developed and justified the full-vector gradient construction. It includes
the Gram matrix related to the channels correlation. We chose to stay in the
sensor space as the measurement space. The obtained construction allows
a generic measure whatever the number and shapes of the sensor spectral
sensitivity curves. We also showed that the full-vector gradient embeds the
well-known Di Zenzo expression and explained the limits of the Di Zenzo ex-
pression requiring to work with an orthogonal basis. In the state-of-the-art,
we propose a taxonomy of the approaches according to the color spaces they
are expressed in and explain their limits.

Three results are proposed. The first one shows the strong similarity
between the normalized gradients extracted from one scene using different
color sensor contrary to the Di Zenzo gradients. The second one shows
the complementarity in gradient extraction between color, multi and hyper-
spectral imaging sensors. Depending on the spectral content, some gradients
are present on very selective channels while others appears on a wide spec-
tral range. The third experiment assesses the interest of the channel inter-
correlation. This experiment is based on imaging sensor simulating normal
and anomalous color vision. Even if the gradient magnitude were very dif-
ferent, the differences between normalized gradients are weak. The obtained
results are in accordance with recent results about the color blind ability to
perceive color gradients.

In conclusion, the normalized FVG gives very analogous results for sensors
with close spectral characteristics. Using the FVG on color, multi- and hyper-
spectral sensors is metrologically valid. The extracted gradients complement
each other. It confirms the theoretical expectation of the full-vector gradient
expression.
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