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A Simple Framework to Leverage State-Of-The-Art
Single-Image Super-Resolution Methods to Restore
Light Fields

Reuben A. Farrugia, Senior Member, IEEE, and Christine Guillemot, Fellow, IEEE,

Abstract—This paper describes a simple framework allowing
us to leverage state-of-the-art single image super-resolution
(SISR) techniques into light fields, while taking into account
specific light field geometrical constraints. The idea is to first com-
pute a representation compacting most of the light field energy
into as few components as possible. This is achieved by aligning
the light field using optical flows and then by decomposing the
aligned light field using singular value decomposition (SVD). The
principal basis captures the information that is coherent across
all the views, while the other basis contain the high angular
frequencies. Super-resolving this principal basis using an SISR
method allows us to super-resolve all the information that is
coherent across the entire light field. In this paper, to demonstrate
the effectiveness of the approach, we have used the very deep
super resolution (VDSR) method, which is one of the leading
SISR algorithms, to restore the principal basis. The information
restored in the principal basis is then propagated to restore all the
other views using the computed optical flows. This framework
allows the proposed light field super-resolution method to inherit
the benefits of the SISR method used. Experimental results show
that the proposed method is competitive, and most of the time
superior, to recent light field super-resolution methods in terms of
both PSNR and SSIM quality metrics, with a lower complexity.
Moreover, the subjective results demonstrate that our method
manages to restore sharper light fields which enables to generate
refocused images of higher quality.

I. INTRODUCTION

Light field imaging has recently emerged as a promis-
ing technology able to discriminate and capture light rays
along different directions [1]], [2]. This rich visual descrip-
tion of the scene enables the creation of immersive expe-
rience in AR/VR applications and facilitates the integration
of computer-generated graphics for post-production editing.
Together with proper computational algorithms, this technol-
ogy is expected to impact the field of digital photography, by
enabling post-capture re-focusing, depth of field extension, or
3D scene models estimation.

However, light field imaging systems trade-off spatial res-
olution with angular information in the light field. Rigs of
cameras capture views with a high spatial resolution but in
general with limited angular sampling to reduce costs [2]. On
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the other hand, plenoptic cameras use an array of microlenses
placed in front of the sensor to capture multiple low-resolution
(LR) views in one 2D sensor image [1]. This is a way to
cost-effectively capture multiple views with a high angular
sampling, but at the expense of reducing the spatial resolution
by orders of magnitude compared to the raw sensor image.

To tackle this problem, various methods have been devel-
oped, which are aimed to achieve better spatial and angular
resolution trade-off from a plenoptic camera. These methods
go from the use of coded aperture techniques, using e.g. a
programmable non-refractive mask placed at the aperture as in
[3]], or optically coded projections as in [4], to light field super-
resolution methods [5], [6], [7], [8], [9], [10], [11], [12]. While
research in light field super-resolution is at its infancy, research
in the related field of single-image super-resolution (SISR) is
quite mature with methods based on very deep convolutional
neural networks achieving state-of-the-art performances [13],
(14]], (15}, (16], [17].

This paper presents a framework which allows to leverage
state-of-the-art 2D image super-resolution techniques to light
field super-resolution. The energy of the light field is first
compacted, to capture the coherent information, and to then
apply 2D single-image super-resolution to restore the whole
light field. To do so, we first align each view to the centre
view using optical flows. The alignment plays an important
role since it removes the disparities across the views which can
be easily recovered by inverting the alignment process. This
aligned light field is then decomposed using singular value
decomposition (SVD) where the eigenvectors of the SVD
capture dominant variations (or eigenimages) of the different
views. It will be shown in Section that, thanks to the
alignment of the light field views, the first principal basis
(a.k.a. dominant eigenvector) captures most of the angularly
coherent spatial information, while the remaining basis contain
only small angular variations, i.e. angular high frequencies.
Based on the observation that the first principal basis is a
natural image, its spatial details can be restored using any
state-of-the-art SISR algorithm. In the experiments, we first
consider three recent deep learning based SISR methods,
namely SRCNN [18]], VDSR [13] and Lab402 [17]]. The
VDSR method showing superior performances has then been
retained to show the effectiveness of the proposed light field
super-resolution framework. The spatial details restored in the
first principal basis are then propagated to all the other views
in a consistent manner, using inverse warping.

We have evaluated the efficiency of the proposed frame-



work, considering input low resolution light fields in which
each view is a downscaled version of the corresponding high
resolution view, using a bicubic downscaling as most SISR
methods and as recommended in track 1 of the NITRE 2017
chellenge on SISR [19].

The results in Section [V| show that the proposed method
achieves sharper light field images compared with existing
light field super-resolution methods, namely the convolutional
neural network based method in [L1], the linear subspace
projection based method (BM-PCARR) in [9] and the Graph-
based light field super resolution method in [12]]. Supple-
mentary material attached to this paper also shows that the
restored light fields are angularly coherent and that it is able
to restore real-world plenoptic light fields. It is also shown
that the method manages to restore light fields containing non-
Lambertian surfaced!]

The main contributions of this paper are as follows:

o We present a framework that enables to leverage SISR
methods to restore the principal basis capturing the
coherent information across the entire light field.

o Based on this framework, we describe a light field super-
resolution method that yield sharper light field images
with results superior than existing methods for applica-
tions such as digital refocusing.

e The proposed framework allows to inherit the benefits
of the SISR methods employed to restore the principal
basis and we are therefore presenting the first light field
super-resolution algorithm which uses only one model to
cater for different magnification factors.

The remainder of this paper is organized as follows. Work
related to the method described in this paper is provided in
Section [[I| while the light field energy compaction method is
explained in Section The proposed principal basis VDSR
(PB-VDSR) is described in Seciton [IV| while the experimental
results are delived in the following section. Section con-
cludes with the final remarks.

II. RELATED WORK

This section gives a brief overview of work related to the
key concepts of the proposed spatial light field super-resolution
approach and the light field super-resolution methods that are
found in literature.

A. Single Image Super-Resolution

Single-image super-resolution is an ill-posed inverse prob-
lem with infinite possible solutions. These methods use priors
to derive a more plausible solution that satisfies a predefined
assumption. These priors are either hand-crafted, such as total
variation or Bayesian models, or data driven that are learned
using machine learning methods. Pixel-based methods have
been proposed in [20]], [21] where each pixel in the high-
resolution (HR) image is inferred via statistical learning. To
improve spatial coherency, patch-based approaches, referred

'While a .ppsx file is included as supplementary material and uploaded
on ScholarOne, the reviewers can watch the video at https://youtu.be/
HHmUZSP7HU4

to as example-based methods, have been proposed. Freeman
et. al. [22] presented the first single-image example-based
super-resolution algorithm that used a coupled dictionary to
learn a mapping between LR and HR patches. More advanced
methods based on manifold learning [23]], [24], [25]] and sparse
coding [26], [27]] were investigated to regularize the problem
and were found to provide sharper images. Other approaches
[28], [29], [30l, [31] utilized image self-similarities to avoid
using dictionaries constructed using external images.

Deep neural networks have contributed to a drastic improve-
ment in the field of single-image super-resolution. Dong et.
al. [18] were the first to use a rather shallow convolutional
neural network (SRCNN). Residual learning was introduced in
[L3], [14], [17] for training deeper network architectures and
achieved state-of-the-art performance. The authors in [15] pose
the general image restoration problem with encoder-decoder
networks and systematic skip connections. This architecture
was later on extended in [16] where the authors expanded
the model size and removed unnecessary modules in the
convolutional residual networks.

B. Light Field Super-Resolution

Early light field super-resolution approaches pose the prob-
lem as one of recovering the high-resolution views from
multiple low-resolution images with unknown non-integer
translation misalignment. The authors in [3)], [6] proposed
a two-step approach where they first estimate a depth map
and then formulate the super-resolution problem either as a
simple linear problem [3] or as a Beyesian inference problem
[6] assuming an image formation model with Lambertian re-
flectance priors and depth-dependent blurring kernels. A patch-
based technique was proposed in [7]] where high-resolution 4D
patches are estimated using a linear minimum mean square
error (LMMSE) estimator assuming a disparity-dependent
Gaussian Mixture Model (GMM) for the patch structure. A
variational optimization framework was proposed in [8] to
spatially super-resolve the light field given their estimated
depth maps and to increase the angular resolution.

Example-based light field super-resolution methods have
been recently proposed. These methods use machine learning
to learn a mapping between low- and high-resolution light
fields. In [9], the authors show that a 3D patch-volume
resides on a low-dimensional subspace and propose to learn
a projection between low- and high-resolution subspaces of
patch-volumes using ridge-regression. Deep learning tech-
niques for light field super-resolution have been first proposed
in [10] where 4-tuples of neighbouring views are stacked
into groups and restored using SRCNN [18]. The spatially
restored light field is then fed into a second CNN that up-
scales the angular resolution. The same authors have later
proposed to restore each view independently using SRCNN
in [11] showing superior performance over their original
method. More recently, graph based light field super-resolution
algorithm was presented in [[12] that enforces the optimization
to preserve the light field structure. A shallow neural network
was proposed in [32] to restore light fields captured by a
plenoptic camera. However, this method is only suitable to
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achieve a magnification factor of X2 and needs to train a
CNN for every angular view. Very recently, a multi-scale
fusion scheme was used to accumulate contextual information
from multiple scales while Recurrent Convolutional Neural
Networks (BRCNN) is used to model the spatial relation
between adjacent views and restore the light field.

A hybrid light field super-resolution method is proposed
in [33]] and [34] where a high-resolution camera is coupled
with a plenoptic camera. The authors in [35] describe an
acquisition device formed by eight low-resolution side cameras
arranged around a central high-quality camera. Iterative patch-
and depth-based synthesis (iPADS) is then used to reconstruct
a light field with the spatial resolution of the SLR camera and
an increased number of views.

While the methods in [10], [11], [32], [36] use deep learning
to super-resolve the light field, our method is considerably
different. The novelty of our approach is that the proposed
framework allows to use SISR techniques for light field super-
resolution. The deep learning SR method used are not retrained
on light fields and use models that are trained on natural
images. Moreover, our framework inherits the benefits of the
SISR algorithm used. In our study, we used VDSR [13]] which
allows us to use a very deep super-resolution method that
adopts one single model to cater for different magnification
factors.

C. Light Field Edit Propagation

Light field edit propagation involves the restoration of the
centre view followed by the propagation of the restored infor-
mation to all the other views. The authors in [37|] described
an approach using a 3D voxel-based model of the scene with
an associated radiance function to propagate pixel edits and
illumination changes in a consistent manner from one view
to the other views of the light field. The authors in [38]]
extend the 2D image stroke-based edit propagation method
of [39] to light fields, where they reduce the complexity by
propagating the edits in a downscaled version of the light field.
In [40], a method based on a reparameterization of the light
field is proposed to better preserve coherence of the edits in
the angular domain. However, these methods deal with simple
stroke-based editing and are not suitable to propagate complex
edits, such as inpainting or super-resolution, to all the other
views.

A patch-based depth-layer-aware image synthesis algorithm
was adopted in [41] to propagate the edits from the centre view
to all the other views. The authors in [42] use tensor driven
diffusion to propagate information from the centre view along
the Epipolar Plane Image (EPI) structure of the light field.
These methods were used to propagate either simple edits,
recolorization or inpainting from the center view to all the
other views. However, up to the knowledge of the authors,
such approaches were never been considered for light field
super-resolution.

III. LI1GHT FIELD ENERGY COMPACTION

Lets consider an input light field I(z,y,s,t) represented
with the two plane parametrization proposed in [43], [44],

where (z,y) and (s,t) represent spatial and angular coor-
dinates respectively. The light field can be seen as a 2D
array of images, where each image I,; captures the scene
from a viewpoint defined by angular coordinates (s,t). One
can use single image super-resolution technique to restore
every angular view independently. However, these methods
do not exploit the geometrical structure of the light field
[45] and are not guaranteed to provide angularly coherent
solutions [9]. On the other hand, several light field super-
resolution techniques have been proposed that either exploit
the disparity/depth information [3]], [6], [7], [8] or else use
learning based methods [9], [10], [11], [32]], [36] to improve
the quality of the light field. However, these algorithms do
not benefit from the recent advances in single image super-
resolution where very deep Convolutional Neural Networks
are achieving outstanding performances [18], [13], [14], [L6],
[L5].

A light field consists of a very large volume of high-
dimensional data. Nevertheless, it exhibits redundancies in all
four dimensions since every view captures the same scene
from a slightly different viewpoint. Early work in the field
of light field compression used 3D/4D wavelet transforms to
decompose the light field into a number of sub—bands [46],
[47], (48], where each sub—band gives information at different
spatial and angular frequencies. Figure [T(a) shows the the first
six orthogonal basis when decomposing the light field using
SVD. It can be seen that while most of the energy resides in the
principal basis By, there is still a lot of high frequency detail
in the other basis. Moreover, the principal basis By, which
captures the average energy in the scene is blurred. This is
attributed to variations in disparities across the views which
result in high-frequency angular details that are not captured
by the principal basis.

The authors in [49] tried to reduce the energy within the
high-frequency basis by jointly aligning the angular views
and estimating a low-rank approximation (LRA) of the light
field. This approach has shown very promising results in the
field of light field compression. In the same spirit, the RASL
algorithm [50]] was used to find the homographies that globally
align a batch of linearly correlated images. Both methods
find an optimal set of homographies such that the matrix of
aligned images can be decomposed in a low-rank matrix of
aligned images, with the latter constraining the error matrix
to be sparse. However, as it can be seen in Figure 2} while
both RASL and HLRA methods manage to globally align the
angular views, the resulting mean view, that is computed by
averaging all the views, are still blurred indicating that the
views are not well aligned.

In the sequel, we consider I ; to represent different views,
where (s, t) define the angular coordinates. This notation will
be further simplified as I; with a bijection between (s, ¢) and i.
The complete light field can hence be represented by a matrix
I e RTVL,TL:

I=[vec(Iy) | wee(Iy) | -+ | wee(I,)] (1)

with vec(I;) being the vectorized representation of the i-th
angular view, m represents the number of pixels in each view
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Fig. 1.

Comparing the information contained in each basis when computing (a) SVD decomposition and (b) Aligned SVD decomposition for the (left)

Boardgames and (right) Antinous synthetic light fields. The entropy measure for each basis is given below the corresponding image.

(m =X xY) and n is the number of views in the light field
(n = PxQ), where P and Q) represent the number of vertical
and horizontal angular views respectively. We then formulate
the light field decomposition problem as that of finding a set
of orthogonal basis B that is able to capture most of the
information contained in the light field. This can be achieved
by minimizing the following optimization problem

BC||3 ©)

UT"B" [Ty (I) —
where u € R™" and v € R™" are flow vectors that specify
the displacement of each pixel needed to align each view
with the centre view, B € R™"™ represents the basis matrix,
C € R™" is the combination weight matrix and I'y, y(-) is the
forward warping process that projects pixels from the source
image onto the target image.

This optimization problem is computationally intractable.
Instead, we decompose this problem in two sub—problems:
1) use an optical flow estimation technique to find the flow
vectors u and v that best align each view with the centre view

and ii) decompose the aligned light field into a set of basis
B and coefficient matrix C using SVD. The results in Figure
clearly show that the mean views are much sharper when
aligning the light field using optical flows. Moreover, optical
flows significantly reduce the variance across the angular
views, with the SIFT flow method [51] achieving the best
performance. It reduces the mean variance across views by
a factor of nine, and thus we will use it to align the views.
Reducing the total variance across the views (as shown in
Figure [2) allows to compact more information in the low-
frequency basis.

The solution of the first sub-problem gives the flow-vectors
u and v which are used to align the light field using forward
warping i.e. T = Ty, (I). The aligned light field T = UXV7”
is then decomposed using SVD, where U and V are unitary
matrices and X is a diagonal matrix containing the singular
values. The basis matrix is computed as B = UX while the
coefficient matrix is given by C = V7.

Figure [T(b) shows the first six orthogonal basis using our
proposed light field decomposition method. It can be seen
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Fig. 2. Cropped regions of the mean view when using different disparity compensation methods. Underneath each image we provide the average variance
across the n angular views which was used in [9] to characterize the performance of the alignment algorithm, where smaller values indicate better alignment.

that the principal basis By is much sharper indicating that it
captures more information from the light field. Moreover, the
energy in the higher-frequency basis is significantly reduced
as indicated by the significant drop in entropy when using
our proposed light field decomposition method. Thanks to
the alignment, the first principal basis captures angularly
coherent spatial information, while the remaining basis mainly
capture higher angular frequencies. In addition, while the first
principal basis of the low and high resolution light fields
are highly correlated, the correlation drops for higher angular
frequencies.

The light field can then be easily reconstructed using I=
BC without losing any information since B is orthogonal and
full-rank. In the sequel, the decompositon of the aligned light
field will be referred to as A-SVD.

IV. PRINCIPAL BASIS SUPER-RESOLUTION

Let I7 and I” denote the high- and low-resolution light
fields. The super-resolution problem can be formulated in
Banach space as

I" =|, BI +n 3)

where 7 is an additive noise matrix, B is the blurring
kernel and |, is a downsampling operator applied on each
angular view with a scale—factor c. To show the effectiveness
of the proposed light field super-resolution framework, we
consider three recent deep learning based SISR methods,
namely SRCNN [18]], VDSR and Lab402 [17], to restore
the principal basis. These methods were trained to restore

input low resolution light fields in which each view is a
downscaled version of the corresponding high resolution view,
using a bicubic downscaling as most SISR methods and as
recommended in track 1 of the NITRE 2017 challenge on
SISR [19]]. The noise is assumed to be negligible. We therefore
assume a similar degradation process as the one considered in
these papers.

Figure 3| shows the block diagram of the proposed light field
super-resolution algorithm where, for simplicity, a 3 x 3 matrix
of angular views is shown. The A-SVD algorithm, described
in Section is applied on the low-resolution light field I”
to decompose the light field into a set of orthogonal basis
B € R™" and coefficient matrix C € R™"™. As shown in
more detail in Section [lI} the A-SVD algorithm is able to
capture more information in the principal basis By.

Driven by the observation that the principal basis By is a
natural image that captures most of the information in the light
field, we pose the problem of light field super-resolution as that
of restoring the resolution of the principal basis. The higher
order basis Bj, j € [1,n — 1], that capture the discrepancies
across the views in terms of occlusions and illumination, are
not modified. Any single SISR method can be used to restore
the low resolution principal basis B and to estimate the high
resolution principal basis By. The high frequency basis are
simply approximated using ]f}j = B, for j € [1,n—1]. The
restored aligned light field is then reconstructed using a simple
matrix multiplication which is then inverse-warped to restore
the original disparities i.e. T = I‘;}V(EC), where T'; L (+)
stands for the inverse warping process that maps pixels from



[N

Aligned
SVD

SISR

Bo

Fig. 3. The proposed light field super-resolution algorithm that takes a 3 x 3 matrix of low-resolution views as input, denoted by I%, to estimate the

high-resolution light field I .

the target image to the source image. While the theoretical and
implementation details of A-SVD were provided in Section [Tl
the following sub-sections will deal with the implementation
detail of the SISR and LF Reconstruction modules.

A. SISR Module

In this work we consider some of the most promising SISR
methods found in literature to restore the principal basis and
their performance is summarized in Table [l In essence we
consider the first deep-learning based super-resolution method
SRCNN [18], the very deep convolutional neural network
(VDSR) which uses residual learning with 20 convolutional
layers [13] and the Lab402 method which was ranked third in
the recent NTIRE workshop challenge. The network models
of these methods were not retrained on light field data and
therefore this experiment evaluates the generalization abilities
of these methods. These results demonstrate that while both
VDSR and Lab402 manage to outperform SRCNN, the VDSR
method is able to achieve the best performance in terms of
both PSNR and SSIM quality measures. This indicates that
while other methods can be used to restore the principal basis,
the VDSR algorithm achieves the best performance and will
therefore be considered in the experimental results in Section
[Vl Given that our method uses VDSR to restore the principal
basis we named our method PB-VDSR. It is important to
mention here that unlike SRCNN, VDSR uses a single network
model to cater for different magnification factors and PB-
VDSR inherits this property.

TABLE I
QUALITY ANALYSIS (PSNR WITH SSIM IN PARENTHESIS) USING
DIFFERENT SINGLE-IMAGE SUPER-RESOLUTION ALGORITHMS TO
RESTORE THE principal basis Bog AT A MAGNIFICATION FACTOR X 3.

Light Field SRCNN [18] VDSR [13] Lab402 [17]
Antinous 33.32 (0.954) | 35.74 (0.978) | 33.81 (0.977)
Boardgames 23.68 (0.835) | 24.65 (0.865) | 23.92 (0.859)
Greek 30.78 (0.935) | 33.55 (0.966) | 31.70 (0.961)
Medieval 2 30.32 (0.952) | 32.10 (0.962) 31.74 (0.962)
Origami 25.32 (0.951) | 28.89 (0.973) | 28.97 (0.973)
Books 29.73 (0.966) | 30.78 (0.974) | 29.86 (0.970))
Friends 2 29.31 (0.935) | 31.13 (0.944) | 30.79 (0.944)
Game Board 31.75 (0.972) | 32.12 (0.976) | 31.54 (0.974)
Graffiti 28.56 (0.870) | 29.90 (0.880) | 29.91 (0.883)
Parc du Luxembourg | 28.49 (0.926) | 29.08 (0.935) | 28.39 (0.928)

B. Light Field Reconstruction Module
The aligned high resolution light field can be estimated by

multlplymg the restored basis B and weight matrix C i.e.

= BC. The views of I are aligned with the center view.
Forward warping can be used to recover the original disparities
of the restored views. However, as can be seen in the first
column of Figure ] forward warping is not able to restore all
pixels and results in a number of cracks and holes. Another
approach is to use inverse warping and use neighbouring pixels
to estimate the missing information. However, as can be seen
in the second column of Figure ] missing pixels due to
occlusion are not well correlated with the neighbouring pixels
and result in inaccurate estimates.

Forward Warping

Inverse Warping Proposed Inpainting

Fig. 4. Inpainting the cracks marked in green

In this work we observe that the pixels warped using
forward warping are very accurate. Instead of interpolating
the missing pixels, in this work we simply copy the collocated
pixels from the low-resolution light field to replace the missing
pixels. The light field reconstructed in this work is depicted
as the third column of Figure [4 where it can be seen that the
recovered pixels are more accurate than those estimated using
inverse warping.

C. Edit Propagation Methods

This work is related to the Light Field Edit Propagation
methods described in Section [I:C] which allow the user to
edit the center view and propagate the edits to all the other
views. Figure 3] illustrates the PSNR measure at each view



and compares the proposed method, which we call PB-VDSR,
against the edit propagation method that will be described
next. The edit propagation considered applies VDSR to restore
the center view and then propagate the information to the
other views using forward warping. The missing pixels due to
occlusions are estimated using collocated pixels from the low-
resolution light field as described in the previous subsection.

It can be seen that edit propagation achieves larger PSNR for
the center view (view 41). However its performance degrades
significantly when propagating the information to all the
other views. This can be explained since the edit propagation
ignores the variations across the views caused by illumination
and occlusions. On the other hand, PB-VDSR restores the
principal basis that captures the angular consistent information
in the light field while the variations caused by illumination
and occlusion are preserved in the higher frequency basis. This
implies that PB-VDSR propagates the high angular frequency
information in I#. Moreover, the higher PSNR achieved at
the center view by the edit propagation is obtained using
the VDSR network trained to restore natural images like the
center view and not the principal basis which captures the
dominant information in the light field. This result suggests
that the performance of the algorithm can be further improved
by retraining the VDSR neural network to specifically restore
principal basis rather than considering it as a generic image.
However, retraining the SISR is not in scope of this paper
since the objective here is to show that SISR can be extended
using our framework to restore light fields.

V. EXPERIMENTAL RESULTS

The experiments conducted in this paper use real-world light
fields from the EPFL [54], INRIAP| and Stanford?| datasets.
Both EPFL and INRIA are light fields that are captured by
a plenoptic camera and therefore have low angular disparities
while the Stanford dataset is captured using a Gantry which
have larger angular disparities. While the angular views of the
EPFL and Stanford datasets are available, the light fields in the
INRIA dataset were decoded using the method in [55]]. In all
our experiments we consider a 9 x 9 matrix of angular views.
For computational purposes, the high-resolution views of the
Stanford dataset were down-sampled such that the lowest
dimension is set to 400 pixels. The high-resolution images
of the other datasets were kept unchanged i.e. 625 x 434.

We compare the performance of our proposed PB-VDSR
method against some of the best performing methods in the
field of light field super-resolution, namely the CNN based
light field super-resolution algorithm (LF-SRCNN) [L1]], the
linear subspace projection based method (BM-PCARR) [9]
and the Graph-based light field super resolution (GRAPH)
[12]. It must be mentioned that while the BM+PCARR and
LF-SRCNN were retrained on 98 light fields that were not
considered in the evaluation phase, the network model adopted
by VDSR was not retrained on light fields and we used
the original model adopted for single image super-resolution.
Moreover, PB-VDSR inherits the benefits of VDSR and adopts

2INRIA dataset: https://www.irisa.fr/temics/demos/IllumDatasetLF/index.html
3Stanford dataset: http:/lightfield.stanford.edu/

one single model to cater for different magnification factors.
The other light field super-resolution methods described in
the related work section were not considered since they either
were reported to achieve performance inferior to the methods
considered here [11], [9], [12] or the code was not made
publicly available by the authors at the time of writing the
paper. The MATLAB code of the proposed method will be
made available online upon publicationﬂ

The results in Table[[T|and Table [l compare these light field
super-resolution methods in terms of both PSNR and SSIM
for magnification factors of x3 and x4 respectively. It can be
seen that our proposed method outperforms both BM-PCARR
and LF-SRCNN and it is competitive to the GRAPH light
field super-resolution method when considering both PSNR
and SSIM objective quality metrics. Moreover, it can be seen
in Figure [6] that our method is able to restore central views that
are much sharper and of higher quality (see bee in first row,
text on the bicycle in second row, eyes of the duck in forth
row and edges of the chess board in the sixth row of Figure
[6) compared to the three leading light field super-resolution
methods found in literature. One can also notice that the other
methods provide aliasing (see bicycle rim in second row and
teeth of the second female on the left in the fifth row of Figure
[6) and ghosting artifacts (see rabbit ears in third row in Figure
[6). It can also be seen that our proposed method yields sharper
results on non-Lambertian surfaces as can be seen on the Mini
light field (bottom row in Figure [6).

One important feature of a light field is that it enables
to digitally refocus the image after production. The quality
of the refocused image depends on the quality of the light
field and of its coherence across all the views. The results
in Figure [/| shows a number of refocused images obtained
from light fields restored using the GRAPH [12] and PB-
VDSR where the images were refocused using the Light Field
Toolbox [56]. These results clearly show that the refocused
images computed on light fields restored using PB-VDSR are
sharper and of better quality. Moreover, the supplementary
multimedia files show a pseudovideo of different light fields
reconstructed using PB-VDSR where it is evident that the
proposed method manages to restore light fields of higher
quality and better angularly coherence compared to those
obtained using the GRAPH method, even when considering
non-Lambertian surfaces as the Tarot Cards and Crystal Ball
light field where the latter fails. Moreover, these result also
show the restoration of real-world applications when super-
resolving the plenoptic image from 625 x 434 to 1875 x 1302.

The complexity of PB-VDSR is mainly affected by the
computation of the optical flows used to align the light field
(SIFT Flow in our case), of the SVD decomposition used to
decompose the aligned light field, of the single image super
resolution method used to restore the principal basis (VDSR
in our case) and of the matrix multiplication that is used to
propagate the restored information in the principle basis to
all the other views. The Sift Flow is used to align all the n
views to the center view and is reported in [51] to have a time
complexity of the order O(nmlog(y/m)), where m represents

4LF-Editing Repository: https://github.com/rrfarr/LF-Editing
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scanned using raster scan ordering.

TABLE I
QUALITY ANALYSIS (PSNR WITH SSIM IN PARENTHESIS) USING DIFFERENT LIGHT FIELD SUPER-RESOLUTION ALGORITHMS WHEN CONSIDERING A

MAGNIFICATION

FACTOR OF X 3.

Light Field Bicubic | BM-PCARR | LF-SRCNN | GRAPH PB-VDSR
Bikes 2755 (0.87) | 28.78 (0.89) | 28.73 (0.88) | 29.22 (0.90) | 29.87 (0.90)
Bench in Paris | 22.43 (0.79) | 23.33 (0.83) | 23.07 (0.82) | 23.25 (0.83) | 23.48 (0.83)
Friends 1 31.17 (0.90) | 32.17 (0.92) | 32.17 (0.92) | 32.17 (0.92) | 33.16 (0.92)
Sphynx 27.65 (0.77) | 28.73 (0.81) | 28.45 (0.80) | 28.88 (0.81) | 28.76 (0.80)
Bee 2 31.02 (0.91) | 32.03 (0.91) | 32.24 (0.92) | 32.74 (0.93) | 32.62 (0.92)
Duck 23.35 (0.84) | 24.22 (0.86) | 24.19 (0.87) | 24.43 (0.88) | 24.50 (0.88)
Fruits 28.74 (0.85) | 30.21 (0.89) | 29.87 (0.88) | 30.91 (0.91) | 30.20 (0.89)
Rose 34.05 (0.90) | 3530 (0.92) | 35.00 (0.91) | 36.19 (0.94) | 34.98 (0.91)
Mini 27.30 (0.77) | 28.23 (0.79) | 28.03 (0.79) | 28.31 (0.81) | 28.55 (0.80)
Chess 30.04 (0.92) | 31.02 (0.93) | 30.88 (0.93) | 31.69 (0.94) | 31.61 (0.94)
Bunny 32.91 (0.94) | 3431 (0.94) | 34.14 (0.94) | 3531 (0.96) | 35.64 (0.95)
Lego Bulldozer | 26.21 (0.86) | 27.05 (0.87) | 27.10 (0.87) | 28.27 (0.90) | 28.15 (0.89)
Lego Truck 30.26 (0.89) | 31.18 (0.91) | 30.99 (0.91) | 31.62 (0.92) | 31.39 (0.92)
Lego Knights | 27.28 (0.86) | 28.15 (0.88) | 28.24 (0.87) | 28.62 (0.90) | 29.01 (0.90)

[ Overall [ 28.57(0.86) | 29.62 (0.88) | 29.51 (0.88) | 30.12 (0.90) | 30.14 (0.89) |

the number of pixels in each view. The SVD decomposition
and the matrix multiplication incur a time complexity of the
order O(n?m) each. Moreover, the feed-forward part of VDSR
which is used during evaluation has a fixed depth and width
and its complexity is mainly dependent on the resolution of the
principal basis. This implies that the VDSR algorithm has a
time complexity of the order O(m). This complexity analysis
concludes that the proposed method has a time complexity that
is mainly dependent on the resolution and number of views
in the light field. This contrasts with the GRAPH method
presented in [12] whose time complexity is proportional
to a* where o is the magnification factor. A quantitative
assessment of the complexity of different light field super-
resolution methods considered in this work is summarized in
Table These methods were implemented using MATLAB
with code provided by the authors and tested on an Intel
Core(TM)i7 with a Windows 10 64-bit Operating System, 32-
GByte RAM and a Titan GTX1080Ti GPU. The LF-SRCNN
has the smallest time complexity. However, it registered the
worst performance in terms of quality (see Tables [[I] and [ITI).
Our proposed method achieved the second lowest complexity

which is clearly independent on the target magnification factor.
On the other hand, the complexity of GRAPH is orders
of magnitudes larger than our method and its complexity
increases exponentially with increasing magnification factors.

VI. COMMENTS AND CONCLUSION

This paper has proposed a simple framework allowing
to apply state-of-the-art SISR methods for light field super-
resolution while preserving light field geometrical constraints.
The problem is decomposed into two sub—problems where we
first align each view to the center view using optical flows
and we then decompose the aligned light field using SVD.
Experimental results show that the principal basis captures the
coherent information in the light field and is a natural image
that can be restored using state-of-the-art SISR methods. We
also demonstrate that the information restored in the principal
basis can be propagated in a consistent manner to all the
other views. Experimental results show that the use of the
VDSR SISR technique in the proposed framework manages
to restore light fields that are sharper and coherent across the
angular views, compared to existing light field super-resolution



TABLE III
QUALITY ANALYSIS (PSNR WITH SSIM IN PARENTHESIS) USING DIFFERENT LIGHT FIELD SUPER-RESOLUTION ALGORITHMS WHEN CONSIDERING A
MAGNIFICATION FACTOR OF x4.

Light Field Bicubic BM-PCARR | LF-SRCNN GRAPH PB-VDSR
Bikes 2533 (0.80) | 26.42 (0.82) | 26.28 (0.82) | 26.62 (0.84) | 27.85 (0.82)
Bench in Paris 21.00 (0.72) | 21.74 (0.75) | 21.50 (0.75) | 21.57 (0.75) | 21.73 (0.75)
Friends 1 29.15 (0.86) | 30.14 (0.88) | 30.10 (0.88) | 30.08 (0.88) | 30.89 (0.88)
Sphynx 25.88 (0.70) | 26.89 (0.74) | 26.62 (0.72) | 26.86 (0.74) | 26.79 (0.72)
Bee 2 28.72 (0.86) | 29.85 (0.87) | 29.85 (0.88) | 30.25 (0.89) | 30.27 (0.88)
Duck 21.62 (0.76) | 22.29 (0.79) | 22.25(0.79) | 22.44 (0.81) | 22.50 (0.80)
Fruits 26.60 (0.78) | 27.82 (0.82) | 27.53 (0.80) | 28.28 (0.84) | 27.28 (0.80)
Rose 31.86 (0.84) | 33.05 (0.87) | 32.57 (0.85) | 33.42 (0.88) | 32.12 (0.84)
Mini 25.71 (0.70) | 26.40 (0.72) | 26.30 (0.71) | 26.45 (0.73) | 26.73 (0.72)
Chess 28.03 (0.87) | 28.90 (0.88) | 28.77 (0.88) | 29.31 (0.90) | 28.65 (0.88)
Bunny 30.47 (0.90) | 31.80 (0.91) | 31.57 (0.91) | 32.30 (0.92) | 32.33 (0.91)
Lego Bulldozer | 24.29 (0.79) | 25.00 (0.80) | 25.02 (0.81) | 25.85 (0.84) | 25.13 (0.81)
Lego Truck 28.55 (0.85) | 29.35 (0.87) | 29.15 (0.86) | 29.56 (0.87) | 29.09 (0.86)
Lego Knights 25.20 (0.79) | 26.13 (0.81) | 26.84 (0.81) | 26.67 (0.84) | 25.89 (0.81)
[ Overall [ 26.60 (0.80) | 27.60 (0.82) | 27.45 (0.82) [ 27.83 (0.84) [ 27.66 (0.82) |
TABLE IV [8] S. Wanner and B. Goldluecke, “Variational light field analysis for

PROCESSING TIME OF DIFFERENT LIGHT FIELD SUPER-RESOLUTION

ALGORITHMS AT DIFFERENT MAGNIFICATION FACTORS.

Algorithm X2 X3 x4

BM-PCARR | 22 min. | 23 min. | 23 min.
LF-SRCNN 33 sec. 33 sec. 33 sec.
GRAPH 4 hrs. 7 hrs. 1 day
PB-VDSR 9 min. 9 min. 9 min.

methods. Moreover, results in the supplementary material
show that the restored light field is able to restore reflections
on non-Lambertian surfaces. The proposed framework can be
extended to other light field image processing applications
such as inpainting and recolouring where one can edit the
principal basis using state-of-the-art 2D image processing
methods, and then propagate the restored information to all
the other views as it was done here.
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Fig. 6. Restored center view of light fields using different light field super-resolution algorithms. These are best viewed in color and by zooming on the
views.
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(b) Refocus of Chess at a slope of +0.1.

(c) Refocus of Duck at a slope of +0.0.

Fig. 7. Refocusing of different light field at different depths.
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