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Abstract
The decomposition of large stocks of soil organic carbon in thawing permafrost might depend on more than climate
change-induced temperature increases: indirect effects of thawing via altered bacterial community structure (BCS) or
rooting patterns are largely unexplored. We used a 10-year in situ permafrost thaw experiment and aerobic incubations to
investigate alterations in BCS and potential respiration at different depths, and the extent to which they are related with
each other and with root density. Active layer and permafrost BCS strongly differed, and the BCS in formerly frozen
soils (below the natural thawfront) converged under induced deep thaw to strongly resemble the active layer BCS,
possibly as a result of colonization by overlying microorganisms. Overall, respiration rates decreased with depth and
soils showed lower potential respiration when subjected to deeper thaw, which we attributed to gradual labile carbon
pool depletion. Despite deeper rooting under induced deep thaw, root density measurements did not improve soil
chemistry-based models of potential respiration. However, BCS explained an additional unique portion of variation in
respiration, particularly when accounting for differences in organic matter content. Our results suggest that by measuring
bacterial community composition, we can improve both our understanding and the modeling of the permafrost carbon
feedback.

Introduction

Northern hemisphere permafrost soils and their overlying
active (seasonally thawing) layer store 1035–1580 Pg of
organic carbon, about 28% of which is found in peat
deposits [1, 2]. This carbon stock is protected from
decomposition due to limited microbial activity in frozen
soils [3, 4]. Climate change-induced thawing of permafrost
soils stimulates decomposition of this carbon, potentially
causing a positive feedback to warming [2, 5]. However, it
remains uncertain how permafrost thaw will affect soil
organic matter (SOM) decomposition in the long term, and
how this relates to changes in other potential drivers of
SOM decomposition, such as bacterial communities and
plant root distribution.

While higher temperatures increase soil respiration in
laboratory incubations [6], field studies have shown con-
trasting results, with increased but also reduced responses of
soil respiration to experimental warming and permafrost
thaw in the longer term (e.g. [7, 8]). Long-term decreases in
soil respiration have variously been attributed to depletion
of labile carbon substrates or microbial acclimation [9].
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Decomposition in natural thawing permafrost soil may
therefore be controlled not only by increases in temperature
but also by various associated changes in the ecosystem.
Permafrost thaw can, for example, alter other soil abiotic
conditions, such as nutrient availability [10], which can in
turn affect decomposition rates [11]. In the longer term,
active layer-deepening can favor deeper-rooting plant spe-
cies [12, 13], which might increase SOM decomposition
through rhizodeposition of fresh carbon (priming effects
[14–16]). Deep roots in permafrost peatlands might stimu-
late SOM decomposition through increased oxygen avail-
ability if they harbor aerenchymae [17], as anoxia partly
inhibits SOM decomposition in peatlands [18]. Moreover,
changes in abiotic soil properties or rooting patterns may
affect decomposition indirectly through altering microbial
community structure [19, 20]. In the long term, SOM
decomposition is therefore likely altered by permafrost thaw
due to changes in temperature, root density, abiotic soil
conditions, or microbial community structure, but, so far,
the extent and underlying ecological interactions remain
unclear.

Microorganisms are important decomposers, especially
in deeper soil layers, which larger soil fauna cannot access
[21, 22]. Nonetheless, the importance of microbial com-
munity structure for decomposition rates is controversial
[23]. On the one hand, soil microbial communities are
often considered to exhibit high functional redundancy
with regard to decomposition, making their composition
unimportant for determining process rates [24]. On the
other hand, microbial community structure may affect
decomposition in some systems, e.g., when microbial
diversity is very low [25]. Deeper, permanently frozen
soil layers exhibit lower microbial biomass, diversity, and
functional potential than the active layer, due to long-term
adaptation to frozen conditions [26, 27]. Bacteria have
higher abundance than archaea and fungi in permafrost
subsoil systems [26, 28, 29] and are important con-
tributors to respiration of peatland soils, especially at high
water content [30, 31]. Bacterial community structure
(BCS; sensu taxonomic composition) could therefore be
an important determinant of decomposition in thawing
permafrost soils, but so far, this link has not been directly
evaluated.

BCS may be affected by warming-induced changes to
plant community composition and rooting behavior [12, 32,
33], through altered rhizosphere extent and properties [20,
34]. These effects will be strongest in the newly thawed
permafrost at the base of the active layer, where no roots
were previously present. Thawing permafrost soils will also
experience physico-chemical changes: phase transition in
the newly thawed permafrost will remove the long-term
freezing constraints (e.g., low water availability and energy
input) with potentially large effects on bacterial

communities [28, 35]. Climate change and permafrost thaw
are thus likely to modify bacterial communities through
alterations in soil abiotic factors and plant root distribution,
with the strongest effects in the newly thawed soil layers.

Common approaches to study the microbial ecology of
thawing permafrost are natural thaw gradients (e.g. [26])
and laboratory incubations (e.g. [28]). Natural thaw gra-
dients provide realistic proxies for future effects of climate
change, but the history of deep-thaw sites may not
resemble current shallow-thaw sites. BCS can vary
strongly with depth within a soil profile [36] and the
thawing of permafrost induces varying soil subsidence and
compaction depending on ice content [37]. Therefore,
ensuring that the communities compared along a presumed
thaw gradient were not different before permafrost thaw
occurred can be challenging. Such potential artifacts are
avoided by repeated sampling from thawing and incubat-
ing permafrost samples but in vitro approaches ignore
indirect effects of thawing, such as through soil fauna and
root colonization. In contrast, inducing permafrost thaw in
the field, e.g., by experimentally increasing winter insu-
lation with snow fences to simulate winter climate change
[38, 39], allows for the detection of these longer-term
indirect effects of thawing. Such an experimental setup
also allows for more precision in sampling soil from a
given depth as subsidence can be monitored. Furthermore,
by careful selection of plots and randomization of treat-
ments initially identical microbial communities are
ensured, precluding the potential confounding effects
inherent to spatial gradients.

We investigated how the combined direct and indirect
effects of long-term in situ permafrost thaw through
experimental winter-warming modifies the BCS and
potential soil respiration across the active layer and upper
permafrost soil, and studied whether and how these
responses were linked. We hypothesized that:

(a) Decadal in situ winter-warming and associated per-
mafrost thaw will modify BCS across active layer and
permanently frozen soil, most strongly at the depth of the
newly thawed and recently root-colonized soil.

(b) Potential respiration will decrease with decadal
winter-warming in the active layer and increase in the newly
thawed permafrost soil. This is because of long-term
depletion of labile carbon substrates after a decade of
higher temperatures in the active layer. In contrast, the
intermediate layer has only thawed for a short duration at
the end of each growing season, so we expect increased
respiration as a result of changes in BCS (e.g., by shifts
toward communities with higher functional diversity).

(c) Including BCS—i.e., phylogeny-informed taxonomic
composition—and plant root density will improve soil
chemistry-based predictions of potential respiration across
active layer and thawing permafrost soil.
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Materials and methods

Deep-thaw experiment

The study site is located in the Storflaket palsa peatland
close to Abisko, Northern Sweden (68.346N, 18.971E), of
which active layer thickness (ALT) was 69.3 ± 3.7 cm in
2015, and water table depth was 30.2 ± 2.8 cm in October
2013 (mean ± SE). The peatland is dominated by peat moss
(Sphagnum spp.), Eriophorum vaginatum L., Vaccinium
vitis-idaea L., Andromeda polifolia L., Betula nana L.,
Empetrum nigrum L. and Rubus chamaemorus L. Since
2005, 10 m long and 1 m high snow fences were erected
each winter in six randomly chosen plots out of 12 (10 × 10
m), increasing mean winter snow accumulation 2.6-fold
(16–24 cm), winter soil temperature (at 15 cm) by 1.5 °C,
and ALT by 29 cm (in 2015, data not shown), and are
further referred to as “deep thaw”. The remaining six plots,
with ambient snow accumulation (6–9 cm) served as con-
trols. Effects include an increase in E. vaginatum growth
and cover and in soil subsidence (average 24 cm in 2012
compared to 2005, vs 5 cm in control plots) causing sea-
sonal ponds in some deep-thaw plots. Methane emissions
were nonsignificant within or outside of the deep-thaw plots
(0.09 ± 0.08 and 0.1 ± 0.18 mg CH4/m/h, respectively [40]),
therefore we did not investigate methane dynamics. More
details are found in ref. [41].

Sampling design and sampling for BCS, plants, and
abiotic analyses

We compared subsoil carbon and microbial dynamics
around the thawfront at three depths: active layer (above the
thawfront but below the water table in both deep-thaw and
control plots, ca. 55 cm); intermediate layer (frozen in
control plots, seasonally thawed in deep-thaw plots, ca. 70
cm); and permafrost layer (perennially frozen in both deep-
thaw and control plots, at least 10 cm below the thawfront,
100–125 cm).

Two soil cores per plot were collected in September
2015, around the time of maximum ALT [41], using a
peat-corer for thawed soil (11 × 11.4 cm, Eijkelkamp, The
Netherlands), and a custom-made gas-powered fluid-less
concrete drill for permafrost soil (10.2 cm diameter). As
the ALT varies with distance to the fences within deep-
thaw plots, we selected spots with ALT > 80 cm for cor-
ing, but we did not use ALT criteria for the cores in
control plots (mean ± SE for control and deep-thaw cores
were 60.1 ± 2.4 and 90.2 ± 6.4 cm, respectively; P < 0.001,
n= 12). Frozen soil cores were rinsed with sterile deio-
nized water to limit drilling contamination between soil
layers, wrapped in plastic foil and stored in a cooler box
for up to 3 h.

One set of cores was thawed at 2 °C after which 2 g soil
was sampled for DNA extraction with ethanol-cleaned
forceps, at least 3 cm from the core surface to minimize
contamination, from the three aforementioned depths.

Three 30-cm segments were taken encompassing these
sampling depths (i.e., 30–60, 60–90, >90 cm), and about 1
L (estimated by water displacement) of each core segment
was used for manually collecting coarse roots (>0.5 mm),
which were dried at 60 °C and weighed to calculate density
of roots in the soil (g dry weight roots/L soil). Due to
sampling errors, one replicate of the intermediate layer in
deep-thaw plots was absent from this set of cores, and
therefore excluded from analyses including BCS and root
density.

The second set of cores was stored at −20 °C until April
2016, then thawed at 4 °C and subsamples were taken for
soil chemistry analyses and aerobic incubations. These
subsamples were homogenized by sieving through an
ethanol-cleaned 2 mm sieve. Homogenized soil aliquots
were used to measure potential aerobic respiration (see
below), as an indicator of the vulnerability of soil carbon.
Further, we used ~9 g subsamples to determine gravimetric
water content (60 °C, 24 h) and organic matter content
(OMC, 475 °C, 2 h [42]). Carbon content (g C/g dry soil)
was analyzed using a NCS 2500 elemental analyzer (CE
Instruments, Milan, Italy). Another 3 g (fresh weight) were
shaken in 40 mL of sterile deionized water for 2 h and fil-
tered. pH of the filtrate was measured on a MP220 pH meter
(Mettler-Toledo, Greifensee, Switzerland) and NH4

+ and
(NO3

−+NO2
−) were quantified on a FIAstar 5000 Auto-

analyzer (FOSS Analytics, Hilleroed, Denmark). Nitrate
and nitrite concentrations were below detection limit (ca.
12.2 µg NO3

−-N/g dry soil) in most samples and are
therefore not discussed further.

Soil incubations

For each of the six replicates at three sampling depths in the
two treatments, two aliquots of 20 g (fresh weight) homo-
genized soil were put into 250 mL glass jars closed with
rubber septa and incubated in dark culture chambers at
either 11 or 21 °C. Headspace air (10 mL) was sampled with
an airtight glass syringe and CO2 concentrations were
measured with an infrared gas analyzer (EGM-4, PP Sys-
tems, Amesbury, Massachusetts), using the instrument’s
internal calibration and static sampling mode, at 1–5 days’
intervals for 1 month. When one sample reached ≥10 000
ppm, all jars were flushed with 400 ppm CO2 synthetic air,
long enough to lower the headspace CO2 concentration to
400 ppm. One month after homogenization, respiration rates
stabilized and four more measurements were taken, each
time starting at 400 ppm (achieved by flushing as described
above) and continuing for 1–2 days. These four

Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration



measurements were used to calculate CO2 production rates
(τ) as follows:

τ 1�2ð Þ ¼ n2 � n1
Δtð Þ1�2

with ni ¼ CO2½ �i� PiV=RTð Þ

where (Δt)1–2 is the time interval between flushing (1) and
measurement (2), Pi is atmospheric pressure at flushing or
measurement time (data from Abisko Naturvetenskapliga
Station), V the headspace volume, R the ideal gas constant,
and T the incubation temperature. The four rates were then
averaged to estimate the potential aerobic respiration rates
(hereafter respiration).

Temperature sensitivity of respiration (Q10 [43]) was
calculated for each replicate soil sample based on these
averaged values at 11 and 21 °C. Potential respiration rates
were expressed either per soil dry weight (bulk respiration)
or per organic matter dry weight (intrinsic respiration).

Bacterial communities

DNA was extracted using a PowerSoil DNA Extraction Kit
(Qiagen, Venlo, The Netherlands), following the manu-
facturer’s instructions. DNA was quantified using QuantIT
dsDNA assay (Thermo Scientific, Waltham, Massachusetts,
SI Fig S1). The DNA extracts were diluted to 5 ng/µL with
nuclease-free water. Samples with concentrations <10 ng/
µL were diluted 1:1.

The V3 region of the 16S ribosomal RNA gene was
targeted in PCR amplification (341F; 518R, SI Table S1) to
characterize BCS [44], and quality of amplification was
visually checked by gel electrophoresis. Amplicons were
cleaned and normalized using SequalPrep Normalization
Plate Kit (Thermo Scientific), then pooled, and further
purified using a QIAquick Gel Extraction Kit (Qiagen,
Venlo, The Netherlands). The resulting pooled library was
sequenced on an Illumina MiSeq with V2 chemistry and
2 × 150 bp paired-end reads (BioSample accession numbers
SAMN07445364–SAMN07445398 and SAMN07445422).

All bioinformatics scripts are available as a Jupyter
notebook at https://bitbucket.org/smonteux/monteux_deep_
thaw. Merging, quality filtering, and 97% de novo opera-
tional taxonomic unit (OTU) clustering were performed
with VSEARCH v1.10.2 [45], chimera removal with
UCHIME, and the GOLD database [46, 47]. OTUs that
were abundant in the technical control sample (>5%) were
removed, alike in ref. [48]. PyNAST, FastTree, the RDP-
naive Bayesian classifier, and Greengenes 13.8 database
were used in QIIME v1.9.1 [49–52] to obtain OTUs tax-
onomy, filtering out OTUs present in <10% of the samples
to exclude highly variable OTUs that may inflate the
number of differentially abundant OTUs (adapted from ref.
[53]). Weighted UniFrac distances [54] were computed on
an abundance table averaged from 100 rarefactions at

899 sequences depth. Differential abundance of OTUs
between treatments for each soil layer was assessed using
DESeq2 negative-binomial Wald test on non-rarefied reads
[55, 56], and indications of the ecology of the most abun-
dant OTUs (>0.5% of rarefied reads) affected by the deep-
thaw manipulation were inferred based on their taxonomy
and the ecology of their closest relatives (BLAST [57], SI
Table S2 [58–72]).

Statistical analyses

All statistical analyses were carried out using R v3.4.1 [73],
and the script used to produce figures and tables is available
at https://bitbucket.org/smonteux/monteux_deep_thaw.
Effects of the deep-thaw treatment and soil depth on
potential respiration at 11 °C, Q10, and soil abiotic variables
(OMC, pH, NH4

+, and soil moisture) were assessed using
analysis of variance with linear mixed-effects models (nlme
package [74]), using treatment and depth as fixed factors,
and core as a random factor, followed by pairwise contrasts
when appropriate (lsmeans package [75]). NH4

+ and both
bulk and intrinsic potential respiration were log-trans-
formed, and OMC was square-root-transformed to improve
normality of residuals.

The effects of depth and treatment on BCS were assessed
by testing for deviation of each OTU against a negative-
binomial distribution with generalized linear models
(manyglm(), mvabund package [76]), which confounds
location and dispersion effects less than distance-based
approaches (e.g., PERMANOVA [77]). A principal coor-
dinates analysis (PCoA) ordination of weighted UniFrac
distances was computed from the averaged abundance table
and associations with root density and soil variables were
tested using envfit() (vegan package [78]).

To explore relationships between potential respiration on
one hand, and soil chemistry, root density, and BCS (first
PCoA axis, henceforth bacterial PCo1) on the other hand,
we used multiple linear regressions. Soil chemistry vari-
ables showed multi-collinearity, therefore we used principal
component analysis to summarize variability in soil chem-
istry, with all input variables scaled and centered. The first
principal component (soil PC1) was mostly driven by
positive OMC and soil moisture (SI Fig. S2) and was used
as a proxy for soil chemistry in the multiple regressions.
Regression models were fit separately for bulk and intrinsic
potential respiration, using soil PC1 only, or adding bac-
terial PCo1 and/or root density (scaled and centered) as
predictors. To investigate how predictors of potential
respiration differed between control and deep-thaw soils, we
included treatment and its interactions with the other inde-
pendent predictors in all models. We further fitted models
with bacterial PCo1 alone to compare the relative impor-
tance of soil PC1 and bacterial PCo1. For both bulk and
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intrinsic potential respiration, we compared regression
models based on their second-order Akaike's Information
Criterion (AICc, AICcmodavg package [79]).

Results

Soil chemistry and root density

Soil moisture, organic matter, and carbon content were
unaffected by the deep-thaw manipulation and were lower
in the permafrost layer relative to the other two soil layers
for both treatments. pH was higher in the permafrost than in
the active layer in control soils but not in deep-thaw, while
NH4

+ was unaffected by depth and treatment (Table 1, SI
Table S3, SI Fig. S3). Roots cannot grow into frozen soil,
therefore root density distribution reflected whether the soil
was seasonally thawed or not (SI Fig. S4). Most of the root
biomass belonged to sedges and shrubs.

Bacterial community structure

BCS varied strongly with depth and was also affected by the
decadal in situ deep-thaw manipulation, but this effect dif-
fered between soil layers (Table 1, Fig. 1). Overall, BCS did
not differ across the three seasonally thawed soil layers
(active layer in both treatments, intermediate layer in deep-
thaw treatment; Fig. 1a). The three permanently frozen soil
layers (intermediate layer in control treatment and

permafrost layer in both treatments) differed from the sea-
sonally thawed cluster (Fig. 1a, SI Table S4). Seasonal
thawing in the intermediate layer thus led to a BCS undis-
tinguishable from the active layer within a decade. This
shift from perennially frozen to seasonally thawed BCS was
characterized at the phylum level by large decreases in
Firmicutes and Caldiserica, and an increase in Acid-
obacteria relative abundances (Fig. 1b). Soil moisture con-
tent, OMC, and root density were mainly associated with
PCo1, reflecting the strong effects of depth and thawing,
while NH4

+ was associated with PCo2.
Although in the active layer the BCS did not sig-

nificantly differ between treatments, 321 OTUs showed
significant changes (SI Fig S5). Eight relatively abundant
OTUs (>0.5% of the rarefied reads) were more abundant in
deep-thaw plots, of which four were putative aerobes or
micro-aerobes and two were putative anaerobes (SI
Table S2).

In the intermediate layer, 149 OTUs changed relative
abundance with deep thaw, of which 9 were particularly
abundant (Fig. 1c). Among these, the relative abundance of
6 obligate and putative anaerobes decreased, while putative
aerobes had an increased relative abundance under deep
thaw (SI Table S2).

In the permafrost layer, 48 OTUs changed relative
abundance with deep thaw (SI Fig S5), even though no
phase change was observed, of which 1 unclassified OTU
was abundant and its relative abundance increased in the
deep-thaw treatment (SI Table S2).

Table 1 Effects of decadal
in situ deep-thaw and depth on
soil abiotic variables, respiration
rates, and bacterial community
structure (BCS); association
between environmental variables
and BCS

Soil chemistry and respiration (ANOVA) Decadal deep thaw
(treatment)

Depth Treatment:
depth

F p F p F p

Square-root organic matter content (OMC) 2.839 0.123 24.972 <10−4 0.320 0.730

pH 1.365 0.270 4.847 0.019 6.797 0.006

Log ammonium 0.074 0.792 0.936 0.409 3.260 0.060

Moisture (gravimetric) 2.012 0.187 7.795 0.003 1.126 0.344

Log bulk respiration (per g dry weight) 5.254 0.045 19.764 <10−4 0.658 0.529

Log intrinsic respiration (per g OM) 0.232 0.641 0.417 0.665 3.920 0.037

Q10 (11–21 °C) 3.360 0.097 5.770 0.011 4.101 0.032

Bacterial community structure (BCS) Dev p Dev p Dev p

ManyGLM 1579 0.006 3711 0.001 1101 0.001

Association with BCS (envfit) PCo1 PCo2 R2 p

Organic matter content (OMC) −0.990 −0.144 0.231 0.014

pH 0.819 0.573 0.111 0.147

Ammonium −0.113 0.994 0.317 0.004

Moisture (gravimetric) −1.000 0.005 0.234 0.015

Root density −0.804 −0.595 0.233 0.022

Bold text denotes significant p-values (p < 0.05)

Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration



Potential aerobic respiration

Bulk potential respiration rates (per g soil dry weight) as mea-
sured in aerobic soil incubations were 85% (55–95%±SE, P<
0.001) lower in the permafrost layer than in the overlying layers,
and were further reduced by 61% (41–74%, P= 0.045) in the
deep-thaw treatment across all soil layers (no depth × treatment
interaction; Table 1, Fig. 2a). In contrast there was no overall
effect of depth or treatment on intrinsic potential respiration (per
g organic matter dry weight), but a significant depth × treatment
interaction (P= 0.037, Table 1, Fig. 2b), reflecting lower
potential respiration by 45% (26–59%) in the active, 18%
(−10–39%) in the intermediate but higher by 74% (30–134%)
in the permafrost layer, in soils from the deep-thaw plots than
from the control plots. Similarly, there was no main effect of

treatment or depth on the temperature sensitivity of respiration
(Q10, calculated between 11 and 21 °C) but a significant depth ×
treatment interaction indicating that Q10 varied between the
intermediate and permafrost layer primarily in the deep-thaw
plots (Table 1, SI Fig. S6, SI Table S5).

Abiotic and biotic drivers of potential respiration

Including the experimental treatment alongside soil chem-
istry (soil PC1), BCS (bacterial PCo1), and/or root density
improved all regression models for both bulk and intrinsic
potential respiration (SI Table S6). Bulk respiration models
best fit the data when adding treatment without interactions
(treatment effect on intercept) while for intrinsic respiration
all interactions between treatment and other predictors

Fig. 1 Bacterial community structure based on 16S rRNA V3 region. a
Principal coordinates analysis of weighted UniFrac distances; markers
and error bars represent mean and standard error, respectively, of coor-
dinates on the ordination axes for each depth × treatment combination (n
= 6, except intermediate layer–deep thaw where n= 5); different letters
denote significantly different communities (manyglm post hoc, see SI
Table S4). bMean relative abundance of phyla in each depth × treatment
combination; dashed rectangles enclose permanently frozen samples. c

Phylum distribution, abundance, and abundance change of the 149 OTUs
that are different in the intermediate layer between the deep-thaw and
control treatments (DEseq2 NB Wald test). Each bar represents the log2
of the fold change between control and deep-thaw samples for one OTU;
dots represent the relative abundance of the OTU in the entire rarefied
dataset, black dots indicate abundant OTUs (>0.5%, SI Table S2);
number of OTUs in the legend is for the intermediate layer, while the
percentages show what portion of those is in (c)
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significantly improved model fits (effect on slopes and
intercept; Fig. 3, SI Table S6). Although soil PC1 slopes did
not differ from zero, the significantly different slopes
between control and deep-thaw samples for both bacterial
PCo1 and soil PC1 reflected the depth × treatment interaction
on intrinsic respiration previously described (Figs. 2b, 3, and
Table 2).

Models combining BCS and soil chemistry best described
both bulk and intrinsic potential respiration, with decreases in
AICc compared to models based on soil chemistry only of
8.43 and 4.33, respectively (Table 2). When including bac-
terial PCo1 only, the fit for bulk respiration was worse, but for
intrinsic respiration better than in models with soil PC1 alone
(ΔAICc −5.2, ΔR2 +9%). The model using bacterial PCo1
only for intrinsic respiration was similarly well-fitting as the
model including both soil PC1 and bacterial PCo1 (ΔAICc
−0.88, ΔR2 −8%, likelihood-ratio test P= 0.059, Table 2).

Discussion

In line with our hypothesis (a), the response of the BCS to
the deep-thaw treatment was strongest in the intermediate

layer where the permafrost changed from permanently fro-
zen to seasonally thawed (Fig. 1). The convergence of the
deep-thaw intermediate layer BCS with the active layer
communities supports previous findings of BCS differing
between active layer and permafrost in the field [26, 81],
and of convergence toward BCS found in the active layer
upon permafrost thawing in vitro [28]. Furthermore,
although the convergence might also partly stem from the
differential growth of certain endogenous taxa, the strik-
ingly similar communities among seasonally thawed soils
suggests that overlying soil microorganisms migrated to
newly thawed soil. One previous study has compared BCS
at the same depth in seasonally thawed and permafrost soil
in sites with permafrost degradation following fire, but
there, fire and thaw effects were confounded [80]. Our
results therefore provide the first in situ experimental evi-
dence of the BCS response to permafrost thaw. Long-term
freezing constraints can be a more important determinant of
BCS than soil depth per se in permafrost soils, and once
those constraints are relieved the overlying microorganisms
seem to migrate, determining the resulting BCS.

Fig. 2 Potential aerobic respiration of soils from different depths in
control and decadal in situ deep-thaw plots during laboratory incu-
bation at 11 °C, measured for 1 week after 1 month pre-incubation,
expressed per gram soil dry weight (a) and per gram soil organic
matter (b); samples to the right of the dotted line are from permanently
frozen soil layers; means ± SE (n= 6). Asterisks denote significant
effects (*P < 0.05; ***P < 0.001; n.s. non significant), letters denote
significant differences between depths

Fig. 3 Intercepts and slopes (95% CI) of the best-fitting multiple linear
regressions of respiration against soil chemistry (soil PC1) and bac-
terial community structure (bacterial PCo1). Asterisks denote sig-
nificant differences between treatments (P < 0.05). Int. intercept
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Although the deep-thaw experiment increased soil
moisture in the upper soil layers [41], this effect did not
extend to the deeper soil layers where we took our samples.
Instead, increases in relative abundances of putative aerobic
and anaerobic OTUs between treatments suggest that oxy-
gen might have reached deeper soil layers in the deep-thaw
plots, where E. vaginatum is more abundant. Eriophorum
roots harbor aerenchymae, likely making deep soil more
oxic (SI Fig. S4 & S7 [13, 17, 81]).

High relative abundances (up to 60%) of the phylum
Caldiserica were found in the permanently frozen soil layers
(Fig. 1b). This poorly known phylum has one cultured
representative (thermophilic Caldisericum exile [82]), and
has been found in other extreme environments (e.g. [83]).
Wurzbacher et al. [84] recently showed that enigmatic
microbial phyla dominate permafrost thaw ponds. The high
relative abundances we observed suggest that intact per-
mafrost, at least in our study system, could be used to
investigate Caldiserica ecology, through culturing and
-omics approaches.

As hypothesized (b), soils from the active layer in the
deep-thaw plots had lower potential respiration rates than
their control counterparts (Fig. 2). In contrast, higher eco-
system respiration in deep-thaw plots was observed in the
first years of this experiment [40], when the increase in
ALT, and thus in thawed SOM, was still limited (~6 cm).
We suggest that enhanced SOM decomposition and pro-
cessing due to higher temperatures and prolonged thaw
period over a decade of manipulation have increasingly
depleted the labile C-pool, as Semenchuk et al. [9] sug-
gested in a similar experiment.

In the intermediate layer, our hypothesis (b) of higher
potential respiration because of increased microbial func-
tional diversity was refuted: instead, both bulk and intrinsic
potential respiration appeared lower in the deep-thaw plots.
Upon permafrost thawing, fast metabolic responses facil-
itate SOM decomposition [28, 85], which could have
increased carbon losses in the short term. Short periods of
oxygenation, e.g., through E. vaginatum aerenchymae, can
have lasting consequences on decomposition, by promoting
phenol oxidase activity [18, 86], and seem plausible con-
sidering the observed changes in aerobic and anaerobic
OTU relative abundances. Moreover, similar temperature
effects as described above could result in the lower
respiration rates observed after 10 years, through labile C-
pool depletion, although we presumed the shorter thaw
period in intermediate layers would delay such effects. This
is further supported by higher Q10 values in the deep-thaw
intermediate layer, suggesting increased chemical recalci-
trance (SI Fig. S6 [87]). While labile C-pool depletion has
been previously suggested to explain decreased soil
respiration [9, 88] and would fit our observations, integrated
soil respiration measurements over a long-term experiment

coupled with organic matter profiling would be necessary to
confirm this interpretation.

Deep thaw had contrasting effects in the permafrost
layer, with decreased bulk respiration and increased intrin-
sic respiration. Deep thaw may raise temperatures in still-
frozen soil layers at most by <1 °C [74]. Combined with the
observed higher rate of intrinsic respiration, it therefore
seems unlikely that the aforementioned labile carbon
depletion would also apply in the frozen soil. Alternatively,
the different BCS in deep-thaw and control permafrost
layers (Fig. 1a) might be functionally distinct, potentially
leading to the observed differences in respiration. However,
we hesitate to propose this as the single underlying
mechanism, since the only abundant OTU affected by the
manipulation provides no functional insights due to its high
divergence from all cultured organisms (OTU_6022, SI
Table S2). Further, although the treatment-affected OTUs
may reflect a temperature effect on BCS in the permafrost
layer, their relatively low number could also indicate spatial
sampling effects exacerbated by the low population sizes in
permafrost soils.

Our hypothesis (c), according to which including biota
improves soil chemistry-based predictions of potential
respiration, was supported for both bulk and intrinsic
respiration: including BCS resulted in better-fitting models.
Moreover, the significant interactions of soil chemistry and
BCS with treatment, as well as the opposite directions of the
slopes between treatments, strongly suggest that the drivers
of intrinsic respiration fundamentally changed under dec-
adal deep thaw (intrinsic respiration increased with, e.g.,
higher OMC in control soils but decreased in deep-thaw
soils). Although all models including BCS showed a sig-
nificantly better fit than soil-only models, bulk respiration
rates were almost equally well explained by soil chemistry
alone. In contrast, BCS alone explained intrinsic respiration
rates better than soil chemistry, implying that after
accounting for different OMC, BCS can explain variation in
respiration better than soil chemistry. We cannot rule out
that microbial biomass or other soil chemistry measures,
e.g., recalcitrance of SOM [89, 90], may explain additional
variation in respiration. Further, if BCS and respiration
share these unmeasured variables as common drivers, some
of the variation we currently attribute to BCS could in fact
be due to other factors. 16S-based community profiles, as
used here, give only limited information about functional
potential. However, our results are in line with recent evi-
dence suggesting that bacterial taxonomic composition can
explain a unique portion of variation in respiration (agri-
cultural temperate soil [91]), and partly determines soil
carbon dynamics [92], particularly in organic soils where
microbial activity is less constrained [94–95]. While the
underlying mechanisms in terms of community function-
ality are unclear, our results suggest that measuring BCS

Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration



may improve predictions of the permafrost carbon
feedback.

In contrast with our hypothesis (c), including root density
did not improve models of bulk or intrinsic potential
respiration. Root density might affect soil respiration as
measured in incubations through legacy effects of either
rhizosphere priming, depleting the SOM pool, or alterations
of BCS in the rhizosphere. The limited contribution of root
density to our models is in agreement with relatively small
(4%) priming effects observed in peatlands [96], while the
rhizosphere–BCS effects may already be accounted for by the
overall changed BCS, thus explaining only some of the
information that BCS contributes. In addition to such legacy
effects possibly observed in incubations, higher root density
might also affect soil respiration directly in situ, e.g., by sti-
mulating rhizosphere microbial activity or by increasing
SOM turnover without affecting the size of the SOM pool.
Using different experimental designs, such as root exclosures,
might allow to disentangle direct and legacy effects of root
colonization effects from other consequences of thawing [97].

Our in situ approach confirmed the large changes in BCS
after experimental permafrost thaw previously observed in
incubations [28, 85], and further suggests that colonization
by active layer bacteria might determine the fate of BCS in
thawing permafrost. While root density appeared unin-
formative in predicting respiration, the strong linkages
between BCS and potential respiration challenge the view
that in soils BCS is unimportant for C-cycling, at least in
our system, particularly after accounting for variations in
SOM content. This BCS–C-cycling link, and underlying
functional implications, should be investigated in other
permafrost-affected environments, as it could imply that
current predictions for SOM decomposition in thawing
permafrost omit an important component. Altogether, our
results show that permafrost thaw indirectly affects SOM
decomposition through large effects on its drivers, such as
BCS, which might prove important in understanding and
predicting the permafrost carbon feedback.

The data supporting the findings of this study are avail-
able in figshare with the identifier https://doi.org/10.6084/
m9.figshare.5977471; the sequence data have been depos-
ited in Sequence Read Archive with accession numbers
SAMN07445364–SAMN07445398 and SAMN07445422;
the entire bioinformatics and statistical analysis pipeline is
available at https://bitbucket.org/smonteux/monteux_deep_
thaw/.
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