N
N

N

HAL

open science

Transparent and Dynamic Deployment of Lightweight
Transport Protocols
El-Fadel Bonfoh, Djolo Cédric Tape, Christophe Chassot, Samir Medjiah

» To cite this version:

El-Fadel Bonfoh, Djolo Cédric Tape, Christophe Chassot, Samir Medjiah. Transparent and Dynamic
Deployment of Lightweight Transport Protocols.

(GLOBECOM), Dec 2019, Waikoloa, Hawaii, United States. hal-02378283

HAL Id: hal-02378283
https://hal.science/hal-02378283
Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

2019 IEEE Global Communications Conference

https://hal.science/hal-02378283
https://hal.archives-ouvertes.fr

Transparent and Dynamic Deployment of
Lightweight Transport Protocols

El-Fadel Bonfoh
LAAS-CNRS
University of Toulouse
Toulouse, France
efbonfoh@laas.fr

Djolo Cédric Tape
LAAS-CNRS
University of Toulouse
Toulouse, France
dctape@laas.fr

Abstract—The adoption of new Transport protocols on
the Internet remains a critical challenge and their effective
deployment is very slow. Till now, despite its known limita-
tions and the plethora of existing alternatives like QUIC or
DCTCP, almost 90% of applications transmissions are based
on TCP. From this observation, we assert that redirecting
TCP-connection to another Transport protocol may acceler-
ate the deployment and the adoption of any new Transport
protocols in the Internet. The selected Transport protocol to-
wards which the redirection is performed may either already
exist in the OS or dynamically be deployed on it. Recently
introduced in the Linux kernel, eBPF technology provides
the abilities to insert at runtime functionalities in the ker-
nel from userspace programs. In this paper, we propose a
preliminary design of a eBPF-based framework to perform
our approach. Following this design, we implement a proto-
type that safely (1) perform transparent redirection of TCP
connections either to the OS native UDP or to UDP-Lite;
the later one is (2) dynamically deployed as eBPF programs.
This first prototype, developed on Linux 5.0, has the worth
to demonstrate our concept but suffer from performances
issues to which we formulate some solutions and open up
the associated research questions. Nevertheless, we believe
that our approach may lead to innovation at the Internet
Transport layer.

Keywords—Transport protocols; TCP/UDP; UDP-Lite;
eBPF; dynamic deployment; Linux OS

I. INTRODUCTION

The Internet has known rapid and continuous develop-
ment of Transport protocols not only to satisfy the func-
tional requirements but also to meet applications QoS and,
more recently, QoE requirements. Unfortunately, there is
a wide gap between the development and the speed of
deployment/adoption of those protocols. The Transport
layer is only based on TCP and UDP, and nearly 90%
of Internet traffic is based on TCP [1]. Deployment and
adoption of new Transport protocols are slow and diffi-
cult.

Indeed, to support any new protocol, OS developers
have to add it to the OS kernel; this is so tedious and
error-prone to the point that it can only be motivated by
high demand from application programmers. At the same
time, for the application programmers, modifying an ap-
plication to support any new protocol is time-consuming

Christophe Chassot
LAAS-CNRS
University of Toulouse
Toulouse, France
chassot@laas.fr

Samir Medjiah
LAAS-CNRS
University of Toulouse
Toulouse, France
medjiah@laas.fr

Entry point
BPF program A BPF program D

T

¥

Fig. 1. eBPF programs chain by tail calls [15]

and quite complex [2]; this leads them to definitively use
TCP despite its well-known limitations in many modern
networks context [3].

As if it was not already complicated enough, besides
these two actors, there are middleboxes vendors which
come to “violate” the end-to-end principle of the Trans-
port layer; indeed, their devices (NAT, Firewall, etc.)
usually block all the Transport protocols that are not
supported by mainstream OS developers (Windows, Mac,
Linux, etc.). This global context leads to a vicious cir-
cle that hampers the deployment and the adoption of
any new Transport solutions other than TCP or UDP [4,
5], explaining the lack of innovation within the Internet
Transport layer.

Given the huge number of TCP-based applications, we
assert that the capability to, transparently for applications
and safely for the system, redirect TCP connections to an-
other Transport protocol can definitely accelerate the de-
ployment and encourage the adoption of novel Transport
protocols in the Internet. The selected Transport protocol
towards which the redirection is performed may either
already exist in the OS or dynamically be deployed on
it. Indeed, every time a new protocol is released, thanks
to dynamic deployment features, the OS developers do
not have necessarily to upgrade their systems and the
applications programmers can leverage the benefits of the
new protocol without modifying their applications thanks
to transparent redirection capabilities. To be complete and
viable, this approach may integrate a systematic fallback
to TCP in case of any failure (technical, middleboxes
interferences, etc.). It is important to specify at this level
that the prototype presented in this paper does not include
this complementary mechanism.

Socket Layer

Transport Layer

IP Layer

Traffic Controller
(tc)

eXpress Data Path
(XDP)

Fig. 2. Traffic Control and XDP

More recently, Linux extended the BPF [6] virtual
machine to the know as eBPF. In short, eBPF allow to
dynamically add user code in the kernel and so temporary
modified its behavior. More about eBPF architecture and
functioning is provided in the background section.

To show the feasibility of our approach, we preliminary
design and implement a eBPF-based tool on Linux 5.0.
This tool, which we call Hooker is a part of Virtual
Transport Layer described in [4]. The Hooker framework
leverages eBPF [7] features to transparently and safely
redirect TCP connections to the OS native UDP or to the
dynamically deployed UDP-Lite. The selected protocol
could be any other than UDP and UDP-Lite. Through an
illustrative data streaming scenario, we test our prototype
and successfully perform the transparent redirection of
TCP connections and the dynamic deployment of UDP-
Lite as eBPF programs. Despite (1) the potential of our
approach to make it easier the deployment of new Trans-
port solutions, and then and to stimulate their adoption,
and (2) its subsequent benefits in terms of flexibility, cus-
tomization, and protocol adaptation, the current prototype
face performance issues. In this paper, we formulate some
preconizations and open up the related research questions.

The rest of the paper is organized as the following.
The next section presents the background to this work
and an overview of the related work. Section III presents
the details of the preliminary design and implementation
of the Hooker framework. In section IV, functional tests
and performances analysis of the Hooker are presented.
Finally, section V concludes the paper and enumerates
the perspectives of this work and related opened research
questions.

II. BACKGROUND AND RELATED WORK
A. Background

The Hooker framework developed in this work is based
on eBPF. eBPF (extended Berkeley Packet Filter), as sug-
gested by its name, is an extension of BPF in-kernel virtual
machine allowing to inject bytecode within Linux kernel
at runtime. Its main components are: (1) maps which are
key / value stores used to exchange data either between
user-space programs and in-kernel eBPF programs, or
between eBPF programs running at different points of the

kernel, (2) helper functions executed directly inside the
kernel and allowing eBPF programs to interact with it,
and (3) tail calls used to chain up to 32 eBPF programs as
shown in Fig. 1. The latter feature can be used to overcome
the size limitation of eBPF program, fixed to 4096 bytes.
eBPF is used in several contexts like tracing, monitor-
ing, security, and networking. Each eBPF program may be
attached to a hook point, a.k.a as kernel event (incoming
packet, system calls, socket operations, ...), and each time
the event occurs, the eBPF program is executed. The
two main networking hook points are eXpress Data Path
(XDP) [8] and Traffic Controller (tc) [9] which are placed
at different levels of the networking stack (see Fig. 2).
eBPF introduces programmability in the Linux kernel
by allowing runtime code injection within the kernel and
so, as illustrated in Fig. 3, provides the ability to dy-
namically add functionalities in the kernel from userspace
programs compiled by LLVM/Clang compiler. Thanks
to JIT compiler and eBPF Verifier, these functionalities
are safely added and efficiently executed. Furthermore,
eBPF has the advantage of allowing temporary kernel
modification as opposed to kernel patches approach.

To dynamically deploy Transport functions in the OS
kernel, we first considered the use of Linux kernel mod-
ules; permitting seamlessly integration and utilization of
the introduced Transport functions. Unfortunately, we
faced the most common issue of kernel module utilization:
the whole system crashed at the slightest mistake; in other
words, there is no verifier to guarantee the safety of the
OS. Furthermore, there is a lack of debug tools and it takes
time to check the code and to repair the bug.

Socket

User Space

pre—— LLVM/Clang
(Bytecode) |+
7

User eBPF Prog
(C. 6o, Pythan,

Al
(N esvr verifier - 31T

g hook

TCP/1P
Stack

Kernel Space |

Fig. 3. eBPF Networking Overview

B. Related work

Various works have been done to tackle the issue of
deployment and adoption of Transport protocols. [10, 11]
propose TCP-SCTP mapping tool for transparent redirec-
tion of TCP connection to SCTP in order to gradually
deploy SCTP. In [10], the mapping tool acts like a proxy
which merges individual TCP connections into SCTP
association whereas in [11] the mapping tool is designed
to be directly integrated into the OS. However, such ap-
proaches address only SCTP deployment and adoption

issues; they do not provide a comprehensive way for
mapping to other protocols than SCTP.

More recent works [12, 13, 2] propose to rethink the
entire Transport layer architecture in order to delegate
to the Transport layer the choice of the protocol to be
used; let us recall that this choice is currently let to the
application developer. In [2], the authors assert that the
main cause explaining the lack of new Transport proto-
cols deployment and adoption comes from architectural
limitations of the Transport layer, hence their proposal for
a new architecture. Although this approach is promising,
it requires rewriting existing applications and as we pre-
viously mentioned, this can slow down its adoption.

III. DESIGN AND IMPLEMENTATION OF THE
HOOKER FRAMEWORK

The purpose of this section is to present the internal
structure of the Hooker framework and its interactions
both with network stack and the applications. Prior to this
presentation, it is worth to recall that the Hooker, in its
current design, is aimed at demonstrating the concept and
hence at opening the way to future performance optimiza-
tion works.

The Hooker’s goals are (1) to redirect TCP connec-
tions to another protocol in a transparent manner for the
application, and (2) to dynamically deploy the required
Transport protocol if it does not already exist in the OS.
To do that, the Hooker acts in a different manner on
outcoming packets and incoming packets as depicted in
Fig. 4, i.e. it places at different levels the hook points and
uses several types of eBPF programs associated with those
hooks.

On a host running the Linux operating system, the
Hooker is attached to root cgroupv2 [14]; hence, by
leveraging hierarchical model of cgroups, it can process
every ingress and egress packets of all processes run-
ning on the host. When the Hooker’s eBPF programs

are loaded, a map of type SOCKMAP is created. The map
key illustrated in code listing 1 is used by the Hooker
msg_redirector component to identify the exact socket
towards which the packet data must be forwarded to. Each
time a connection is established or closed, the map is
updated by the Hooker msg_redirector running SOCK_OPS
program attached to cgroupv2.
struct sock_key {

__u32 src_ip4;

__u32 dst_ip4;

__u32 src_port;

__u32 dst_port;
¥

Code listing 1: The structure of the sockmap key

The SK_MSG program running by the Hooker
msg_redirector is executed each time an application
process sends a message by invoking sendmsg() on
a TCP socket. When the Hooker userspace invokes
recvmsg(), it receives only the payload without
Transport layer address information. By consequence, in
order to allow the Hooker userspace to deliver data to the
right process when it receives a response from remote pair
host, before delivering message to the redirection socket,
the Hooker msg redirector rewrites it by adding one
field in the header thanks to buffer extension permitted
by the helper function bpf_msg_push_data(). Finally,
to deliver the message either to the redirection socket or
to the TCP socket, the Hooker msg_redirector leverages
bpf_msg_redirect_map() helper function.

The redirection socket is created and maintained by the
Hooker userspace which will use the recv() operation to
get the redirected data packet and to send it on the right
Transport protocol socket chosen between UDP and UDP-
Lite. In this first prototype, UDP-Lite is dynamically de-
ployed at the same time as the Hooker’s eBPF programs.
The right moment and the right protocol to use and deploy

ser Space udp/udp-Tite_sendnsa()

hooker_userspace

udp/udp-Lite_recvnsg()

rrrrrr

UDP/IP stack

sssssss

TCP/TP stack

T

Kernel Space

X

&
&3

Lo

NIC }—————

BPF prog / Hooker components

)
}
i —

Dynamically deployed Transport protocol

Inc

—» Outcoming packets data path

oming packets data path

Fig. 4. Hooker Framework Design Overview

are let to future implementations. The UDP-Lite is chosen
because it is a lightweight Transport protocol. Indeed, as
stated in section II, to ensure that any eBPF program will
terminate within quicktime, the maximum size of each
program authorized by the eBPF Verifier is 4096 BPF
instructions. However, we can overcome this limitation
by partitioning the Transport protocol into small functions
and using tail calls feature to chain them as shown in Fig.
1.

For incoming packets, two main hook points can be
used, XDP and fc. tc hook has the advantage to be attach-
able on incoming datapath as well as outcoming datapath;
however, it is triggered only after expensive allocation of
sk_buff structure by the kernel networking stack. Even
if the XDP hook avoids the overheads introduced by
allocation of sk_buff structure, currently, it cannot be
triggered on outcoming packet data. This is not crippling
because outcoming data are hooked from socket layer,
hence we use XDP driver hook in this first prototype
to leverage it performance and to offset at the best the
overheads generate in socket layer by Hooker redirection
operations.

Every time, as soon as the host NIC driver receives a
packet data, thanks to XDP driver hook, the Hooker egress
intercepts the packet data and processes it with the asso-
ciated eBPF program of type BPF_PROG_TYPE_XDP. The
Hooker egress can drop the packet data (XDP_DROP), redi-
rect it to the same or another network interface (XDP_TX,
XDP_REDIRECT) or, as currently done in this prototype,
pass it to the right network stack (XDP_PASS) for further
processing.

IV. PRELIMINARY TESTS AND RESULTS

The proposed Hooker prototype is evaluated through
experimentations based on data streaming of three files of
different types (text, image, and video) having different
size, 3KB, 510KB, and 26MB respectively. The main
goal of these tests is to demonstrate the feasibility of
the proposed approach. We measure the cost (delay and
overheads) of the redirection and the dynamic deployment
of Hooker’s programs and the UDP-Lite.

The testbed illustrated in Fig. 5 is composed of two
Linux virtual machines (VMs), one acting as the data
streaming server and the other one running the client

Emulated IP
Network

Fig. 5. Experimentations testbed

TABLE I. TESTBED NETWORK AND HOSTS CONFIGURATIONS

VMs specifications
OS kernel CPU RAM
Linux 5.0 Intel 2x3.6GHz 6.3GB
Emulated Network
delay loss rate error rate
25 ms -- -

application. The running Linux version for both VMs is
5.0. Each VM is provided with Intel Core i7-7700 CPU
and 6.3GB of RAM. To make (1) UDP and UDP-Lite as
reliable as TCP, and (2) TCP as fast as UDP and UDP-
Lite, we emulated an IP network tuned to zero rate of loss
and error. The RTT average is set to 50 ms. See Table 1
for the specifications of VMs and the emulated network.

TABLE II.

REDIRECTION AND DEPLOYMENT COSTS

eBPF programs | Compilation Loading Redirection ops
Hooker’s progs 6s 20 ms 400 ns
UDP-Lite 200 ms 7 ms

For each file, we consider the identical scenario consist-
ing in two steps: the first streaming is performed without
running the Hooker and the second streaming is realized
with the Hooker running at both sides of the connection
(client and server). For each step, we check that the client
correctly received the streamed file and with Wireshark
analyzer [16], we validate the redirection by checking the
Transport protocol used during streaming.

The performed performance evaluation is depicted in
Fig. 6. It shows the impact of the Hooker on the trans-
mission latency. Furthermore, we measure the additional
overheads introduced by the Hooker framework (see Ta-
ble 2). The Hooker cost is explained by (1) the redirection
operations (multiple memory copies, etc.) and (2) the
deployment of eBPF programs operations (compilation
and loading). On average, the Hooker introduces 55 ms
additional latency, which is not surprising considering
the design and implementation choices made in this first

prototype.

V. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

We propose to use transparent redirection and dynamic
deployment to tackle Internet Transport layer innovation
issues. We build a first prototype based on eBPF to per-
form this approach. This prototype, called Hooker, aims
to demonstrate the feasibility of our idea and successfully
redirect TCP connections to OS native UDP and to UDP-
Lite. The UDP-Lite protocol is dynamically deployed by
the Hooker framework.

B TP (ro Hocker) M UBP (Hooker) UBPLite (Hooker)

Time (ms)

o

Text #(3K8) Tmege #(31068) Video #(26MB)

Fig. 6. Latency of the data streaming with and without Hooker

The proposed approach may accelerate the deployment
and the adoption of new Transport protocols in the Inter-
net. Furthermore, it can introduce innovation at the Trans-
port layer by allowing the Transport protocol adaptation to
the network context and to the application requirements.
However, as we show it, the first prototype of the Hooker
framework presented in this paper generates additional
overheads leading to poverty of provided performances.

One way to optimize the performances is to rethink
the architecture of the Hooker, especially its Hooker
userspace component which acts currently as "applica-
tion" proxy. This component may be back to the kernel
to act like kernel proxy and so, allow avoiding multiple
userspace - kernel space switching contexts. Furthermore,
apart from design optimization, we have to rethink the
way the eBPFs programs interact with the kernel, to say
new helper functions and maps have to be released. For
example, here instead of use SOCKMAP to perform the redi-
rection, we can use a shared DATAMAP where the Hooker
userspace may directly come to retrieve or to deliver
a data and avoid expensive management of multiples
buffers socket. This implies the introduction of permanent
patches to the Linux kernel.

By showing (1) the benefits of our approach in terms of
effective deployment and adoption of Transport protocols
and (2) its feasibility, we believe that it will open the way
to further optimization research to fully leverage trans-
parent and dynamic deployment of Transport protocols
benefits.

REFERENCES

[1] D. Murray, T. Koziniec, S. Zander, M. Dixon, P. Koutsakis, “An
analysis of changing enterprise network traffic characteristics”,
IEEE Asia-Pacific Conference on Communication (APCC), 2014.

[2] M. Oulmahdi, C. Chassot, N. V. Wambeke, “Transport protocols:
limitations, evolution obstacles and solutions for an actual deploy-
ment in the Internet”, International Journal of Parallel, Emergent
and Distributed Systems, Taylor, 2015.

[3] E.Dubois, J. Fasson, C. Donny, E. Chaput, “Enhancing TCP based
communications in mobile satellite scenarios: TCP PEPs issues
and solutions”, Proc. of the 5Sth ASMS and 11th SPSC, September
2010.

[4] E.-F. Bonfoh, S. Medjiah, C. Chassot, J. Aguilar, “Towards the
Virtualization of Transport-level Functions and Protocols”, 7th
IEEE International Conference on Smart Communications in Net-
work Technologies (SACONET’18), Oct 2018.

(3]

(7]
(8]

[9]
[10]

[11]

[12]
[13]
[14]
[15]

[16]

M. Handley, “Why the Internet only just works”, BT Technology
Journal, Vol. 24, No 3, July 2006.

S. McCanne, and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture”, USENIX winter, Vol.
93, 1993.

M. Fleming, “A thorough introduction to
https://lwn.net/Articles/740157/, accessed 2019-05-08.
T. Heiland-Jergensen and al., “The eXpress Data Path: Fast Pro-
grammable Packet Processing in the Operating System Kernel”,

14th ACM International Conference on emerging Networking
EXperiments and Technologies (CONEXT ’18), Dec 2018.

“Linux man page”, http://man7.org/linux/man-
pages/man8/tc.8.html/, accessed 2019-05-08.

M. Welzl, F. Niederbacher, S. Gjessing, “Beneficial Transparent
Deployment of SCTP: the Missing Pieces”, IEEE Global Commu-
nications Conference (GlobeCom), December 2011.

R. W. Bickhart and al., “Transparent TCP-to-SCTP translation
Shim layer”, Unpublished master’s thesis, Delaware University,
2005.

N. Khademi et al., “NEAT: A Platform- and Protocol-Independent
Internet Transport API”, IEEE Com. Magazine, June 2017.

“Transport Services (TAPS)” https://datatracker.ietf.org/wg/taps/about/,
accessed 2018-08-05.

“Linux man page”, http://man7.org/linux/man-
pages/man7/cgroups.7.html, accessed 2019-05-08.

BPF and XDP Reference
https://docs.cilium.io/en/v1.5/bpf/#, accessed 2019-05-09.
Wireshark, https://www.wireshark.org/, accessed 2019-05-08.

eBPF”,

Guide,

