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Abstract (49 words) 11 

Matrix proteolysis mediated by MT1-MMP facilitates the invasive migration of tumor 12 

cells in dense tissues, which otherwise get trapped in the matrix because of limited 13 

nuclear deformability. A digest-on-demand response has been identified, which 14 

requires nucleus-microtubule linkage through the LINC complex and triggers MT1-15 

MMP surface-exposure to facilitate nucleus movement. 16 
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Text (1449 words) 23 

 24 

Introduction 25 

During their metastatic journey, tumor cells migrate through dense and complex 3D 26 

microenvironments within connective tissues. For carcinoma cells deriving from 27 

epithelial tumors, dissemination starts by breaching the 0.1-1 Pm thick basement 28 

membrane (BM) made of laminins, cross-linked type IV collagen and proteoglycans 29 

that surround epithelial tissues. BM transmigration signals the transition from in situ 30 

to more aggressive infiltrating carcinomatous lesions; then invasive cells can 31 

disseminate, mostly in cohorts, through interstitial tissues consisting of bundles of 32 

type I collagen-rich fibrils interspaced with discontinuities. A salient feature of tumor 33 

cell invasion in confining environments is that it requires extensive nuclear 34 

deformation to squeeze the bulky and stiff nucleus through constricting pores within 35 

the tissue matrix [1]. Recent studies, which are detailed in Box 1, revealed that 36 

nuclear deformations during constricted migration can lead to nuclear envelope (NE) 37 

rupture with potential consequences for genome stability and tumor progression [2-38 

5]. In addition, it has been shown that when the pore size of the matrix meshwork is 39 

below the deformability of nucleus, then cell movement stops [1]. It is also 40 

established that surface-exposed membrane-type (i.e. trans-membrane) matrix 41 

metalloproteinases (MT-MMPs) can enlarge the pores in the matrix [1, 6]. All 42 

together, these findings have raised important questions as to whether and how the 43 

matrix proteolysis machinery of cancer cells can scale with the level of confinement 44 

by the matrix and what is the influence of nuclear deformation and mechanosensing 45 

to this response and to the invasive potential of tumor cells. 46 

 47 
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Nucleus pulling and pushing schemes generate nuclear deformation during 48 

confined migration 49 

Deformability and mechanical stability of the nucleus depends on nuclear lamina 50 

proteins lamin-A and B (LMNA, -B), which form a viscoelastic proteinaceous network 51 

underneath the inner nuclear membrane. Nuclear stiffness scales with LMNA levels: 52 

LMNA overexpression impedes transmigration by augmenting nuclear rigidity, while 53 

reducing LMNA levels increases invasion speed in 3D reconstituted matrix [1, 2, 7]. 54 

Thus, nuclear stiffness and limited nuclear deformability have been identified as 55 

restrictive factors that impede cell migration in confined environments [1, 2]. 56 

Interestingly, a gradient of LMNA expression decreasing from the core to the invasive 57 

front of tumor xenografts has been reported and LMNA-deficient tumors have a 58 

growth advantage [2, 5]. The downside is that nuclear resistance to mechanical 59 

insults drops with LMNA deficiency and repeated passages across constrictions can 60 

lead to cell death as a failure to repair consequent NE rupture and DNA damage [2-5] 61 

(see Box 1).  62 

Nuclear deformation reflects the pulling and pushing schemes by tumor cells to 63 

move their nucleus across constrictions. As during cell migration in 2D, integrin-64 

based adhesion to surrounding collagen fibers and actomyosin-based contractility 65 

produce traction forces that can propel the nucleus forward through constraining 66 

spaces ([8] and references herein). Additionally, pulling forces can result from dynein 67 

and kinesin molecular motors attached to the nuclear surface and moving the 68 

nucleus along the microtubule network [9]. Proteins responsible for nucleo-69 

cytoskeleton attachment and motor association to the surface of the nucleus belong 70 

to the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. This complex 71 

consists in SUN and nesprin proteins, which span the inner and outer nuclear 72 
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membrane, respectively, and interact through SUN domain and the carboxy-terminal 73 

Klarsicht, ANC-1, Syne Homology (KASH) domain of nesprins in the intermembrane 74 

space. Nesprin-2 was reported to be required for recruitment of LIS1, a regulatory 75 

protein of dynein motor function, to the cytoplasmic face of the nucleus in invasive 76 

MDA-MB-231 breast tumor cells [7]. In humans, LIS1 deficiency leads to 77 

lissencephaly (smooth brain) due to severe cortical neuron migration and positioning 78 

defects caused by impaired dynein-dependent nucleokinesis. It was recently found 79 

that LINC complex and LIS1 mediate nucleo-centrosome linkage and centrosome 80 

positioning ahead of the nucleus [7]. These observations suggest that Nesprin-2 and 81 

LIS1 contribute to pulling forces exerted on the nucleus by dynein moving along 82 

microtubules to support nucleus movement through confining environments 83 

generating nuclear deformation (Figure 1). 84 

 85 

Invadopodia mediate MT1-MMP-based matrix degradation by cancer cells 86 

Membrane-anchored MT1-MMP (aka MMP14) is the sword arm of the collagenolytic 87 

program of carcinoma cells. Using the intraductal mammary gland xenograft model, it 88 

was reported that silencing of MT1-MMP impairs the ability of ductal carcinoma in 89 

situ tumor xenografts to progress into infiltrating lesions, providing validation for the 90 

prominence of MT1-MMP for BM transmigration by breast cancer cells in vivo [10]. 91 

MT1-MMP has also been implicated in invasive migration of mesenchymal cells 92 

through the fibrous interstitial type I collagen network, in the infiltration of vascular 93 

and lymphatic compartments and in extravasation during metastasis. Inhibition of 94 

MT1-MMP function can evoke protease-independent programs of cancer cells, which 95 

can switch to contractility-driven ameboid movement or use the nucleus as a piston 96 

to propel the cell ahead [6, 8]. Moreover, in support of a major role during cancer 97 
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dissemination, MT1- MMP is linked to malignancy of multiple tumor types including 98 

lung, gastric, colon, breast, and cervical carcinomas, gliomas, and melanomas. MT1-99 

MMP is accumulated and spatially restricted to invadopodia that correspond to actin-100 

based plasmalemmal subdomains, which combine membrane protrusive and matrix 101 

proteolytic functions to promote cancer cell invasion and metastasis [11]. 102 

Invadopodia form dynamically in association with constricting matrix fibers and can 103 

vary in shape and possibly in composition depending on extracellular matrix topology 104 

and components [12]. 105 

 106 

Nuclear Confinement triggers polarized MT1-MMP/invadopodia-based matrix 107 

degradation ahead of the nucleus 108 

Contrasting with gel-like pseudopodial protrusions that can squeeze through narrow 109 

pores between matrix fibers, the nucleus has limited deformability (experimentally 110 

estimated to be ~10% of original nuclear cross section) [1]. When nuclear 111 

deformability limit is reached, cell migration physically stops as the nucleus becomes 112 

entrapped in the fibrous matrix network [1, 7]. It is well established that pericellular 113 

collagenolysis by matrix metalloproteinases (MMPs) can modulate restricting 114 

environmental conditions by widening ECM pores [1]. Recent studies demonstrated 115 

that MMP inhibition during confined migration of tumor cells in dense collagen 116 

environment leads to increased nuclear deformation and mechanical rupture of the 117 

NE [1, 3]. However, how mechanical input from the ECM microenvironment triggers 118 

the invadopodial response is unknown and of paramount importance in light of data 119 

showing that the biomechanical properties of the microenvironment have major 120 

impact on cancer progression [13]. 121 
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Recent work in breast cancer cells revealed that surface exposure of MT1-MMP and 122 

pericellular collagenolysis are adaptive responses, which are switched off under low 123 

nucleus confinement, while decreased matrix pore size or increased nuclear stiffness 124 

trigger the collagenolytic program [7]. MT1-MMP is known to recycle from 125 

endolysosomal compartments to invadopodia in metastatic breast cancer cells [11]. It 126 

was found that MT1-MMP-storage endolysosomal compartments distribute ahead of 127 

the nucleus with a centrosome-centered polarization optimal to fuel MT1-MMP 128 

delivery to invadopodia forming at the nuclear anterior zone (Figure 1, inset 2) [7]. 129 

The polarization of MT1-MMP-secretory compartments and the assembly of 130 

functional invadopodia require integrity of nucleo-microtubule linkage depending on 131 

the LINC complex and LIS1 functionality (Figure 1, inset 1) [7]. Thus, a working 132 

model is that tension generated by dynein motor along the microtubule network 133 

through nuclear envelope and cell cortex anchoring, pulls the nucleus forward for 134 

movement; extra tension on trapped nucleus through constricting ECM fibrils triggers 135 

formation of proteolytically-active invadopodia and dissolution of the confining fibrils 136 

to open the way for nucleus migration during confined invasion of tumor cells (Figure 137 

1). 138 

This model raises several questions. One question is how migrating cells 139 

negotiating changing environments, recognize nucleus-constricting fibers and 140 

degrade them, while ECM fibrils involved in integrin-based adhesion and cell 141 

movement at the cell front are spared from degradation? One possible mechanism 142 

for segregation of specialized degradation and adhesion contact zones is that distinct 143 

collagenic receptors selectively trigger assembly of peripheral focal adhesions to 144 

mediate traction force generation, and invadopodia, ahead of the nucleus. While 145 

beta1 and -3 integrin receptors are classically involved in cell-collagen adhesion, 146 
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receptors mediating invadopodia formation in association with collagen fibers remain 147 

poorly defined and need to be identified. Another conundrum is how mechanical 148 

constrains on the nucleus can trigger invadopodia formation and MT1-MMP delivery. 149 

As tumor cells have constantly to adapt to changes in the matrix environment, these 150 

responses have to happen on a fast time-scale, too fast for genetic regulation. 151 

Several studies revealed the ability of the nucleus to sense and respond to forces 152 

supporting the emerging concept of nuclear mechanotransduction [14]. Nuclear 153 

mechanosignaling effectors have been recently identified including the nuclear 154 

membrane protein emerin, which can contribute to nucleo-centrosome linkage and 155 

mediates the response to tensional force applied to the nucleus in relation with LINC 156 

complex and LMNA function [14]. Therefore, a possible mechanism to be further 157 

explored is that nuclear tension and mechanosignaling can control the recycling 158 

machinery ensuring MT1-MMP delivery to invadopodia. These observations also 159 

highlight the possibility to target the machinery linking nuclear tension with MT1-MMP 160 

surface delivery as a new therapeutic road to target cancer metastasis. 161 

  162 
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BOX 1: Mechanical stress on the nucleus in cancer (200 words max/206 words) 206 

Cells are submitted to compressive forces during physiological and disease 207 

conditions. Tumor growth can generate compressive forces due to overgrowth and 208 

confinement by the tissue environment. In addition, cancer cells are submitted to 209 

elastic deformations of the cell body and bulky nucleus as they invade across 210 

interstitial spaces during metastatic spread [6]. Recent studies reported that 211 

extensive nuclear deformation could result in local NE rupture, which can be rapidly 212 

repaired [3, 4]. Leakage of nuclear DNA repair factors as well as transient exposure 213 

of nuclear DNA to cytoplasmic nucleases such as three-prime repair exonuclease 214 

(TREX)1 can lead to DNA damage and double-strand breaks (DSB) as indicated by 215 

appearance of foci of DNA damage repair marker γ-H2AX [3, 4, 15]. Sensitivity of 216 

tumor cells to mechanical nuclear stress somehow scales with LMNA levels. 217 

Genomic analysis of cancer cell lines following repeated cycles of migration through 218 

small microfabricated rigid pores revealed that NE rupture can lead to genomic 219 

alterations and chromosomal copy-number changes [15]. All together, repetitive 220 

nuclear rupture could contribute to cancer progression by favoring genomic instability 221 

and chromosomal rearrangements, an idea that remains to be experimentally tested. 222 

  223 
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Legend Figure 1: Model of invadopodia-, MT1-MMP-based matrix digest-on-224 

demand response triggered upon nucleus confinement during cancer invasion 225 

Confined migration of tumor cells through dense 3D collagen network results in 226 

nucleus confinement by constricting collagen fibrils. Nucleus-microtubule/centrosome 227 

linkage and nucleus pulling is mediated by LINC complex interacting with dynein-Lis1 228 

molecular motor (see inset 1). Cortical anchoring of microtubules is required for 229 

centrosome and MT1-MMP-positive endosome positioning and for targeted delivery 230 

of MT1-MMP to invadopodia. Nucleus movement is facilitated by localized 231 

invadopodia-based pericellular proteolysis of confining fibrils ahead of the nucleus 232 

(right inset). Left inset, scheme of nucleus-cytoskeletal linkage through LINC complex 233 

components nesprin and SUN in association with lamins. Lis1 in complex with dynein 234 

associates to the NE depending on Nesprin-2 and is involved in nucleus-microtubule 235 

linkage and nucleus pulling (adapted from [7]). Inset 2, model of polarized surface-236 

delivery of MT1-MMP from recycling endolysosomes (adapted from [11]). 237 
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