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Abstract 

The monolithic integration of sub-micron quartz structures on silicon substrates is a key issue for 

the future development of telecommunication to the GHz frequencies. Here we report 

unprecedented large-scale fabrication of ordered arrays of piezoelectric epitaxial quartz 

nanostructures on silicon substrates by the combination of soft-chemistry and three cost effective 

lithographic techniques: (i) laser transfer lithography, (ii) soft nanoimprint lithography on Sr-

doped SiO2 sol-gel thin films and (iii) self-assembled SrCO3 nanoparticles reactive nanomasks. 

Epitaxial α-quartz nanopillars with different diameters (down to 50 nm) and heights (up to 2000 

nm) were obtained for the first time. This work proves the control over the shape, micro- and 

nano-patterning of quartz thin films while preserving its crystallinity, texture and piezoelectricity. 

This work opens up the opportunity to fabricate new high frequency resonators and high 

sensitivity sensors relevant in different fields of application.  

 

1. Introduction.  

Piezoelectric materials are elements of motion sensors (accelerometers and gyroscopes), 

oscillators and resonators present in practically any single electronic circuit. As a result, the 
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piezoelectric materials solves many technological challenges including high frequency and stable 

oscillators, reducing energy consumption of devices and incorporating simple and efficient 

inertial sensors for distance, movement and acceleration detection. The integration of high quality 

epitaxial piezoelectric films and nanostructures on silicon is a milestone towards the expansion of 

novel devices with the traditional Si-based complementary metal-oxide-semiconductor (CMOS) 

technology1. In addition, advances in micro and nanofabrication technologies, open the 

possibility to implement a large scale integration of miniaturized piezoelectric materials into 

innovative electromechanical devices with nanosized moving parts with prospective sensor 

applications in electronics, biology and medicine2.  

In this context, α-quartz is widely used for electronic applications: its piezoelectric properties 

allow for an excellent control of the frequency in oscillators and for producing very selective 

filters3. Since the eigen frequency of the quartz crystal is very sensitive to changes of its mass or 

acceleration, this material is extremely convenient to implemented micro-resonators for sensing 

applications (strength, humidity, acceleration, etc.) 4. However, α-quartz and other piezoelectric 

sensing materials having extremely large quality factor (Q> 106)5, high temperature stability and 

very low phase noise are only available as bulk single crystals. For this reason, all these excellent 

sensing materials can only be configured as high performance transducers through direct bulk 

micromachining or hybrid integration methods6  

Nowadays, the lowest achievable thickness of quartz crystals is about 10 μm and 100 μm in 

diameter, which in turn limits the working frequencies of the transducers (the resonance 

frequency corresponds to half of the wavelength of the crystal thickness). few works have shown 

sub-micron patterned quartz surfaces, such as those prepared by Laser Interference Lithography7 

and by Faraday cage angled-etching technique8 or lithium niobiate nanostructures synthetized by 

focused ion beam (FIB) technology9, although from bulk single crystals.  



We recently developed the direct and bottom-up integration of epitaxial α-quartz thin films on 

silicon substrate by chemical solution deposition (CSD)10, which overcomes the aforementioned 

limitations. The method relies on the thermal devitrification and crystallization of dip-coated 

mesoporous silica films, assisted by strontium alkaline earth cation in amphiphilic molecular 

templates10a. This new approach opens the door for developing efficient quartz-based 

piezoelectrics devices engineered from widely available and non-toxic compounds using 

industrially scalable methods.  

In the present work, we have taken advantage of an improved evolution of this chemical route10a 

and we have combined it with a set of cost-effective top-down lithography techniques to fabricate 

large scale epitaxial nanopatterned quartz thin films on silicon substrates with controllable nano 

and microstructures. This work is, to our knowledge, the first example that shows the possibility 

of engineering the integration on silicon of patterned quartz thin films, which precedes the 

production of nanostructured and microelectromechanical systems, as previously highlighted11. 

By engineering nanostructured quartz films on silicon, which are much thinner (200 nm - 1 µm) 

than those obtained by top down technologies on bulk crystals, one can expect higher resonance 

frequencies. In addition, the control of the porosity, texture, shape, micro- and nano-patterning of 

quartz thin films opens up the opportunity to produce more efficient devices. This is supported by 

the fact that nanostructured quartz thin films increase the specific area thus, enhancing the 

sensing properties of the future device.  

 

2. Results and discussions  

To produce nanoscaled 1D (arrays of pillars) on epitaxial α-quartz thin films by silicon 

micromachining, we have tested cost efficient lithographic techniques such as laser transfer 

lithography technique12, Soft nanoimprint lithography13 and a novel plasma-assisted self-



assembled SrCO3 nanoparticles reactive nanomask etching. Such procedures do not require any 

lithographic mask and allow obtaining a large scale and precise control of epitaxial quartz 

nanostructures (see Fig. 1).  

 

 

Fig. 1. Schematics that summarizes the key steps that were applied to produce nano 

lithographic patterns on epitaxial quartz thin films dependent of the film thickness. 

 

We initially produced micrometric photolithographic patterns on 300 nm thick epitaxial quartz 

films on silicon (100) to evaluate the crystal stability of quartz under an anisotropic plasma 

etching process (see Fig.SI1). In this case, 5 µm wide lines of epitaxial quartz were achieved, 

which did not undergo amorphization during the lithographic process. This feature was confirmed 

by 2D X-ray diffraction (XRD) and Piezo-response Force Microscopy (PFM) on micro-



photolithographed samples (see Fig. SI1). The XRD analysis revealed the same (100) α-quartz 

out of plane texture that the films had before the etching process (see Fig. SI1). PFM 

measurements showed that the piezoelectricity of micro patterned quartz films was preserved (see 

Fig.SI1 d and e), with the  piezoelectric coefficient (d33) being comparable to that of the quartz 

bulk material (i.e. 1.5 and 3.5 pm/V)14.   

 

2.1.Direct patterning of epitaxial piezoelectric quartz thin films by Laser Interference 

Lithography.  

Next, we used Laser Interference Lithography (LIL, also known as holographic lithography) to 

obtain direct sub-micro patterned epitaxial quartz films. LIL process is a top-down fabrication 

technique that is currently used to selectively pattern single crystals into dense vertical 

nanocolumn arrays7. This technique allows generating arrays of lines or dots in a photoresist film 

from an interference pattern generated by a UV laser over cm2 surfaces and with pitches ranging 

between 400 nm up to 2400 nm (see Fig. 1). The mask-less exposure of the photoresist layer 

together with two or more coherent light beams offers a simple, low-cost, large-area 

nanolithography technique12.  

Figure 2a shows a first nano lithographic pattern on epitaxial quartz thin films on (100) silicon 

substrate using LIL lithography. Low resolution Scanning Electron Microscopy image (SEM) 

displays an ultra-dense network of quartz nanocolumns with a precise control over their diameter, 

height and position. The Transmission Electron Microscopy image of the α-quartz/Si interface in 

a 600 nm height nanopillar and the its corresponding Electron Diffraction pattern confirm that the 

crystalline quality of epitaxial α-quartz has been preserved during the LIL and RIE etching 

process (see Fig.2b).  



Piezoelectric coefficient d33 estimated by PFM on quartz nanocolumns were compared with those 

values obtained in dense quartz films before the lithographic process using an alternative method, 

direct piezoelectric force microscopy (DPFM), recently developed by the A. Gomez et al.15 (see 

Fig. SI2 and Fig. 2c). We employed DPFM measurements to obtain the piezoelectric 

characterization of dense quartz film and compared the results with the case of nanocolumns. The 

piezoelectric properties of nanopatterned epitaxial quartz films were measured by using PFM 

technique in 800 nm thick nanocolumns (see Fig. 2c).  Both piezoelectric coefficient (d33) are 

similar and comparable to that of the quartz bulk material14 (i.e. d33(PFM) = 2±0.5 pm/V and  

d33(DPFM) = 4±2 pC/N) confirming that the piezoelectric functionality of nanocolumns is preserved 

(see Fig. 2d and S2, respectively). Notice that all DPFM measurements were compared with a 

reference based in a commercial ferroelectric Periodically Poled Lithium Niobate (PPLN) sample 

(see for more details Fig. SI3).     

Graphical representation in Figure 2d shows the control of quartz nanocolumns height (up to 800 

nm) as a function of the number of deposition of SiO2 layers. The followed multilayer film 

synthesis consists on the sequential deposition and consolidation of several gel layers before a 

final annealing treatment aiming to induce the epitaxial α-quartz growth (see more details in 

experimental section). Fig. S4a presents a series of FEGSEM images corresponding to the cross 

sections of dense quartz films before the lithographic process consisting of 1 up to 5 layers. 

Notice that the thicknesses of the different multilayers films correspond to the final quartz 

columnar heights plot in figure 2d. From the XRD measurements of Fig. S4b we can see that all 

the films present the usual α-quartz (100) out of plane texture and thus, the intensity of the 

reflections is proportional to the number of layers of the film. This demonstrates that the multi-

layer approach allows controlling the nanocolumn height produced by LIL lithography while 

maintaining the crystallinity and crystal orientation. Moreover, the long range θ-2θ XRD pattern 



and pole figure of a 5-layer lithographed film confirms the texture of the (100) α-quartz 

crystallographic phase after the lithographic process. Nanocolumns conserve the (100) α-

quartz║(100) Si epitaxial relationship previously observed in dense films10a. Besides, no 

supplementary peaks from other reflections or polycrystallinity signals appear in the θ-2θ.  

With the combination of our multi-layer deposition approach with LIL lithography, we have 

produced high aspect ratio epitaxial quartz columns with micrometric heights from dip-coated 

films. This was possible because the multi-layer deposition approach circumvented the maximum 

achievable thickness imposed by lateral tensile stresses that appeared during the densification of 

the layers16. A key step to overcome this obstacle has been to perform a temperature treatment to 

consolidate the gel layer (450ºC for 10 min in air atmosphere) after each deposition (See more 

details in the experimental section).   

 



Fig. 2.  1D Lithographic patterning of epitaxial quartz thin films using LIL process. (a) SEM image 

of ultra-dense network of 600 nm thick epitaxial quartz nanocolumns. The inset image shows a low 

resolution optical image of the sample. (b) Transmission Electron Microscopy image and electron 

diffraction measurement (inset image) of the α-quartz/Si interface of a single nanocolumn. (c) DPFM 

spectroscopic measurements on a 800 nm height quartz film obtaining with a loading rate of 95000 µN/s. 

(d) Graphic that shows the control of quartz nanocolumns height with the number of multideposited silica 

solgel layers before crystallization. (e) Long range θ-2θ XRD pattern with a perfect texture of the (100) α-

quartz crystallographic phase after lithographic process. The inset image shows a pole figure of a 5-layer 

lithographed quartz film with (100) α-quartz║(100) Si epitaxial relationship. 

 

2.2. Soft nanoimprint lithography on Sr-doped SiO2 sol-gel to nanostructurate epitaxial 

quartz films.  

As an alternative route to LIL lithographic process, we applied soft Nano-Imprint Lithography 

(NIL), which combines top-down and bottom-up (sol-gel) approaches in order to produce 

epitaxial quartz nanopillar arrays with a precise control of pillar diameters and heights and inter-

pillar distances on silicon. We want to emphasize that with this methodology we have reached 

unprecedented heights of 2 µm (see Figs. 3a and S5). The experimental procedure consisted in 

the combination of dip-coating process to synthetize Sr-doped xerogel silica films of controlled 

thicknesses on (100) silicon substrates with LIL and Nano-Imprint (NIL) lithographic techniques. 

In a first top-down fabrication step, large scale Si (100) masters made of nanopillars arrays were 

obtained by using LIL lithography and transferred by reactive ion etching at low pressure. Then, 

a second step involved the preparation of high quality PolyDiMethylSiloxane (PDMS) molds 

from Si(100) masters (see Fig. 3a) that produce perfectly imprinted Sr-doped silica nano-pillars 

with controlled diameter and height on silicon, as illustrated in figure 3b (See more details in 

experimental section).  



 

Fig. 3.  Optical images of Si (100) masters used along this work obtained by using LIL lithography 

(a) FEG-SEM image of printed Sr-doped silica nano-pillars with controlled diameter (down to 350 nm) 

and height (up to 2 µm) on silicon. The inset pictures shows FEG-SEM images at higher magnification of 

pillars. (b) 3D AFM images showing silica nanostructured films prepared by NIL lithography in b. Below 

you can distinguish the profile analysis of the AFM image in c, revealing a perfect transfer of the different 

motives.  

 

Finally, imprinted epitaxial (100) α-quartz nano-pillars arrays on silicon were obtained applying a 

thermal treatment at 1000ºC for 5 hours (see Fig. 4). Both optical microscope and SEM images 

shows Sr-doped silica xerogel nanopattern composed of 600 nm height columns before 

crystallization process, see Fig. 4a. The crystallized sample is shown in Fig. 4b, which exhibits 

the characteristic quartz grain boundaries at the nanostructured surface film (see optical image in 

figure 4b). Atomic resolution HAADF image of a single quartz nanocolumn/silicon interface 

reveals the epitaxial growth of quartz layer with an atomically sharp interface with the silicon 

substrate as shown in Fig. 4d (see also Figs. S6 in S.I.). In order to attain both a continuous 



nanostructured crystalline quartz film and a perfect nano-imprinted pattern, the dip coater 

deposition conditions have to be optimized. Likewise, a first mesoporous silica xerogel adhesion 

layer was needed to obtain an optimal print of PDMS molds on the Si(100) substrate (see Fig. 

4c). This adhesion layer is consolidated at 450 °C during 5 min, before the deposition of the final 

printable silica layer. Both layers have the same thickness (200 nm) and are deposited under the 

same conditions i.e. at 25°C, 45% of humidity after applying a withdrawal speed of 300 mm 

min−1 with the dip-coater. It is worth noting that the withdrawal speed of 300 mm min−1 

determines the thickness of the film17 which, is indeed a critical factor to produce continuous 

nanostructured quartz layers. Below this critical withdrawal speed, the nucleation and 

crystallization of quartz layers was partial. As a result, fully crystallized films with a 100% 

surface coverage cannot be obtained for film thicknesses below 200 nm (see Fig. S7a). This trend 

is also reflected by the XRD patterns of the films which display higher intensities of the α-quartz 

(00L) reflections for increasing withdrawal speeds (see Fig. S7b) 

 



 

Fig. 4. Crystallization of Sr-doped silica xerogel nanopattern. (a) Optical image of Sr-doped silica 

xerogel nanopattern composed of 500 nm height columns performed by NIL lithographic process before 

crystallization process. The inset figure shows a higher magnification FEG-SEM image illustrating the 

morphology of the Sr-doped silica xerogel nanopattern. (b) Optical image the Sr-doped silica xerogel 

nanopattern sample after crystallization. Notice that is possible to observe the formation of typical quartz 

grain boundaries. The inset images shows a higher magnification FEG-SEM image of the quartz 

nanopattern (left side) and an optical images that exhibit the light diffraction after interaction with the 

quartz nanocolumn patter (right side). (c) Low magnification high angle annular dark field (HAADF) Z-

contrast image of a quartz nanocolumn grown on the Si substrate assisted by the Sr2+ catalyst at 1000 °C, 5 

hours. (d) Atomic resolution Z-contrast image of a single (100)-oriented quartz nanocolumn viewed along 

the [100]-crystallographic direction. Inset figures show the corresponding FFT of both the quartz film and 

the silicon substrate. (d) θ-2θ XRD pattern with a perfect texture of the (100) α-quartz crystallographic 

phase after lithographic process. The inset shows a rocking curve showing a mosaicity value of quartz of 

1.7° (e) 

 



To evaluate the piezoelectricity of the nanoimprinted quartz columns we employed PFM. The 

obtained d33 value was of the same order as the dense quartz films before lithographic process 

and the bulk material (see Fig. 5). The PFM amplitude image is represented in Figure 5a and the 

inset shows the topographic AFM image of crystallized nanocolumns. Notice that the areas 

surrounding the nanocolumns show a slight change in the PFM amplitude, the signal remains 

constant both at the top of the columnar structures at the quartz film surrounding the base of these 

pillars. The change of the PFM amplitude signal in the perimeter of the nanocolumns is attributed 

to a topographic crosstalk artifact which is well known and reported by the community18. We 

were able to corroborate the electromechanical behavior of our films by performing point-out 

spectroscopy measurements, see Fig. 5b. The electromechanical behavior of the structures was 

studied using frequency-sweeps to display  the PFM contact resonant circuit. The 

electromechanical behavior is studied outside and inside of the nanocolumns by placing the AFM 

tip in each respective position. The data shows an increase of resonant amplitude with an increase 

of the applied AC bias, in a similar way as depicted in Fig. 2c, confirming that the 

nanostructuration has not been detrimental to the electromechanical properties.  

Likewise, this nanostructuration methodology of epitaxial quartz thin films on silicon by NIL 

lithography is general for several kinds of patterns including lines as those shown in Fig. S8.  



 

Fig 5. Piezoelectric response of epitaxial nanostructured quartz films using NIL lithographic 

process. (a) PFM amplitude and topography (inset) recorded simultaneously while applying a tip-

substrate AC voltage of 10 V, showing area similar tip vibration level at the background film and top 

nanostructures. Point-out spectroscopy measurements recorded on top of the structures and bottom film, 

for different applied AC bias. (b) The data shows an increase of the PFM resonant frequency amplitude 

with an increase of the applied AC bias, confirming our expectation that piezoelectric functionality is 

preserved. 

 

2.3.Self-assembled SrCO3 nanoparticles as nanomasks for lithographic patterning of 

dense epitaxial quartz thin films on silicon. 

 

Films with a Sr/SiO2 molar ratio of 0.05 exhibit an outcropping of SrCO3 nanoparticles at the 

surface,  driven by a chemical reaction between SrO, CO2 and H2O, have been shown 

elsewhere19. These observations revealed the assembly of sintered SrCO3 nanoparticles during 

the annealing treatment at 1000°C, whereas now, as illustrated in Fig. 6, we exploit these SrCO3 

nanoparticles as nanomasks to produce an array of quartz nanopillars from dense films. Indeed, 

solid SrCO3 nanoparticles are extremely stabile under the reacting ion etching conditions. By this 

simple approach, illustrated in Fig. 1 and Fig. 6, one can produce arrays of quartz vertical 

nanopillars having diameters down to 60 nm and a maximum height of 400 nm, depending on the 

original quartz film thickness. This type of behavior has been reported for CaF2 nanoparticles 

formed after a chemical reaction with the plasma etching20. In this case, the chemical 



transformation of the CaxTi(1-x)O(2-x) present within the amorphous silica layer into the 

homogeneous dispersions of CaF2 nanoparticles, was used as a particulate nanostencil system to 

produce an array of silicon nanopillars20. In our case, the SrCO3 nanoparticles are formed during 

quartz crystallization and remained extremely stable during the RIE etching process, acting as an 

efficient nanomask that protects quartz from the plasma etching. This feature can be observed in 

Figure 6 that shows SrCO3 nanoparticles before and after RIE process. Figure 6a and S9 show the 

typical morphology and size of the SrCO3 nanoparticles on top of the epitaxial quartz thin film.  

The efficacy of the process was investigated by electron microscopy and electron diffraction 

characterization was used to assess the crystalline structure of the quartz nanopillars (see figure 

6). The etching has been applied in 100W RF and 200W LF of an inductively coupled plasma 

reactive ion etching (ICP-RIE) reactor using CHF3/O2 gas mixture (see more details in 

experimental section). The electron diffraction pattern of a single quartz nanopillar presented in 

Fig. 6b reveals perfect quartz crystallinity similar to that of the initial dense quartz film.  

The morphology of the motifs is conical rather than needle-like as a result of an isotropic etching 

of CHF3/O2 flux. With the aim of producing networks of needle-like quartz nanostructures, we 

used ionized gases and gas mixtures such as Ar, CHF3, SF6 in order to control the anisotropy of 

the etching21. Unfortunately, under this etching conditions, quartz thin film and SrCO3 

nanoparticles were totally destroyed after 4 min (see figure SI 10). 



 

Fig. 6.  SrCO3 nanoparticles as nanomasks to produce an array of quartz nanopillars. (a) FEG-SEM 

image illustrating the morphology of sintered SrCO3 nanoparticles at 1000°C. The inset image shows a 

small zone of picture a with a higher magnification. (b) FEG-SEM image illustrating the morphology of 

quartz single crystal conical-like nanopillars after RIE etching of a dense film. The inset image shows a 

small zone of picture b with a higher magnification. General schematic of RIE etching to produce first 

nano lithographic patterns on epitaxial quartz thin films. (c) Electron diffraction pattern of a conical-like 

nanopillar in c shows a perfect crystallinity after the nanomask lithographic process.  

 

3. Conclusion  

The combination of top-down and bottom-up methodologies enabled the nanostructuration of 

piezoelectric quartz films, epitaxially grown on (100)-silicon substrates. We have used scalable 

lithographic methodologies that do not require masks to generate highly ordered 1D quartz 

patterns consisting of vertical quartz nanocolumns with diameters and heights ranging from 50 

nm to 800 nm and 200 nm to 2 µm, respectively. The nanostructuration engineering of epitaxial 

quartz films on silicon presented here is general for several kind of patterns, being produced 



using exclusively low cost lithographic methodologies. LIL lithographic process allowed 

preparing quartz nanocolumns with diameters between 400 nm and 800 nm and heights in the 

range of 200 nm to 1000 nm, thanks to a novel multilayer film process that consists in the 

sequential deposition and consolidation of several gel layers. With this combination of 

methodologies, epitaxial 1D-quartz nanostructures maintain the crystallinity and epitaxial 

orientation of (100) α-quartz║(100) Si. On the other hand, we have established the conditions to 

shown that NIL lithography combined with sol gel process is a versatile method to replicate 

several dimensions of Sr doped silica pillars depending on the characteristics of PDMS mould. 

Specifically, a withdrawal speed of 300 mm min−1 at 25°C and 45% of humidity and the 

deposition of adhesion layer are required to obtain a perfect nano-imprinted crystalline 

continuous quartz pattern. Thus, the interplay between temperature, humidity, dip-coating 

conditions, and epitaxial growth plays a key role for the fabrication epitaxial quartz nanopillars 

on silicon substrates by NIL lithography. Finally, the controlled outcropping of SrCO3 

nanoparticles on top of epitaxial quartz thin films allows producing quartz vertical nanopillars 

having diameters down to 60 nm and a maximum height of 400 nm under the reacting ion etching 

conditions. In all cases, the nanostructuring of quartz films by no means detrimental to the 

piezoelectric properties of the film, which are preserved. We used two techniques,. DPFM and 

PFM, to quantify the piezoelectric coefficient d33 of nanostructured and dense quartz films using 

in all cases a reference based in a commercial ferroelectric Periodically Poled Lithium Niobate 

(PPLN) sample.   

This work demonstrates the integration on silicon of lithographic patterning of epitaxial quartz 

thin films, which precedes the production of microelectromechanical systems. The control at the 

nanoscale over the shape, micro- and nano-patterning of quartz thin films opens up the 



opportunity to fabricate new high frequency resonators and highly sensitive sensors relevant in 

different fields of application.  

 

4. Experimental Section 

4.1.Synthesis 

Solution preparation: All the chemicals were from Sigma-Aldrich and without any further 

purification. In a typical process, we first prepared Solution A by adding 0.7 g Brij-58 into 23.26 

g absolute ethanol, then 1.5 g HCl (37%), 4.22 g tetraethyl orthosilicate (TEOS) and stirring the 

solution for at least 4 h and not more than 18 h. After that, an aqueous solution of Sr2+ was 

prepared with SrCl2x6H20 (Solution B). The solution used to prepare Sr-doped mesoporous silica 

films by dip-coating (Solution C) was obtained by adding 275 μL Solution B into 10 mL of as-

prepared Solution A and stirring it for 10 min. The films were always obtained not later than 40 

min after preparing solution C, as Sr2+ is not stable in the latter. To obtain perfect and continuous 

crystallize quartz layers, we set the molarity of Solution B to 1M, which corresponds to a Sr/SiO2 

molar ratio of 0.05 resulting in a final molar composition of Solution C of TEOS:Brij-

58:HCl:EtOH:SrCl2=1:0.3:0.7:25:0.05.   

Gel films by dip-coating: layer gel films on Si (100) substrates were prepared with a ND-DC300 

dip-coater (Nadetech Innovations) equipped with an EBC10 Miniclima Device to control the 

surrounding temperature and relative humidity. During the dip-coating, we fixed the ambient 

temperature and relative humidity as 25ºC and 40% and the thickness of film was controlled by 

the withdrawal rate. In this study, all the films were made at withdrawal rate of 300 mm/min to 

ensure the perfect crystallization and nanoimprint process. After dip-coating, as-prepared gel 

films were consolidated with a thermal treatment of 5 min at 450 ºC under air atmosphere. In 



order to reach thicker films, and therefore taller nanocolumns, multi-layer gel films were obtained 

by repeating the required number of times the process of mono-layer preparation on the same 

substrate. 

Crystallization: As-prepared gel films were introduced into a furnace already at 1000ºC in air 

atmosphere and held at this temperature for 300 min. The crystallized films were recovered after 

natural cooling of the furnace to room temperature. 

4.2.Structural Characterization and Piezoelectric Measurements 

X-Ray Diffraction (XRD): The crystalline textures and rocking curve measurements of films 

were performed on a Bruker D8 diffractometer (3 s acquisition every 0.02º in Bragg-Brentano 

geometry, with a radiation wavelength of 0.154056 nm). Epitaxial relationship was analyzed 

through X-ray diffraction measurements by using a Bruker AXS GADDS equipped with a 2D X-

ray detector. Optical Microscope: The optical images of films were obtained in an Olympus 

BX51M optical microscope equipped with a Nikon DS-Fi3 camera. Field Emission Gun 

Scanning Electron Microscopy (FEG-SEM): The microstructures of the films were investigated 

with a FEG-SEM model Su-70 Hitachi, equipped with an EDX detector X-max 50 mm2 from 

Oxford instruments. Transmission Electron Microscopy (TEM): Cross-sectional studies of films 

were performed by using a FEI Titan3 operated at 80 kV and equipped with a superTwin® 

objective lens and a CETCOR Cs-objective corrector from CEOS Company. Electron diffraction 

studies were performed in a JEOL 1210 operated at 120 kV. Atomic Force Microscopy (AFM): 

The topography of nanostructured and dense quartz films was studied by AFM in a Park Systems 

NX-Scanning Probe Microscopy (SPM) unit. Piezoelectric characterization through the direct 

piezoelectric effect was made by Direct Piezoelectric Force Microscopy15 in an Agilent 5500LS 

instrument using a low leakage amplifier (Analog Devices ADA4530) with Platinum solid tips 

(Rockymountain Nanotechnology RMN-25 PtIr200H). PFM measurements were performed in an 



Agilent 5500LS using a long-tip shank length tip22 to diminish electrostatic interaction (RMN 

25PtIr300b) while working in the resonant frequency (∼ 80 kHz). A Periodically Poled Lithium 

Niobate from Bruker AFM was used as a reference testing platform. 

4.3.Quartz thin films nanostructuration 

Optical lithography. First set of samples has been fabricated by top-down approach using 

conventional optical photolithography following by anisotropic plasma etching. First, linear 

micrometer scale patterns have been insolated in 1.1 µm thick photoresist layer (ECI from 

MicroChemicals) using a conventional mask aligner (SUSS Mask Aligner MA 6). The patterns 

where transferred on epitaxial quartz thin films (see figure S1) by performing plasma etching 

using fluoroform chemistry, low pressure (5 mTorr), and 100 W bias power in pure capacitive 

coupling plasma (CCP). Finally, the remaining ECI resist was stripped in acetone and rinsed in 

isopropanol. 

Laser interferential lithography (LIL) 

In order to produce an epitaxial quartz nanocolumn pattern from dense films, we used a positive 

photoresist, AZ MIR 701, which was exposed using the interferential lithography technique to 

obtain a network of dots after the using a developer, AZ726. This procedure allows to rapidly 

obtain periodic design over a large surface (∼cm2) without the need of a lithographic mask7. For 

the quartz pattern in Figure 2, a 405 nm wavelength laser with a divergent beam was reflected by 

two mirrors shifted with an angle of 10° which resulted in an interferometric pattern with a pitch 

of 1 µm.   To obtain the dot pattern two exposures were needed, a first exposure created periodic 

lines and a second exposure shifted by 90° with respect to the first exposure generated 

perpendicular periodic lines. The result of these two exposures, after development, generates the 

dots. Finally, the samples were anisotropically etched by inductively coupled plasma reactive ion 

etching (ICP-RIE) (model corial 200 IL) using CHF3/O2 gas mixture. RIE conditions for etching 



of the sample and then produce a periodic pattern of quartz pillars of 1 µm depth were the 

following: power:120W RF, 400 W LF,  gas: CHF3 100 sccm-O2 20 sccm (standard cubic 

centimeter per minutes), pressure: 10 mTorr and time: 10 min. ICP-RIE produces a dry and 

directional etching induced by a mixture of CHF3 and O2 plasma.  

Soft nano-imprint lithography (NIL) Preparation 

Moulds preparation: Si masters were elaborated with different structures and heights using LIL 

lithography. PDMS (polydimethylsiloxane) reactants (90 w% RTV141A; 10 w% RTV141B from 

BLUESIL) were transferred onto the master and dried at 70 °C for 1 h before unmoulding.  

Then, a first silica layer seed was deposited at a constant relative humidity of 45% with 

controlled withdrawal speeds of 300 mm min−1 in order to adjust the final thickness to 200 nm, 

and was consolidated at 450ºC for 10 min. Importantly, this layer has two different 

functionalities: (i) as a seed layer to produce a continuous and homogeneous epitaxial quartz thin 

film on silicon and (ii) as an adhesion layer to faultlessly replicate the columnar shape from the 

PDMS mould. Then, a new layer of the same solution was deposited under the same conditions 

for printing. Surfactant Brij-58 included in the final sol-gel Solution C did not change the wetting 

properties of the sol. 

After the last dip-coating, the substrates were quickly introduced during 1 min into a custom-

designed chamber under a controlled temperature of 25 °C using and a constant humidity of 45%.  

Imprinting of sol–gel films with a PDMS mould involves the following steps. First, moulds were 

degassed under vacuum (10 mbar) for 20 min before direct application on the as-prepared xerogel 

films kept in a controlled environment, without additional pressure. After 1 min, the samples 

were transferred to a 70 °C stove for 2 min and then to a 120 °C stove for 2 min to consolidate 

the xerogel films before peeling off the PDMS mould. Next, the sol–gel replicas were annealed at 



450 °C for 10 min for consolidation. Finally, sample was crystallized at 1000ºC for 5h in air 

atmosphere. 

Nanomasks lithography 

Quartz samples covered by SrCO3 nanomasks were anisotropically etched by inductively coupled 

plasma reactive ion etching (ICP-RIE) (model corial 200L) using CHF3/O2 gas mixture. The RIE 

conditions to engrave the sample and then produce quartz nanopillars pattern of 400 nm depth 

were the following: power:120W RF, 400 W LF,  gas: CHF3 100 sccm-O2 20 sccm , flux:, 

pressure: 10 mTorr and time: 10 min.  

Isotropic etching conditions used in samples of Fig. S10 were the following: power: 100W RF, 

200 W LF, gas: CHF3 80 sccm-O2 10 sccm , SF6 20 sccm, pressure: 10 mtorr and time: 4 min 

( for a 300 nm thick quartz layer).   

Notice that if requested the SrCO3 nanoparticles can be dissolved by dipping the sample into a 

nitric acid solution (3 M) for 2 hours after quartz crystallization19.  
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Fig. S1. Photo-lithographic patterning of piezoelectric quartz thin films on silicon substrates. 

(a and b) Lithographic patterning of epitaxial textured quartz thin films using anisotropic plasma etching. 

(c) 2D diffraction pattern lithographed quartz sample. (d and e) PFM measurements of patterned epitaxial 

quartz films. 

 



 

Fig. S2. DPFM measurements on quartz dense films. (a) Force and Piezoelectric current vs Time (s) 

for different applied forces on a 800 nm thick quartz film before lithographic process. Notice that 

the force profile starts with a constant value, while at 1s the force is increased to a value of 380 

µN in a 5 ms time step. Following this step, a constant force is re-settled for an additional 1s, 

while at 2s, an unloading ramp is performed, reducing the applied force. While force is varied, 

the current channel is recorded simultaneously; current is depicted in red squares. Scheme of the 

spectroscopy experiments carried out in which the AFM tip applies a suitable force, within a 

given time, collecting the charges generated by the direct piezoelectric effect. (b) Notice that a 

constant force builds up a constant charge, hence the recorded current remains zero. However, 

when the force is varied, through a loading or unloading event, there is an increase or decrease of 

the charge build up, whereas a constant current can be seen at a constant force rate applied. 

Curves performed in α-quartz dense film showing its piezoelectric response. The graphs were 

obtained by averaging 4x4 matrix volume spectroscopy experiments in an area of 10 microns, in 

order to depict the homogeneity of the sample. From these measurements we obtained a d33 of 4 

± 2 pC/N in agreement with the piezoelectric coefficient of α-quartz. Notice that DPFM 

methodology cannot be applied to nanostructured quartz films because the applied force breaks 



quartz nanocolumns, making impossible this kind of measurement. However, we recently 

combined PFM and DPFM methodology to quantify the piezoelectric coefficient d33 at the 

nanoscale in BiFeO3 ferroelectric epitaxial oxide thin films1, therefore validating this approach.  

 

 

Fig. S3. DPFM on PPLN tests sample.  (a) Ferroelectric Periodically Poled Lithium Niobate 

(PPLN) sample was used as a reference. For obtaining the location of ferroelectric domains, 

DPFM-Si (Signal Input) and DPFM-So (Signal Output) scans were recorded, revealing the 

expected antiparallel domain configuration for a ferroelectric known sample2. (b) Results of the 

spectroscopy experiments, obtained under similar conditions to those used for quartz thin films, 

in four different locations on the PPLN tests sample indicated in the an upwards polarization (PUP) 

and downwards polarization (PDW)  . 

 



       

Fig. S4. FEG-SEM images of the cross section of the films with different number of layers. (a) 

Note that the thickness of the different multilayers films corresponds to the final height of the 

quartz columns plotted in figure 2e of the main manuscript. (b) XRD θ - 2θ scan showing the 

linear increase of the intensity of the α-quartz (100) reflections as the number of layers increases. 

(c) Pole figure for 5-layer film to show that the epitaxial growth is maintained.   



 

Figure S5. (a) SEM cross-sectional images of 2 µm height Sr doped silica nanopillars before 

crystallization. (b) SEM image of 2 µm height α-quartz nanopillars grown at 1000 °C for 5 hours 

in air atmosphere.  



 

Figure S6. Advanced Structural Characterization of nanostructured quartz films. (a) Low 

magnification high angle annular dark field (HAADF) Z-contrast image of epitaxial quartz 

nanocolumns grown on the Si substrate assisted by the Sr2+ catalyst at 1000 °C, 5 hours. (b) 

Atomic resolution Z-contrast image of Quartz/silicon interface viewed along the [100]-

crystallographic direction. (c) Atomic resolution Z-contrast image of a single (100)-oriented 

quartz nanocolumn viewed along the [100]-crystallographic direction. (d) FFT of both the quartz 

film (green dashed line) and the silicon substrate (blue dashed line). 

 

 



 

Figure S7. (a) Optical images of films prepared with different withdrawal speeds (indicated in the 

axis below the images); (b) The areal coverages of α-quartz crystals is indicated next to the 

images. The corresponding XRD θ-2θ measurements are shown in (c). Those films were prepared 

in a relative humidity of 40% at 25ºC using Brij-58 as surfactant. The annealing treatment was at 

1000ºC for 300 minutes in air atmosphere. 



 

Fig S8. Piezoelectric response of epitaxial quartz lines using NIL lithographic process. (a)  

AFM image of the topography and PFM amplitude recorded simultaneously under a tip-substrate 

AC voltage of 10 V, showing the relationship between applied voltage and tip deflection on 

epitaxial quartz nanostructure and surrender area. Notice that the PFM response preserves the 

features of the topographic image, namely the quartz crystals surrounding the nanoline and the 

top of the nanoline. (b) We found no significant differences between PFM response within and 

outside the nanostripes. Thus, the piezoelectric functionality of the material is completely 

preserved.  

 

 

 

 



 

 

 

 

 

Fig. S9. (a) FEG-SEM image illustrating the morphology of nanocolumns obtained by nanomask 

lithography. (b) TEM image illustrating the morphology of quartz single crystal conical-like 

nanopillars after RIE etching of a dense film. The inset image shows the Sr M-edge EEL 

spectrum acquired from the SrCO3 nanoparticle placed on top of the quartz nanocolumn. 

 

 



Fig. S10. (a and b) FEG-SEM image illustrating how quartz surface is destroyed after using Gas 

mixtures: CHF3, SF6. The failed objective of this experiment was to control the anisotropy of the etching.  
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