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Highlights 

 Cells are covered by a dense, protective glycan layer, the glycocalyx 

 Viruses, bacteria and fungi exploit these glycans to gain entry to the host 

 The mucus layer covering host cell epithelia sheds invaders 

 Milk oligosaccharides can serve as protective decoys 

 This review describes the structural mechanisms of this molecular arms race 

  



Abstract 

The critical first step of a microbial infection is usually the attachment of pathogens to host 

cell glycans. Targets on host tissues are in particular the histo-blood group antigens, which 

are present in rich diversity in the mucus layer and on the underlying mucosa. Recent 

structural and functional studies have revealed significant new insight into the molecular 

mechanisms, explaining why individuals with certain blood groups are at increased risk of 

some infections. The most prominent example of blood-group-associated diseases is 

cholera, caused by infection with Vibrio cholerae. Many other microbial pathogens, e.g. 

Pseudomonas aeruginosa infecting the airways, and enterotoxigenic Escherichia coli (ETEC) 

causing traveler’s diarrhea, also bind to histo-blood group antigens, but show a less clear 

correlation with blood group phenotype. Yet other pathogens, e.g. norovirus and 

Helicobacter pylori, recognize HBGAs differently depending on the strain. In all cases, milk 

oligosaccharides can aid the hosts’ defenses, acting as natural receptor decoys, and anti-

infectious therapy can be designed along similar strategies. In this review, we focus on 

important infections of humans, but the molecular mechanisms are of general relevance to a 

broad range of microbial infections of humans and animals. 

 

Introduction 

The battle between pathogens and their hosts is a constant race of evolution and 

adaptation. Once inside the host, either through the airways or the gastrointestinal tract, the 

pathogens must fight their way to the underlying cells. The mucus layer provides the first 

protective barrier of the underlying tissues (reviewed by [1]), and is essentially kept sterile 

by the constant secretion of mucus from goblet cells and the shedding of its top layer. This is 

true in particular for the colon, which has a second, inner mucus layer that is impermeable 

to bacteria. The mucus consists of a network of heavily glycosylated proteins, containing 

negatively charged carbohydrates and a significant amount of neutral, fucosylated sugars. 

The underlying mucous membrane, the mucosa, contains glycoconjugates including both 

lipids and proteins, resulting in a dense layer of glycans called the glycocalyx. This layer 

serves as a protective layer, helping to keep the pathogens at bay. However, many 

pathogens have evolved an ability to take advantage of these glycans, and use them as 

receptors for host cell adhesion or entry [2,3]. 



Especially well-characterized carbohydrate-based antigens are the histo-blood group 

antigens (HBGAs), which include the ABH and Lewis antigens. The ABH blood group system is 

named after the expression of antigens by red blood cells. HBGAs are also present on 

epithelial and endothelial cells throughout the body, and as soluble oligosaccharides in most 

body fluids except cerebrospinal fluid. Many pathogens use these antigens to adhere to host 

cells, and the interplay between pathogens and HBGAs is believed to promote the antigen 

diversity we see today [4,5*]. Individuals have different active glycosyltransferases, leading 

to a large variety of oligosaccharides, whose expression varies greatly between tissues and 

even between tissue parts. A rich display of HBGAs is found in particular in the 

gastrointestinal tract and in the mucus layer covering it. This variation provides an advantage 

against pathogens, which rapidly evolve to maintain their competitive edge.  

HBGAs are synthesized from precursor antigens and modified by the actions of different 

glycosyltransferases (Figure 1; reviewed by [4]). The simplest ABH antigens are the H 

antigens characteristic of blood group O, which can be converted into A or B antigens by 

the action of the A or B glycosyltransferases, respectively. ABH and precursor antigens 

can be fucosylated on GlcNAc, creating the Lewis antigens. The fucosyltransferase 

Secretor/FUT2 can add the so-called Secretor fucose. This enzyme is lacking in 20% of 

the European and North American population, resulting in the so-called non-secretor 

phenotype characterized by the absence of all ABH antigens from mucus and secretions like 

saliva and human milk. Nevertheless, non-secretors can still express the simplest 

fucosylated Lewis antigens. In addition, symbiotic host microbes are known to contribute to 

intestinal fucosylation [6*]. 

The severity and susceptibility of many infectious diseases correlate with blood group 

phenotype [7]. So far, the understanding of the molecular mechanisms underlying this 

phenomenon has been very limited. This has changed recently with the determination of 

several high-resolution crystal structures of relevant protein-HBGA complexes. The gained 

insights are the topic of this review.  

Infections of the gastrointestinal tract 

Infection by enteric pathogens generally occurs through the fecal-oral route, caused by poor 

hygiene, consumption of contaminated food or water, or by exposure to infectious aerosols 



that are produced by vomiting. Some pathogens, such as Helicobacter pylori, are in addition 

transmitted through the oral-oral route, and others, e.g. Vibrio cholerae, can also survive in 

aquatic reservoirs, without any contact with feces. 

Viral infections 

Noroviruses (NoVs) and rotaviruses (RVs) are the two most important causes of acute 

gastroenteritis in humans. Both of them are ‘non-enveloped’ viruses, which means that they 

are encased by a protein capsid lacking a lipid envelope. Viruses replicate and evolve very 

rapidly, giving rise to a large number of different strains with different receptor profiles that 

enable them to conquer different niches (reviewed by [8*,9*,10,11*]). Among their known 

cellular receptors are sialylated structures and HBGAs. Secretors are particularly susceptible 

to NoV and RV infections [12]. These individuals express HBGAs in their body fluids, mucus 

and gastrointestinal epithelial cells, therefore it is plausible that they are at higher risk of 

infection. While many children in the world are routinely vaccinated against RV infections, 

there is currently no vaccine against NoV infection.  

The first examples of human pathogens, for which the molecular basis of blood group 

dependence was elucidated, are NoVs [13,14*]. They are single-stranded RNA viruses 

belonging to the Caliciviridae. Both major NoV genogroups, GI and GII, are known to infect 

humans and bind HBGAs in the high micromolar range [15]. GI includes the well-known 

Norwalk virus, causing winter-vomiting disease. This genogroup mainly targets individuals 

with blood group O, while people with blood group B have a lower risk of infection [16]. In 

contrast, GII NoVs do not discriminate between different blood groups [17,18]. The first X-

ray structure of a NoV was published in 1999 (PDB ID 1IHM [19]*). Its viral capsid contains 

dimeric P domains, which project out from the icosahedral shells and are responsible for the 

binding to the host cell receptors (Figure 2A,B). Intriguingly, the P domains (and in particular 

the receptor-binding P2 subdomains) have a much lower sequence identity than the overall 

genomes of GI and GII NoVs (approximately 25% (P2) compared to 50% overall [11*,13]). 

Moreover, the receptor binding sites are positioned at different locations at the P 

dimerization interface and have distinct structural characteristics [14*,8*,10] (Figure 2B-D). 

GI viruses bind HBGAs end-on and recognize mainly the terminal -Gal residue of blood 

group H-antigens (Figure 2C). Additional interactions are found to the Secretor fucose, which 

include hydrophobic interactions to a conserved tryptophan residue, kept in place by cation-



 stacking to a histidine. In A or B antigens, the -Gal binding site is instead occupied by the 

terminal -GalNAc or Gal residues characteristic for blood groups A and B, respectively, 

whereas the fucose residue is reoriented away from the conserved tryptophan into a 

secondary binding pocket (Figure 2C). In A antigens, the N-acetyl group of the terminal -

GalNAc residue mimics the interactions of the Secretor fucose (Figure 2C), whereas -Gal, 

characteristic of B antigens, lacks these additional interactions and binds poorly to GI NoVs, 

explaining why individuals with blood group B experience protection. GII NoVs mainly 

recognize -fucose, present either as Secretor or Lewis fucose in a large variety of HBGAs 

[20-25] (Figure 2D). It is therefore not surprising that GII NoVs exhibit a broad ABH blood 

group profile.  

Significantly less is known about RVs, both in terms of epidemiology and molecular 

mechanisms. RVs are double-stranded RNA viruses of the Reoviridae family, which form 

much larger viral particles than NoVs. VP8*, a subunit of the outer capsid protein VP4, is the 

functional equivalent of NoV’s P domain (Figure 2E,F). VP8* has a galectin fold, a fold known 

to recognize -Gal. However, in RVs the galactose binding site is blocked and a different site 

is involved in receptor recognition. For several decades, sialic acid has been known as the 

key cellular receptor of RVs, whereas the binding of HBGAs to certain RV strains was 

discovered only recently [26,27]. Nevertheless, the limited data that exist suggest that 

secretors are significantly more susceptible to RV infections than non-secretors [12], 

indicating that HBGAs may indeed be functional RV receptors. In 2012, a crystal structure of 

VP8* was reported in complex with a blood group A-trisaccharide [28*], occupying the same 

site that binds sialic acid in other RV strains. The major interactions were to the -GalNAc 

characteristic of blood group A and additional interactions to -Gal, whereas the Secretor-

fucose faced away from the HBGA binding site (Figure 2F). Nevertheless, glycan array data 

showed that this residue strongly enhances receptor binding [28*], which may be due to 

intramolecular conformational stabilization. Overall, binding specificity varies greatly 

between different RV strains, and even strains binding the same antigens exhibit 

considerable variation in molecular recognition [26,27,29]. Differences in the width of the 

receptor cleft may play a role in the different binding properties [10]. The structural 

adaptability of the VP8* binding site, including receptor-induced conformational changes, 



may furthermore lie at the heart of receptor-release prior to cell entry [22*] and of 

interspecies transmission [27,30]. 

Bacterial infections 

Many bacteria use lectins to attach to host cells (reviewed in this issue by Moonens & 

Remaut [31*]). One notable example is Helicobacter pylori, responsible for inducing stomach 

ulcers and gastric cancer. More than half of the world population is infected with this 

bacterium, which was declared a class I carcinogen by the WHO in 1994. The most virulent H. 

pylori strains mediate adhesion to the human host via the Blood group Antigen Binding 

Adhesin, BabA [32], which is present in large amounts in H. pylori membranes and facilitates 

the bacterial colonization of the stomach mucosa. Different H. pylori strains exhibit distinct 

blood group profiles [33]: in populations with high incidence of the blood group O 

phenotype, such as the natives of South America, specialist species predominate, while in 

Europe and the USA, which have a more diverse blood group pattern, generalist species of H. 

pylori are able to bind all three ABH blood group antigens. The different binding profiles are 

correlated with the presence of BabA variants with different specificities for ABH/Lewis 

glycans. Moonens et al. recently solved the crystal structures of several of these BabA 

variants in complexes with various HBGAs, revealing the molecular basis of this phenomenon 

[34**]. BabA’s interaction with host receptors is three-pronged (Figure 3A): (i) Its main 

anchor is the Secretor fucose, which is bound by a loop stabilized by a redox-sensitive 

disulfide bond called Cys-clasped Loop CL2, involving hydrogen bonds to several highly 

conserved amino acid residues. ii) The Asp-Ser-Ser triad of the Diversification Loop DL2 

specifically binds type 1 glycan receptors, ensuring tropism for the foveolar epithelium, 

which covers the inside of the stomach. iii) Blood group A/B-specific -GalNAc/Gal residues 

bind to a shallow pocket in the DL1 region. O-specific H. pylori strains exhibit a distinct 

sequence variation in this loop, where a proline in combination with a bulky residue (such as 

Asn, Asp, or Leu) sterically interferes with generalist binding. Additional phenotypes are the 

AB specialists, which bind more tightly to A/B-specific glycans due to additional interactions 

of the terminal -GalNAc/Gal residues with DL1, and the inverse specialists, which bind A/B- 

rather than O-specific glycans despite exhibiting the bulky Pro-Leu sequence, since a non-

functional DL2 loop allows for a slight rotation that prevents the steric clash (Figure 3A). 



Cholera is arguably the most well-known example of blood-group-dependent diseases. For 

50 years, individuals with blood group O have been known to experience more severe 

symptoms than those with other blood groups [35], although paradoxically they are less 

likely to be infected. The main culprit is the cholera toxin (CT), which after gaining entry to 

host cells, hijacks the host’s own endogenous pathways to trigger the opening of ion 

channels, inducing the massive secretory diarrhea typical of the disease. Secretors 

experience protection from cholera [36], which is in contrast to many other diseases. In the 

past few years, great strides were made in understanding the blood group association of 

cholera on a detailed molecular level. The primary receptor of the CT is the GM1 ganglioside, 

which binds to the toxin with nanomolar affinity [37]. That CT can also bind to HBGAs or 

analogs of these has been shown only recently [38,39]. Studies of chimera of the receptor-

binding subunits of CT and the homologous heat-labile toxin (LT) from enterotoxigenic 

Escherichia coli (ETEC) indicated that the toxins may harbor a second binding site [40,41], for 

HBGAs, that is spatially distinct from the GM1 binding site (Figure 3B). Subsequently, the 

crystal structure of LT was determined in complex with a blood-group-A-specific human milk 

oligosaccharide (HMO) resembling A-Lewisy, sparking a discussion as to why ETEC infections 

nevertheless do not show a strong blood group association [42*]. This is probably due to 

interference with LPS: in contrast to the CT, which is secreted as a soluble toxin, LT remains 

attached to outer membrane vesicles via LPS. Indications are that the binding sites for 

HBGAs and LPS overlap, interfering with LT binding to HBGAs [43], which would explain the 

lack of blood group association for ETEC infections. For cholera, conflicting data were 

published regarding the binding of two natural CT variants to HBGAs and HMO analogs 

[38,39,44]. The breakthrough came last year with the high-resolution structures of 

respective CT-complexes [45**] (Figure 3B) and supporting cell biological experiments [46], 

explaining all previous findings. Unexpectedly the blood group A determinant (and its HMO 

analog) bound in the opposite orientation compared to LT, showing that subtle amino acid 

differences in the secondary binding site can considerably modulate binding. Another 

unexpected result was the binding of H-determinants (Lewisy and its HMO-analog) in two 

alternative orientations. This rationalized the stronger binding of O-specific glycans 

compared to A- and B-determinants, where the A/B-specific -GalNAc/Gal residues can only 

be accommodated in one of the orientations. Again a fucose residue (generally the Lewis 

fucose) was shown to play the central role in binding, connecting two adjacent CT subunits. 



Even though binding affinities to HBGAs are only in the millimolar range and hence 

significantly weaker than to GM1 [37,45**], CT is capable of cooperatively binding these 

ligands with all five of its receptor-binding subunits, permitting high-avidity interaction with 

its target tissue. Stronger binding of the toxin to O-specific compared to A/B-specific glycans 

is consistent with the observed blood group profile of cholera. What remains to be further 

investigated is why secretors are protected.  

Other enteric pathogens known to bind HBGAs are Campylobacter jejuni [47] and Salmonella 

enterica serotype Typhimurium [48], although structural data regarding these interactions 

are not yet available. 

 

Infections of the airways 

While healthy airway mucus helps to expel microorganisms by coughing and sneezing, 

pathogenic mucus, as encountered in cystic fibrosis or chronic obstructive pneumonia, 

becomes a niche for chronic infection, leading to morbidity and mortality. The glycosylation 

of mucus changes during the course of pathologies, although it is not yet clear whether the 

changes are due to the disease itself, to associated inflammation or due to the presence of 

microbes [49-51]. Modifications in fucosylation, sulfatation and sialylation are generally 

observed in cystic fibrosis, but with different trends depending on N- or O-glycosylation. 

Opportunistic pathogens, often associated with hospital environments, include bacteria such 

as Pseudomonas aeruginosa and members of the Burkholderia complexes, and airborne 

fungi such as Aspergillus fumigatus. All of these pathogens bind to HBGAs, but so far only P. 

aeruginosa has been investigated for correlation between blood group and host 

susceptibility. 

P. aeruginosa infection is the leading cause of death of cystic fibrosis patients, and also 

affects immunocompromised patients. Conflicting data exist regarding its possible 

correlation with blood group phenotype. While the analysis of gene polymorphism in cystic 

fibrosis patients did not reveal any correlation between severity of P. aeruginosa infection 

and ABH, secretor or Lewis genotypes [52], other studies indicated a stronger susceptibility 

to P. aeruginosa sepsis in children with blood group B [53] and a correlation of external otitis 

with blood groups A or B [54]. P. aeruginosa interacts with host glycans mainly via two 



soluble lectins, the α-galactose specific LecA and the fucose-specific LecB, which have both 

been structurally characterized [55]. The LecA target is likely the αGal1-4Gal disaccharide 

present on globotriaosylceramide (Gb3) and blood group Pk and P1 antigens [56]. LecA 

binding to Gb3 triggers the uptake of the bacterium into airway cells in vitro [57]. LecB has a 

very strong affinity for fucose due to the rare chelation of two calcium ions, and its best-

known ligand is the Lewisa epitope. Two recent studies investigated the variations of LecB 

genes in more than 200 bacterial strains originating from natural or clinical environments 

[58,59**]. Sequence analysis revealed two main clusters that could be identified as PAO1-

like and PA14-like. The fucose binding site is conserved in all strains, with 13% variations of 

sequences between PAO1 and P14. Crystal structures and affinity analysis of two variants 

from PA14 [59**] and PA7 [58] strains confirmed that binding to fucose is conserved, 

indicating the importance of LecB for these bacteria. Furthermore, multivalent epitope 

presentation was shown to be critical. For example, the LecB variant from the pathogenic 

PA14 strain binds with very high affinity (Kd = 25 nM) to a biantennary N-glycan presenting 

two blood group H epitopes, corresponding to an affinity that is 10-fold higher than for 

isolated H-type 2 oligosaccharide (Kd = 200 nM) [59**]. 

The fucose-specific six-blade β-propeller fold represents another lectin family identified in 

lung pathogens, i.e. B. ambifaria (BambL) [60] and A. fumigatus (AFL or FleA) [61]. The 

biological role of these lectins is not yet entirely clear. For example, AFL was demonstrated 

to contribute to inflammation [61], but also stimulated macrophage killing, thus protecting 

the host [62*]. The 6-blade β-propeller fold is formed by a tandem repeat of one single chain 

in fungi or by trimerization of a much shorter chain in bacteria (Figure 4A,B). In AFL, the six 

binding sites exhibit minor differences in amino acid composition with variations in 

oligosaccharide preference as observed by soaking of crystals in a mixture of 

oligosaccharides [63*]. Nevertheless, both bacterial and fungal family members bind fucose 

in a unique conserved binding mode involving hydrogen bonds between an arginine and the 

O4 hydroxyl or ring oxygens, and between a Glu/Gln residue and the O3 and O4 hydroxyls as 

well as a CH-π interaction with a Tyr/Trp residue (Figure 4C-F). The general preference for 

blood group O (H-type 2) and Lewisy was rationalized through molecular modeling [64], 

showing that the binding pockets are well oriented for multivalent binding of terminal 

αFuc1-2Gal epitopes (Figure 4D). Apart for its preference for Lewisy, AFL binds to all 



fucosylated oligosaccharides, and therefore to all tissues expressing Lewis and ABH antigens. 

The αFuc1-3GlcNAc disaccharide present in Lewisx/y is also recognized, and analysis of the 

crystal complexes led to the surprising observation that the “closed” conformation, observed 

in solution, solid state and modeling [65], is forced into an “open” conformation when 

entering the binding sites (Figure 4E-F). A conserved aromatic residue appears to be 

responsible for guiding the fucose into the binding site by separating the fucose and 

galactose rings that are stacked together in solution [66**].  Opening of the canonical Lewisx 

conformation apparently involves the transient distortion of the central N-acetyl-

glucosamine ring, as shown by crystal structures of another family member, Ralstonia 

solanacearum lectin (RSL), in complexes with Lewisx and sialyl-Lewisx, combined with 

extensive molecular dynamics simulations [66**].  

 

Fighting back: glycans, glycocompounds and glycomimetics as anti-infectious 

agents 

Anti-infectious strategies can be based on competition with the attachment of pathogens to 

HBGAs on target tissues. Such protection is provided naturally by human milk, which 

contains a large variety of fucosylated and sialylated oligosaccharides (HMOs). These soluble 

oligosaccharides protect newborns from infections in a dual fashion, as anti-microbials and 

prebiotics [6*,67*]. Interesting examples, where structural information is available, are 

cholera [44,45**] and norovirus infections [68]. Building on the accumulated structural 

knowledge of lectin-oligosaccharide interactions, it has been possible to design 

glycomimetics with increased affinities for lectin receptors, achieving a stronger competition 

effect [69]. Classical strategies are centered on optimizing the binding energy between 

protein and carbohydrates, i.e. increasing the enthalpy of binding by maximizing the number 

of hydrogen bonds and/or hydrophobic contacts, and decreasing the entropy contribution 

by reducing the flexibility of the oligosaccharide. For example, the careful design of the 

aglycone (=non-sugar) part of a fucose derivative significantly increased the selectivity for its 

target B. cenocepacia BambL [70]. Similarly, a fucopyranoside glycomimetic inhibitor of A. 

fumigatus FleA was shown to inhibit binding and phagocytosis of conidia by macrophages 

[62*]. 



Another strategy is to design multivalent ligands that simultaneously bind to several binding 

sites of a multivalent receptor, resulting in a strong gain in avidity (=apparent multivalent 

affinity) [71*,72*]. A successful example is a divalent galactoside ligand of P. aeruginosa 

LecA, which was able to lower the cellular invasiveness of the bacteria by up to 90 % by 

chelating two neighboring receptor binding sites [73]. Other examples are the prevention of 

human immunodeficiency virus (HIV) transmission by glycodendrimers [74] and the design of 

multi-valent inhibitors against bacterial toxins [72*]. Based on high-throughput screening of 

compounds libraries, both in vitro and in silico, it is also possible to identify non-

carbohydrate glycomimetics able to compete in carbohydrate binding sites, as accomplished 

for noroviruses [75]. Yet another possibility is the design of HBGA-blocking antibodies as 

therapeutic agents ([76] and references therein). 

 

Conclusions and Perspective 

A large variety of human pathogens recognize blood group antigens. These include viruses, 

bacteria and fungi, which employ viral coat proteins, microbial adhesins, soluble lectins and 

toxins to invade and conquer their hosts [2]. In this review, we focus on human infections of 

the gastrointestinal tract and the airways. A common microbial strategy is to use HBGA 

binding for attachment and entry to the host cells. Secretors, who display these antigens on 

tissues exposed to the external environment and on their mucus, nurture symbionts [6*] but 

are also disproportionally affected by infectious diseases (however, as described below, 

hosts have their own measures to force selective pressures onto microbes, e.g. through 

blood group polymorphism, to prevent the eradication of entire populations [4,5*]). Another 

microbial strategy is to employ HBGA-binding toxins. Not discussed in this review is the 

molecular mechanism of parasitical malaria infection, where adhesins facilitate erythrocyte 

rosetting by binding primarily to blood group A antigens [77], explaining why individuals with 

blood group A are most severely affected by this disease. This has consequences on a 

population level, due to natural selection and evolution. The Ganges delta, for example, 

where both malaria and cholera are endemic, has a unique blood group profile, with the 

highest percentage of blood group B in the world. Blood group polymorphism is an 

important asset for surviving in this world [4]. Microbes respond by evolving many strains 

with different binding properties, but the hosts can fight back. Of particular importance is 

the continuously renewing mucus layer, which nurtures symbionts and helps expel 



pathogens [1,6*]. Another trick is human milk, which mimics HBGAs, serving as non-

degradable receptor decoy protecting human infants [67*]. The high fucose-content of 

human milk is likely of particular importance for the protective effect. Modified 

oligosaccharides, glycomimetics and dendrimers work in a similar way, with potential as 

medications and prophylactics [69,72*]. Enveloped viruses like influenza virus and HIV take 

their host’s membrane coats along on their journey to a new victim. This provides them with 

disguise, but can also elicit immune reactions against foreign blood groups. The molecular 

arms race is on, and we are now beginning to understand its molecular underpinnings, 

providing us with new tools to fight disease. 
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Figure Legends 

 

Figure 1: Biosynthetic pathways of type 1 and type 2 human histo-blood group antigens 

(HBGAs). Carbohydrate symbols are shown in the standard schematic representation 

introduced by the Consortium for Functional Glycomics. H-type 1 (3-linkage) and H-type 2 

(4) precursors are fucosylated by -1,2-fucosyltransferase (FUT2) or -1,3/4-

fucosyltransferase (FUT3/4), adding the Secretor fucose and Lewis fucose, respectively. 

Blood group H determinants (characteristic of blood group O) can subsequently be modified 

by the action of A or B glycosyltransferases, which add an -GalNAc or -Gal residue to -

Gal, to give rise to blood group A or B antigens, respectively. Non-secretors lack the FUT2 

gene and can therefore only synthesize the smallest Lewis antigens, Lewisa and Lewisx.  

 

Figure 2: HBGA recognition by noro- and rotaviruses. (A) Structure of NoV capsid (PDB 1IHM 

[19*]). (B) Structure of individual protruding P domains (dimers). Gray  P domain of GI NoV 

in complexes with H-pentasaccharide (green sticks; PDB 2ZL6 [14*]) and A-trisaccharide 

(cyan sticks; PDB 2ZL7 [14*]). Green/slate  GII P domain bound to A-trisaccharide (yellow 

sticks; PDB 3SLD [22*]). (C) Top view of the GI and GII P domain complexes shown in (B) and 

close-up view of GI NoV interaction with H-type 1 pentasaccharide (green sticks, with fucose 

in magenta) and the corresponding A-trisaccharide (cyan sticks, including fucose). Important 

amino acid and carbohydrate residues are labeled, H-type 1 residues in italics. H-bonds are 

indicated by red dashed lines, and the hydrophobic interaction to Trp with yellow filled 

circles. Note that the acetamido group of GalNAc characteristic of A antigens partially mimics 

the interactions of the H-type 1 fucose. (D) Top view of the GII P domain complex shown in 

(B), and details of GII NoV interaction with A-trisaccharide (yellow sticks, fucose in magenta). 

The virus is anchored to the fucose residue, while the GalNAc residue provides only limited 

contacts. (E) RV capsid structure (PDB 4V7Q [78*]) with protruding VP4 spikes (teal). (F) Top 

domains of VP4, with A-trisaccharide (yellow sticks, with fucose in magenta) bound to the 

VP8* domain. The close-up view shows details of VP8* A-trisaccharide interaction (PDB 

4DRV [28]). Carbohydrate residues are labeled, the fucose is highlighted in magenta and H-

bonds are indicated with red dashes. Main interactions are to the GalNAc residue 

characteristic of A antigens. 



 

 

Figure 3: HBGA-interactions of selected bacterial pathogens of the gastrointestinal tract. (A) 

Molecular basis of H. pylori adaptation to human HBGA polymorphism. The H. pylori adhesin 

BabA binds to HBGAs with three loops (DL1, CL2, DL2), displaying significant variation 

between different strains. For example, ABO generalists can accommodate the Gal (green 

sticks) or GalNAc residues (not shown) characteristic of B or A antigens, respectively, 

whereas bulky residues in DL1 prevent HBGA binding due to steric interference, leading to 

O-specialists (close-up view). This panel is reproduced with permission from [31*]. (B) 

Molecular basis of cholera blood group dependence. The culprit is the cholera toxin (CT; 

cartoon representation), which binds to HBGAs (box) and GM1 (green sticks; PDB 3CHB [79]). 

Several CT structures are superimposed. The CT A subunit is colored purple (PDB 1LTS [80]), 

the CT B pentamer blue, gray and magenta (PDB 3CHB [78]). A close-up view shows the 

detailed interactions of CT with the H-tetrasaccharide (white sticks; PDB 5ELB [45**]) and 

the A-pentasaccharide (colored sticks; PDB 3ELD [45**]). The color code is the same as for 

the standard schematic representations shown below. Note that H-tetra can bind in two 

orientations, whereas the A-pentasaccharide (BGA or HMO) binds in a single orientation (Se 

Fuc, Secretor fucose; Le Fuc, Lewis fucose).  

 

Figure 4: HBGA-pathogen interactions of selected airway infections. (A,B) Overall 

representations of the 6-bladed -propeller folds of BambL in complex with the H-type 2 

determinant (A, PDB 3ZZV [60]) and AFL (FleA) with a blood group A determinant (B, PDB 

4AH4 [63]). Coloring is by protein chain or blade, respectively. (C) Close-up view of the 

fucose binding site 3 in AFL. (D-F) Surface representations of the binding of H-type 2 (D; PDB 

3ZZV [60]) and Lewisx (E, PDB 3ZW1 [60]) determinants in the intramolecular binding site of 

BamBL, and Lewisy (F, PDB 4D4U [63]) in binding site 3 of AFL.   



 
 
Figure 1 Biosynthetic pathways of type 1 and type 2 human histo-blood group antigens 
(HBGAs). Carbohydrate symbols are shown in the standard schematic representation 

introduced by the Consortium for Functional Glycomics. H-type 1 (3-linkage) and H-type 2 

(4) precursors are fucosylated by -1,2-fucosyltransferase (FUT2) or -1,3/4-
fucosyltransferase (FUT3/4), adding the Secretor fucose and Lewis fucose, respectively. 
Blood group H determinants (characteristic of blood group O) can subsequently be modified 

by the action of A or B glycosyltransferases, which add a GalNAc or Gal residue to -Gal, to 
give rise to blood group A or B antigens, respectively. Non-secretors lack the FUT2 gene and 
can therefore only synthesize the smallest Lewis antigens, Lewisa and Lewisx.  
  



 
 
Figure 2 HBGA recognition by noro- and rotaviruses. (A) Structure of NoV capsid (PDB 1IHM 

[19*]). (B) Structure of individual protruding P domains (dimers). Gray  P domain of GI NoV 
in complexes with H-pentasaccharide (green sticks; PDB 2ZL6 [14*]) and A-trisaccharide 

(cyan sticks; PDB 2ZL7 [14*]). Green/slate  GII P domain bound to A-trisaccharide (yellow 
sticks; PDB 3SLD [22*]). (C) Top view of the GI and GII P domain complexes shown in (B) and 
close-up view of GI NoV interaction with H-type 1 pentasaccharide (green sticks, with fucose 
in magenta) and the corresponding A-trisaccharide (cyan sticks, including fucose). Important 
amino acid and carbohydrate residues are labeled, H-type 1 residues in italics. H-bonds are 
indicated by red dashed lines, and the hydrophobic interaction to Trp with yellow filled 
circles. Note that the acetamido group of GalNAc characteristic of A antigens partially mimics 
the interactions of the H-type 1 fucose. (D) Top view of the GII P domain complex shown in 
(B), and details of GII NoV interaction with A-trisaccharide (yellow sticks, fucose in magenta). 
The virus is anchored to the fucose residue, while the GalNAc residue provides only limited 
contacts. (E) RV capsid structure (PDB 4V7Q [78*]) with protruding VP4 spikes (teal). (F) Top 
domains of VP4, with A-trisaccharide (yellow sticks, with fucose in magenta) bound to the 
VP8* domain. The close-up view shows details of VP8* A-trisaccharide interaction (PDB 
4DRV [28]). Carbohydrate residues are labeled, the fucose is highlighted in magenta and H-
bonds are indicated with red dashes. Main interactions are to the GalNAc residue 
characteristic of A antigens. 



 
 
Figure 3 HBGA-interactions of selected bacterial pathogens of the gastrointestinal tract. (A) 
Molecular basis of H. pylori adaptation to human HBGA polymorphism. The H. pylori adhesin 
BabA binds to HBGAs with three loops (DL1, CL2, DL2), displaying significant variation 
between different strains. For example, ABO generalists can accommodate the Gal (green 
sticks) or GalNAc residues (not shown) characteristic of B or A antigens, respectively, 
whereas bulky residues in DL1 prevent HBGA binding due to steric interference, leading to 
O-specialists (close-up view). This panel is reproduced with permission from [31*]. (B) 
Molecular basis of cholera blood group dependence. The culprit is the cholera toxin (CT; 
cartoon representation), which binds to HBGAs (box) and GM1 (green sticks; PDB 3CHB [79]). 
Several CT structures are superimposed. The CT A subunit is colored purple (PDB 1LTS [80]), 
the CT B pentamer blue, gray and magenta (PDB 3CHB [78]). A close-up view shows the 
detailed interactions of CT with the H-tetrasaccharide (white sticks; PDB 5ELB [45**]) and 
the A-pentasaccharide (colored sticks; PDB 3ELD [45**]). The color code is the same as for 
the standard schematic representations shown below. Note that H-tetra can bind in two 
orientations, whereas the A-pentasaccharide (BGA or HMO) binds in a single orientation (Se 
Fuc, Secretor fucose; Le Fuc, Lewis fucose).   



 

 
 
Figure 4 HBGA-pathogen interactions of selected airway infections. (A,B) Overall 

representations of the 6-bladed -propeller folds of BambL in complex with the H-type 2 
determinant (A, PDB 3ZZV [60]) and AFL (FleA) with a blood group A determinant (B, PDB 
4AH4 [63]). Coloring is by protein chain or blade, respectively. (C) Close-up view of the 
fucose binding site 3 in AFL. (D-F) Surface representations of the binding of H-type 2 (D; PDB 
3ZZV [60]) and Lewisx (E, PDB 3ZW1 [60]) determinants in the intramolecular binding site of 
BamBL, and Lewisy (F, PDB 4D4U [63]) in binding site 3 of AFL.  
 


