Plasma gun for medical applications: engineering an equivalent electrical target of human body and deciphering relevant electrical parameters - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physics D: Applied Physics Année : 2019

Plasma gun for medical applications: engineering an equivalent electrical target of human body and deciphering relevant electrical parameters

Florian Judée
  • Fonction : Auteur
  • PersonId : 1064301
  • IdRef : 225780070
Thierry Dufour

Résumé

Simulations and experimental works have been carried out in a complementary way to engineer a basic material target mimicking the same dielectric properties of the human body. It includes a resistor in parallel with a capacitor, whose values (Rh=1500 Ω and Ch=100 pF) are estimated in regard of parameters commonly utilized upon in vivo campaigns (frequency=30 kHz, gap=10 mm, high voltage electrode surface=12.6 mm 2). This equivalent electrical human body (EEHB) circuit can be used as a reference and realistic target to calibrate electrical properties of therapeutic plasma sources before their utilization on patients. In this letter, we consider a configuration where this EEHB target interacts with a plasma gun (PG). Plasma power measurements performed in such configuration clearly indicate two operating modes depending on the value of the supplied voltage. Hence, the plasma gun generates pulsed atmospheric plasma streams likely to present therapeutic interest for voltages comprised between 3.0 and 8.5 kV while for higher values, transient arcs of thermal plasma are generated and represent substantial risks for the patient.
Fichier principal
Vignette du fichier
Pre-Print_A30.pdf (694.24 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02377969 , version 1 (24-11-2019)

Identifiants

Citer

Florian Judée, Thierry Dufour. Plasma gun for medical applications: engineering an equivalent electrical target of human body and deciphering relevant electrical parameters. Journal of Physics D: Applied Physics, 2019, 52 (16), pp.16 - 18. ⟨10.1088/1361-6463/ab03b8⟩. ⟨hal-02377969⟩
41 Consultations
145 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More