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Abstract All-atom molecular dynamics (MD) simulations were used to predict water-
cyclohexane distribution coefficients Dcw of a range of small molecules as part of the
SAMPL5 blind prediction challenge. Molecules were parameterized with the trans-
ferable all-atom OPLS-AA force field, which required the derivation of new param-
eters for sulfamides and heterocycles and validation of cyclohexane parameters as a
solvent. The distribution coefficient was calculated from the solvation free energies
of the compound in water and cyclohexane. Absolute solvation free energies were
computed by an established protocol using windowed alchemical free energy per-
turbation with thermodynamic integration. This protocol resulted in an overall root
mean square error (RMSE) in logDcw of almost 4 log units and an overall signed er-
ror of−3 compared to experimental data. There was no substantial overall difference
in accuracy between simulating in NV T and NPT ensembles. The signed error sug-
gests a systematic error but the experimental Dcw data on their own are insufficient to
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uncover the source of this error. Preliminary work suggests that the major source of
error lies in the hydration free energy calculations.

Keywords molecular dynamics · solvation free energy · OPLS-AA force field ·
ligand parameterization · free energy perturbation · thermodynamic integration ·
cyclohexane-water distribution coefficients

1 Introduction

The distribution coefficient DAB of a small molecule quantifies the partitioning of a
molecule between two immiscible phases A and B. Of particular importance in drug
discovery are distribution coefficients between the aqueous phase and hydrophobic
solvents, which mimic to some degree biological hydrophobic environments such
as the lipid bilayer of the cell membrane. Distribution coefficients can be used to
describe and model the distribution of molecules in chemical and biological systems.
In the drug discovery process, they are key quantities for the design of drugs that can
diffuse across cell membranes (blood brain barrier, epithelial lining of the gut) and
thus reach their site of action inside the body or a cell itself [1].

In principle, distribution coefficients should also be good benchmark systems for
the evaluation of the predictive power of quantitative computational methods [2],
similar to the hydration free energy calculations of previous SAMPL challenges [3–
7].

For the SAMPL5 challenge we employed classical all-atom molecular dynamics
(MD) simulations in explicit solvent with additive and transferable force fields to
predict distribution coefficients. We are also interested in the question if distribution
coefficients might be useful target observables in the process of parameterizing small
molecules and drug-like compounds.

The data set provided for the SAMPL5 challenge consisted of 53 small, drug-like
molecules (Figures 1a and 1b) for which water-cyclohexane distribution coefficients
[8] were measured at Genentech using a mass spectrometry-based assay [9]. Their
distribution coefficients had not been published but were known to the SAMPL5
organizers.

Here we employed explicit solvent MD simulations in conjunction with a win-
dowed alchemical free energy perturbation approach to compute absolute solvation
free energies of the compounds in water (∆Gw) and cyclohexane (∆Gc). The cyclohexane-
water partition coefficient Dcw (or rather, its base-10 logarithm, indicated by log) is
then

logDcw = (∆Gw−∆Gc)(kT )−1 loge, (1)

where k = 1.987207×10−3 kcal ·mol−1 ·K−1 is Boltzmann’s constant, T is the tem-
perature, and e Euler’s number. If logDcw is zero then the solute is equally likely to
be found in the water and the cyclohexane phase. A logDcw < 0 indicates that the
polar water phase is favored whereas for logDcw > 0 the hydrophobic cyclohexane is
preferred.

The interactions between all atoms in the system were parameterized on the basis
of the classical OPLS-AA force field [10]. OPLS-AA is a transferable force field
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1a Chemical structures of the 53 compounds included in the SAMPL5 data set.

with partial atomic charges determined from calculations on small model compounds;
unlike other classical force fields, these partial charges are considered fixed and part
of the atom type in the same way as the Lennard-Jones potential parameters. This
leads to a rich set of atom types that can be directly applied to an atom in another
molecule that experiences the same chemical environment as the atom in the model
compound. Thus, in principle OPLS-AA is a good force field for the parameterization
of small molecules based on chemical rules without the requirement of molecule-
specific adaptations such as additional partial charge calculations.
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1b Chemical structures of the 53 compounds included in the SAMPL5 data set (continued).

2 Methods

Calculations were performed with protocols similar to our previous work in the SAMPL3
[11] and SAMPL4 [12] challenges but for completeness we describe the essential de-
tails below.
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Fig. 2: Chemical structures of the motifs for which new OPLS-AA parameters had to
be generated; see Table 1 for the parameters.

2.1 Force field parameters

The SAMPL5 data set contained 53 compounds (see Figures 1a and 1b together with
their SAMPL5 ID numbers), which were parameterized in the protonation and tau-
tomeric forms as provided by the organizers, with the exception of compound 042
for which tautomeric forms were considered (see below). The SMILES string of
each compound was converted to PDB format with CORINA version 3.60 (http://
www.molecular-networks.com). Molecules were parameterized with the OPLS-
AA all-atom force field [13–19]. The OPLS-AA force field files that were bundled
with Gromacs 4.6.5 [20, 21] were used as a starting point and extended with param-
eters found in the literature [11, 12, 22–28]. Topologies were generated using the
MOL2FF algorithm (O. Beckstein and B. I. Iorga, unpublished), which automatically
assigns OPLS-AA atom types based on the chemical function as determined by the
CACTVS Chemoinformatics Toolkit (http://www.xemistry.com/). All force field
parameters for the SAMPL5 compounds were deposited in the Ligandbook repository
https://ligandbook.org [29] (see Table 3 for the individual LigandbookIDs).

The OPLS-AA force field has been parameterized together with the TIP4P wa-
ter model [13–19] and in order to remain consistent with this standard choice, we
also employed the standard TIP4P parameters [30]. For simulations with cyclohex-
ane we generated parameters with MOL2FF and tested them with simulations of bulk
cyclohexane (see Results).

2.2 Parameterization of missing OPLS-AA parameters

Force field parameters were not available in the published OPLS-AA force field for
a number of chemical groups (N-substituted sulfamide, 2H-pyridazin-3-one, thio-
phene, 1,2,4-triazine, 1,2,4-thiadiazole and 1,3,4-thiadiazole, see Figure 2) that were
present in the SAMPL5 data set. CM5-derived charges were calculated for these
chemical groups using Gaussian09 (revision D.01) [31] and following the protocol
recently described by Jorgensen and colleagues [32, 33], with a scaling factor of 1.20.
These newly generated parameters are presented in Table 1. When necessary, other
missing atom types, bond, angle and dihedral bonding parameters were adapted from
the existing ones using the original OPLS-AA philosophy or obtained in a manner
similar to the published OPLS-AA protocol [14].

http://www.molecular-networks.com
http://www.molecular-networks.com
http://www.xemistry.com/
https://ligandbook.org
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Table 1: New OPLS-AA parameters for N-substituted sulfamide, 2H-pyridazin-3-one, thiophene, 1,2,4-triazine,
1,2,4-thiadiazole and 1,3,4-thiadiazole chemical groups (CM5 charges).

namea typeb Zc m (u)d q (e)e σ (nm)f ε (kJ·mol−1)g

opls_474A SY 16 32.0600 0.852 0.355 1.046000 ; S in sulfamide
opls_475A OY 8 15.9994 −0.444 0.296 0.711280 ; O in sulfamide
opls_480A N 7 14.0067 −0.464 0.325 0.711280 ; N in sulfamide
opls_483A HC 1 1.0080 0.132 0.250 0.125520 ; CHx–N in sulfamide
opls_482A CT 6 12.0110 −0.155 0.350 0.276144 ; CH3–N in sulfamide
opls_484A CT 6 12.0110 −0.023 0.350 0.276144 ; RCH2–N in sulfamide
opls_484B CT 6 12.0110 0.109 0.350 0.276144 ; R2CH–N in sulfamide
opls_484C CT 6 12.0110 0.241 0.350 0.276144 ; R3C–N in sulfamide

opls_750A NZ 7 14.0067 −0.282 0.325 0.711280 ; N1 in 2H-pyridazin-3-one
opls_238A N 7 14.0067 −0.352 0.325 0.711280 ; N2 in 2H-pyridazin-3-one
opls_235A C 6 12.0110 −0.312 0.375 0.439320 ; C3 in 2H-pyridazin-3-one
opls_142A CM 6 12.0110 −0.088 0.355 0.317984 ; C4 in 2H-pyridazin-3-one
opls_142B CM 6 12.0110 −0.084 0.355 0.317984 ; C5 in 2H-pyridazin-3-one
opls_277A C_2 6 12.0110 0.060 0.375 0.439320 ; C6 in 2H-pyridazin-3-one
opls_236A O 8 15.9994 −0.456 0.296 0.878640 ; O3 in 2H-pyridazin-3-one
opls_241A H 1 1.0080 0.434 0.000 0.000000 ; H2 in 2H-pyridazin-3-one
opls_144A HC 1 1.0080 0.154 0.242 0.125520 ; H4 in 2H-pyridazin-3-one
opls_144B HC 1 1.0080 0.146 0.242 0.125520 ; H5 in 2H-pyridazin-3-one
opls_279A HC 1 1.0080 0.156 0.242 0.062760 ; H6 in 2H-pyridazin-3-one

opls_633A S 16 32.0600 0.104 0.355 1.046000 ; S in thiophene
opls_567A CW 6 12.0110 −0.172 0.355 0.292880 ; C2 in thiophene
opls_568A CS 6 12.0110 −0.152 0.355 0.317984 ; C3 in thiophene
opls_569A HA 1 1.0080 0.140 0.242 0.125520 ; H2 in thiophene
opls_570A HA 1 1.0080 0.132 0.242 0.125520 ; H3 in thiophene

opls_641A N 7 14.0067 −0.244 0.325 0.711280 ; N1 in 1,2,4-triazine
opls_641B N 7 14.0067 −0.264 0.325 0.711280 ; N2 in 1,2,4-triazine
opls_642A CQ 6 12.0110 −0.248 0.355 0.292880 ; C3 in 1,2,4-triazine
opls_641C N 7 14.0067 −0.422 0.325 0.711280 ; N4 in 1,2,4-triazine
opls_145A CA 6 12.0110 0.106 0.355 0.292880 ; C5 in 1,2,4-triazine
opls_145B CA 6 12.0110 0.077 0.355 0.292880 ; C6 in 1,2,4-triazine
opls_643A HA 1 1.0080 0.174 0.242 0.125520 ; H3 in 1,2,4-triazine
opls_643B HA 1 1.0080 0.163 0.242 0.125520 ; H5 in 1,2,4-triazine
opls_643C HA 1 1.0080 0.162 0.242 0.125520 ; H6 in 1,2,4-triazine

opls_633B S 16 32.0600 0.284 0.355 1.046000 ; S in 1,2,4-thiadiazole
opls_635A NB 7 14.0067 −0.443 0.325 0.711280 ; N2 in 1,2,4-thiadiazole
opls_634A CR 6 12.0110 0.211 0.355 0.292880 ; C3 in 1,2,4-thiadiazole
opls_635B NB 7 14.0067 −0.461 0.325 0.711280 ; N4 in 1,2,4-thiadiazole
opls_634B CR 6 12.0110 0.058 0.355 0.292880 ; C5 in 1,2,4-thiadiazole
opls_638A HA 1 1.0080 0.178 0.242 0.125520 ; H3 in 1,2,4-thiadiazole
opls_638B HA 1 1.0080 0.173 0.242 0.125520 ; H5 in 1,2,4-thiadiazole

opls_633C S 16 32.0600 0.118 0.355 1.046000 ; S in 1,3,4-thiadiazole
opls_634C CR 6 12.0110 0.067 0.355 0.292880 ; C2 in 1,3,4-thiadiazole
opls_635C NB 7 14.0067 −0.301 0.325 0.711280 ; N3 in 1,3,4-thiadiazole
opls_638C HA 1 1.0080 0.175 0.242 0.125520 ; H2 in 1,3,4-thiadiazole

a proposed OPLS-AA atom type name b bonded type c atomic number
d atomic mass in atomic mass units mu = 1.660538921×10−27 kg e partial charge in elementary charges e = 1.602176565×10−19 C
f length parameter of the OPLS-AA Lennard-Jones potential VLJ(r) = 4ε[(σ/r)12− (σ/r)6)] [10]
g energy well depth of the OPLS-AA Lennard-Jones potential VLJ(r)
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In this SAMPL5 challenge we tentatively evaluated the parameterization of fused
rings (for which no parameters are available in the OPLS-AA force field) using the
parameters of the individual rings. This approach is not fully validated yet , but if it
proves to be useful it will greatly facilitate the parameterization of new heterocyclic
systems and—following the OPLS-AA philosophy—extend the modularity and the
transferability of the parameters.

Compound 042 also provided a good opportunity to test the parameterization of
two alternative tautomeric forms of a heterocycle, i.e., aromatic (3-hydroxy-pyridazine)
and non-aromatic (2H-pyridazin-3-one, which represents the structure provided in
the SAMPL5 data set).

From the parameterization point of view, the compounds from the SAMPL5 data
set can be classified in four groups: group 1, with compounds containing chemi-
cal moieties available in the OPLS-AA force field: 004, 010, 011, 019, 026, 027,
049, 056, 061, 063, 065, 067, 069, 070, 071, 072, 074, 075, 081, 082, 084,
086, 088; group 2, with compounds containing chemical moieties absent from the
OPLS-AA force field, that were parameterized during this work: 005, 033, 042, 047,
059, 068, 092; group 3, with compounds containing fused rings for which param-
eterization used the parameters of individual rings: 007, 015, 017, 020, 044, 045,
048, 050, 055, 060, 090; group 4, with compounds presenting a combination of the
issues mentioned above, chemical moieties difficult to parameterize, and high con-
formational complexity: 002, 003, 006, 013, 021, 024, 037, 046, 058, 080, 083,
085.

During the SAMPL5 challenge preliminary calculations of logDcw for a few sim-
ple compounds with known solvation free energies in water and cyclohexane (∆Gw
and ∆Gc) showed that the distribution coefficient could be predicted with an error of
about 0.9 logD units (data not shown). In our submission of the SAMPL5 predictions,
this value was used as estimated uncertainty of the method for groups 1 and 2, and
was increased arbitrarily to 1.1 and 1.3 for groups 3 and 4 to account for the more
difficult parameterization.

2.3 Conformational flexibility

Considering the size and the macrocyclic structure of compound 083, two different
conformations (the one provided in the SAMPL5 data set and a second one, gener-
ated using CORINA) were considered as input structures for our protocol. By using
different starting structures for the simulations we wanted to evaluate the sensitivity
of the results to the initial conditions.

2.4 Hydration free energy and distribution coefficient calculation

Solvation free energies were calculated via alchemical free energy perturbation (FEP)
MD simulations of each molecule in a water box. All simulations were performed
with the MDPOW Python package (https://github.com/Becksteinlab/MDPOW)
with Gromacs 4.6.5 [21, 34] as its MD engine. A periodic rhombic dodecahedral sim-
ulation cell was employed. In simulations with water, the minimum distance between

https://github.com/Becksteinlab/MDPOW
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a solute and a box face was 1 nm whereas this distance was increased to 1.5 nm for
cyclohexane as solvent.

The simulations were run as Langevin dynamics (integration time step 2 fs) for
temperature control, with the friction coefficient for each particle computed as mass/0.1 ps
[35]. For simulations in the NPT ensemble, the average pressure was maintained near
the target value 1 bar with an isotropic Parrinello-Rahman barostat [36] with relax-
ation time constant τp = 1 ps and compressibility κT = 4.6×10−5 bar−1. The grid-
based neighbor list was updated every five time steps. Lennard-Jones interactions
were calculated up to a cutoff of 1 nm and a dispersion correction was applied to
energy and pressure to account for van der Waals interactions beyond the cutoff in a
mean field manner [37]. Coulomb interactions were evaluated with the SPME method
[38] with a short range cutoff of 1 nm, 0.12 nm Fourier grid spacing, sixth order spline
interpolation, and a relative tolerance of 10−6. All bonds containing hydrogen atoms
were constrained with the P-LINCS algorithm [39] using a twelfth order expansion
with a single iteration.

Solvated systems were energy minimized and carefully relaxed with an MD simu-
lation with a time step of 0.1 fs and duration of 5 ps. An initial equilibrium simulation
at constant temperature and pressure (T = 300 K, P= 1 bar) was carried out for 15 ns.
The last frame of the equilibrium simulation served as the starting configuration for
the windowed FEP calculations. The FEP calculations were carried out (1) in the
NV T ensemble and (2) in the NPT ensemble; in previous work we had exclusively
used the NV T ensemble for the FEP calculations [11, 12] so we wanted to evaluate if
there was a measurable difference between results from the two ensembles. Coulomb
interactions (partial charges) were linearly switched off over five windows (coupling
parameter λCoul ∈ {0, 0.25, 0.5, 0.75, 1}) while the van der Waals (Lennard-Jones)
interactions were maintained (i.e. λvdW = 0); sixteen windows were used to switch
off the Lennard-Jones term for the uncharged solute (λCoul = 1 and λvdW ∈ {0, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}). Each window was
simulated for 5 ns. The van der Waals calculations used soft core potentials with the
values suggested by Mobley and colleagues [35] (α = 0.5, power 1, and σ = 0.3 nm).
The calculations made use of the “couple-intramol = no” feature in Gromacs
[20, 21, 34], which maintains intramolecular interactions while decoupling all inter-
molecular ones. Solvation free energies and statistical errors for the discharging and
decoupling process were calculated with thermodynamic integration

∆G =
∫ 1

0

〈
∂H

∂λ

〉
dλ , (2)

where the derivative of the Hamiltonian H with respect to the coupling parameter λ ,
∂H /∂λ , was saved for every time step. Eq. 2 was integrated numerically with the
composite Simpson’s rule [40] as implemented in SciPy (http://www.scipy.org)
[41]. The error on ∆G was calculated by propagating the errors of the individual
〈∂H /∂λ 〉 FEP windows through Simpson’s rule as described previously [11].

The total solvation free energy (transfer from gas phase to aqueous phase at the
1M/1M Ben-Naim standard state)

∆Gsolv =−(∆GCoul +∆GvdW) (3)

http://www.scipy.org
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is the sum of the Coulomb and van der Waals contributions, with the minus sign orig-
inating from the convention in Gromacs that λ = 0 corresponds to the fully coupled
(solvated) state while λ = 1 describes a fully decoupled (gas-phase) solute.

In principle the distribution coefficient contains an average over all protonation
and tautomeric states of the compound, which we do not take into account in our
calculations. Instead we are calculating solvation free energies (Eq. 3) for one fixed
state of the compound. The corresponding partition coefficient

logPcw = (∆Gw−∆Gc)(kT )−1 loge (4)

is only valid for the specific state of the molecule but we nevertheless make the ap-
proximation

logDcw ≈ logPcw. (5)

2.5 Error analysis

The error ε on logDcw was calculated by error propagation from the errors of the
individual free energies as

ε =
√

ε2
∆Gc

+ ε2
∆Gw

(kT )−1 log10 e. (6)

The difference between experimental and computed water-cyclohexane distribu-
tion coefficients (“signed error”) for each compound, labeled with its identification
code ‘id’, was calculated as

∆id = logDexp
cw,id− logDcw,id, (7a)

ε∆ ,id =
√

(ε
exp
id )2 + ε2

id, (7b)

with the uncertainty ε∆ of ∆ determined as the standard error from propagating the
experimental and simulation errors (Eq. 6) through Eq. 7a.

The root mean square error (RMSE) was determined from the individual errors ∆

as

RMSE =
√
〈∆ 2〉=

√
N−1

N

∑
id

∆ 2
id, (8)

the absolute unsigned error (AUE) as

AUE = 〈|∆ |〉= N−1
N

∑
id
|∆id| , (9)

and the signed mean error (ME, also called the “mean signed error”, MSE) as

ME = 〈∆〉= N−1
N

∑
id

∆id. (10)
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The standard errors of the RMSE, AUE, and ME were estimated via error propagation
of the individual uncertainties Eq. 7b through Eqs. 8–10 as

εRMSE =
1

N RMSE

√
N

∑
id

∆ 2
idε2

∆ ,id =
1√
N

√
〈(∆ε∆ )2〉
〈∆ 2〉

, (11a)

εME = εAUE =
1√
N

√
〈ε2

∆
〉. (11b)

Eq. 11a followed the derivation of the root mean square error of prediction in Ref. [42]
but remains more conservative by omitting a correction factor of 1/

√
2.

3 Results and Discussion

The SAMPL5 set consisted of challenging compounds that required the introduction
of a number of new OPLS-AA atom types. The computed distribution coefficients
generally differed systematically from the experimental values, without any clear,
discernible pattern based on the chemical character of the compounds. We discuss
potential sources for the observed systematic error.

3.1 Validation of cyclohexane parameters

Cyclohexane was parameterized with the standard OPLS-AA alkane parameters, fol-
lowing the original work [14]. The parameterization was validated by (1) computing
the density as a function of temperature, (2) calculation of the chemical potential and
(3) calculation of the hydration free energy and comparison to experimental values.

The bulk density of cyclohexane was calculated from simulations with 140 cy-
clohexane molecules (cubic simulation cell with length 3 nm) of 100 ns length at
temperatures from 273 K to 353 K and P = 1 bar (Table 2). Experimental data from
228 experiments in the temperature range 273 K to 353 K were obtained from the
Reaxys database and compared to the computed values (Figure 3). A few experi-
mental data points and one computed value are below the melting point (279.47 K
[43]) and represent supercooled liquid; all reported values are below the boiling point
(353.7 K [43]). Over the whole liquid range, the simulations slightly underestimate
the density between −1% at low temperatures and −3.5% near the boiling point.
At T = 300 K, the error is −2% but the computed density 0.7595±0.0001g · cm−3

(standard error of the mean) is close to the density 0.755± 0.001g · cm−3 at 298 K
that was reported for the original OPLS-AA parameterization [14]. Overall, the pa-
rameterization reproduces the density of cyclohexane satisfactorily.

The chemical potential of cyclohexane µcyclohexane is the transfer free energy of a
cyclohexane molecule from vacuum to the pure cyclohexane solvent, ∆Gcyclohexane

c .
We calculated ∆Gcyclohexane

c with the FEP protocol described above. The computed
value is−4.00±0.06 kcal/mol, which matches the experimental value−4.43 kcal/mol
[44] rather well. The hydration free energy of cyclohexane ∆Gcyclohexane

w was calcu-
lated in a similar way and the calculated value of 2.03±0.05 kcal/mol agrees fairly
well (< 1 kcal/mol error) with the experimental value 1.23±0.60 kcal/mol [44].
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Table 2: Density of cyclohexane.

T (K) ρexp (g·cm−3) a ρsim (g·cm−3) b rel.error c

273 0.7967 0.7898(2) −0.9%
300 0.7737(1) 0.7595(1) −1.9%
310 0.7636(1) 0.7480(1) −2.2%
350 0.7241 0.7001(1) −3.5%

a Experimental densities were not available at the simulated
temperature T so we estimated the density as an average
over experimental values within T±2 K; the error indicates
the spread over this range as half of the difference between
larges and smalles value. When no error is given, only a
single value was found in the range. b Errors for simu-
lated densities were estimated from a block average over
five blocks of 20 ns length each and represent the standard
error of the mean. c The relative error to experiment was
calculated as ρsim/ρexp−1.
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Fig. 3: Dependence of the density of cyclohexane on the temperature. Black squares
are experimental data; red circles were computed from 100-ns MD simulations. The
red dashed line was drawn to guide the eye.

Based on the good agreement of the calculated density and the free energies of
solvation of cyclohexane in water and in cyclohexane with experimental values, we
consider the cyclohexane parameters validated.

3.2 Parameterization of new OPLS-AA atom types

A number of compounds from the SAMPL5 data set required atom-types for several
chemical groups that were absent from the OPLS-AA force field: N-substituted sul-
famide (037), 2H-pyridazin-3-one (042), thiophene (002, 024, 033, 046 and 047),
1,2,4-triazine (068), 1,2,4-thiadiazole (059) and 1,3,4-thiadiazole (021) (Figure 2).
We have generated these missing atom types using CM5 charges [45], following the
recent work of Jorgensen and colleagues [32, 33] (Table 1). The availability of CM5
charges, derived from Hirshfeld charges, in the GAUSSIAN program [31] (starting
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with version 09 revision D.01) has considerably simplified the applicability of this
new parametrization protocol.

We could only validate these parameters for thiophene, with simulations carried
out on thiophene and 2-methyl-thiophene for which experimental values of hydra-
tion free energies are available (−1.42 and −1.38 kcal/mol, respectively) [46]. The
computed values are provided in Table S2 (Electronic supplementary material), show-
ing an error in the prediction of −1.18 kcal/mol (NV T ) and −1.56 kcal/mol (NPT )
for thiophene, and −1.00 kcal/mol (NV T ) and −1.39 kcal/mol (NPT ) for 2-methyl-
thiophene. These relatively high values might be related to a systematic error that we
suspect to be present in our predictions (see discussion below).

This protocol seems to give relatively good results, at least when the subset pa-
rameterized with CM5 charges is compared to the whole data set. As will be discussed
in more detail below, the root mean squared error (RMSE) for the whole data set (in
NPT ) is 3.95± 0.05 (standard error of the RMSE) and the absolute unsigned error
(AUE) is 3.49± 0.05 (Table 3). RMSE and AUE of logDcw predicted for the CM5
subset were better than the whole data set with 3.33± 0.10 and 2.87± 0.10 (NPT
conditions), respectively. Although a definitive conclusion cannot be drawn from this
small subset of ten SAMPL5 compounds out of 53, the results are encouraging and
CM5 charges appear to be a promising approach.

The SAMPL5 data set contained several compounds presenting heterocyclic sys-
tems with fused rings, for which no parameters were available in the OPLS-AA force
field: thieno[2,3-b]pyridine (002), 1H-benzo[d]imidazole (006), benzo[d]thiazole
(020, 044, 045, 048), imidazo[2,1-b][1,3,4]thiadiazole (021), thieno[2,3-b]quinoline
(024), thieno[2,3-d]pyrimidine (046), pyrido[2’,3’:3,4]pyrazolo[1,5-a]pyrimidine (050),
9H-pyrido[3,4-b]indole (060). For all these heterocyclic systems we tentatively eval-
uated an original approach involving the use of force field parameters of the individ-
ual rings composing these systems. The charge of the ‘bridgehead’ atoms is obtained
by summing the charges of the corresponding atoms in the individual rings, and those
of the hydrogen atoms connected to them. The overall RMSE and AUE of logDcw
values predicted for these 11 compounds with non-parameterized fused-ring hetero-
cyclic systems were 3.59±0.11 and 3.09±0.10 (NPT conditions), which are similar
to those obtained for the ensemble of 53 compounds from the SAMPL5 data set (Ta-
ble 3).

Finally, an analysis of the results obtained for compound 042 with two alterna-
tive aromatic and non-aromatic tautomeric forms shows that the non-aromatic 2H-
pyridazin-3-one form of the heterocycle gives better results than the aromatic 3-
hydroxy-pyridazine one (error in the logDcw prediction of−2.85±0.32 and−5.22±
0.32, respectively). These results are in agreement with the fact that the non-aromatic
2H-pyridazin-3-one is the major form (5.68 kcal/mol more stable than the aromatic
3-hydroxy-pyridazine, according to DFT calculations carried out at the M06-2X/6-
311+G(2df,2p)//B3LYP/6-31G(d) level using GAUSSIAN09 [31]), highlighting the
importance of considering all representative forms of the compound of interest in the
prediction of solvation free energies or distribution coefficients.

For the parameterization of compounds 005 and 092 we used the parameters of
N-methyl-imidazole that we generated in our previous work [12]. For these com-
pounds we obtained errors in the logDcw prediction of 0.17 and −5.12 (NPT ), re-
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Fig. 4: Correlation between experimental and computed water-cyclohexane distribu-
tion coefficients logDcw for simulations performed in the NPT ensemble. The gray
band indicates ±1 log-units from ideal correlation, shown by the dashed line. The
root mean square error (RMSE), the absolute unsigned error (AUE), and the (signed)
mean error (ME) are indicated. Error bars represent the error in the experiments or
the error on the mean, derived from the simulations.

spectively. However, with only two compounds and such a spread in error, validation
of the methyl-imidazole parameters by comparison to the logDcw data is not feasible.

3.3 Predicted distribution coefficients

For each molecule, absolute solvation free energy calculations were carried out using
topologies generated with standard OPLS-AA atom types and if necessary, the new
parameters from Table 1. Calculations were performed in the NV T and NPT ensem-
ble, with the values shown in Supplementary Table S1. A single compound from the
SAMPL5 data set (080) has an experimental value of hydration free energy reported
in literature (−12.82± 0.15 kcal/mol) [5] and a comparison with the computed val-
ues shows an error in the prediction of 0.71 kcal/mol and 0.55 kcal/mol in NV T and
NPT , respectively.

From the solvation free energies, logDcw were computed according to Eqs. 4
and 5. The distribution coefficients are tabulated in Table 3. The accuracy of the
computed distribution coefficients was quantified by computing the root mean square
error (RMSE), the mean absolute unsigned error (AUE), and the mean error (ME)
from the experimental values.
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Table 3: Computed (logDcw) and experimental (logDexp
cw ) water-cyclohexane distribution coefficients with error

estimate for all SAMPL5 compounds. The difference ∆ (Eq. 7a) between experimental and computed water-
cyclohexane distribution coefficients is shown for each compound. The standard error of the mean in the last
significant digits is given in parentheses (Eq. 7b). The root mean square error (RMSE), the absolute unsigned
error (AUE), and the signed mean error (ME) were calculated according to Eqs. 8–10.

id Exp. Protocol NV T a Protocol NPT Ligandbook Parameterization
logDexp

cw logDcw ∆ logDcw ∆ IDb

002 1.40(30) 3.14(11) −1.74(32) 2.77(10) −1.37(32) 2825 thiophene with CM5
003 1.90(10) 5.71(09) −3.81(13) 5.72(9) −3.82(13) 2826
004 2.20(30) 4.19(11) −1.99(32) 5.02(11) −2.82(32) 2827
005 −0.86(9) −1.41(13) 0.55(16) −1.03(12) 0.17(15) 2828
006 −1.02(9) 0.80(11) −1.82(14) 2.00(11) −3.02(14) 2829
007 1.40(30) 3.85(11) −2.45(32) 4.92(13) −3.52(33) 2830
010 −1.70(40) −0.18(10) −1.52(41) 0.46(11) −2.16(41) 2831
011 −2.96(8) 0.48(10) −3.44(13) 0.52(11) −3.48(14) 2832
013 −1.50(40) 3.84(13) −5.34(42) 4.32(12) −5.82(42) 2833
015 −2.20(30) −0.17(12) −2.03(32) 0.26(11) −2.46(32) 2834
017 2.50(30) 5.89(11) −3.39(32) 7.11(13) −4.61(33) 2835
019 1.20(40) 2.09(11) −0.89(41) 2.83(11) −1.63(41) 2836
020 1.60(30) 1.22(10) 0.38(32) 2.02(10) −0.42(32) 2837
021 1.20(30) −0.35(09) 1.55(31) −0.38(10) 1.58(32) 2838 1,3,4-thiadiazole with CM5
024 1.00(40) 5.05(13) −4.05(42) 5.23(13) −4.23(42) 2839 thiophene with CM5
026 −2.60(10) 0.26(10) −2.86(14) 1.10(11) −3.70(15) 2840
027 −1.87(7) −0.43(09) −1.44(11) −0.40(9) −1.47(11) 2841
033 1.80(20) 5.90(12) −4.10(23) 6.39(13) −4.59(24) 2842 thiophene with CM5
037 −1.50(10) −7.58(11) 6.08(15) −7.75(9) 6.25(13) 2843 sulfamide with adapted sulfonamide

042 −1.10(30) 4.38(12) −5.48(32) 4.12(12) −5.22(32) 2845
aromatic tautomer form of
2H-pyridazin-3-one, with pyridazine
parameters

044 1.00(40) 5.75(11) −4.75(41) 6.33(11) −5.33(41) 2847
045 −2.10(20) 0.00(9) −2.10(22) 0.80(9) −2.90(22) 2848
046 0.20(30) 0.52(18) −0.32(35) 0.88(23) −0.68(38) 2849 thiophene with CM5
047 −0.40(30) −0.16(14) −0.24(33) 0.43(11) −0.83(32) 2850 thiophene with CM5
048 0.90(40) 3.55(11) −2.65(41) 4.25(11) −3.35(41) 2851
049 1.30(10) 2.55(10) −1.25(14) 2.97(9) −1.67(13) 2852
050 −3.20(60) 2.57(9) −5.77(61) 2.07(9) −5.27(61) 2853
055 −1.50(10) 1.42(8) −2.92(13) 1.47(7) −2.97(12) 2854
056 −2.50(10) 0.90(10) −3.40(14) 2.11(10) −4.61(14) 2855
058 0.80(10) 4.66(9) −3.86(13) 4.94(9) −4.14(13) 2856
059 −1.30(30) 1.47(8) −2.77(31) 1.92(8) −3.22(31) 2857 1,2,4-thiadiazole with CM5
060 −3.90(20) 1.64(9) −5.54(22) 1.91(9) −5.81(22) 2858
061 −1.45(9) −0.25(22) −1.20(24) 0.39(16) −1.84(18) 2859
063 −3.00(40) −5.04(10) 2.04(41) −4.26(10) 1.26(41) 2860
065 0.70(20) 8.17(18) −7.47(27) 8.45(19) −7.75(28) 2861
067 −1.30(30) 3.27(13) −4.57(33) 4.55(13) −5.85(33) 2862
068 1.40(30) 6.51(11) −5.11(32) 7.48(12) −6.08(32) 2863 1,2,4-triazine with CM5
069 −1.30(30) 2.12(12) −3.42(32) 2.55(13) −3.85(33) 2864
070 1.60(30) 5.27(11) −3.67(32) 5.46(11) −3.86(32) 2865
071 −0.10(50) 1.99(10) −2.09(51) 2.26(11) −2.36(51) 2866
072 0.60(30) 4.44(12) −3.84(32) 4.73(11) −4.13(32) 2867
074 −1.90(30) −4.21(11) 2.31(32) −4.48(11) 2.58(32) 2868
075 −2.80(30) 2.65(14) −5.45(33) 3.72(14) −6.52(33) 2869
080 −2.20(20) −1.43(8) −0.77(22) −1.18(8) −1.02(22) 2870 adapted purine and amide parameters
081 −2.20(30) −2.50(11) 0.30(32) −2.52(14) 0.32(33) 2871
082 2.50(40) 8.52(14) −6.02(42) 8.99(17) −6.49(43) 2872
083 −1.90(40) −4.69(68) 2.79(79) 0.23(90) −2.13(98) 2873 (1.5 ns equilibration MD)
084 0.00(20) 3.10(15) −3.10(25) 3.92(21) −3.92(29) 2874

085 −2.20(40) 0.33(10) −2.53(41) 1.13(10) −3.33(41) 2875
hydantoin with adapted urea and amide
parameters

086 0.70(20) 2.89(19) −2.19(28) 3.83(16) −3.13(26) 2877
088 −1.90(30) 0.15(12) −2.05(32) 1.00(12) −2.90(32) 2878
090 0.80(20) 8.04(12) −7.24(23) 7.95(12) −7.15(23) 2879
092 −0.40(30) 3.80(17 −4.20(34) 4.72(19) −5.12(36) 2880

RMS Error (RMSE) 3.56(5) 3.95(5)
Absolute Unsigned Error (AUE) 3.07(5) 3.49(5)
Mean Error (ME) −2.47(5) −3.03(5)

a These results represent our first submission to SAMPL5 (#68). b Parameters for Gromacs (ITP and PDB files) were deposited in the Lig-
andbook repository https://ligandbook.org under this accession number.

https://ligandbook.org
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The RMSE was 3.95± 0.05 for the NPT calculation; the RMSE for the NV T
calculations was marginally better with 3.56±0.05. The NV T results had been sub-
mitted to the SAMPL5 challenge as entries #68 (see Table 3) and #32 (Table 4) and
were analyzed by the SAMPL5 organizers in the context of all other submissions
[47]. Nevertheless, in the following we primarily discuss the results from the NPT
calculations because these values should in principle better represent the experimen-
tal measurements. Furthermore, NPT calculations also yielded good statistical re-
producibility of the van der Waals component of the FEP calculations unlike NV T
calculations, which depended sensitively on the initial simulation system size [12].
The similar RMSE between the NV T and NPT simulations suggests that in a large
data set, the NV T van der Waals error averages out and the overall precision in pre-
diction is similar, as indicated by a high degree of correlation between the NV T and
NPT distribution coefficients as measured by the Pearson linear correlation coeffi-
cient r = 0.97 (Figure S2 and discussion in the Electronic supplementary material).

The correlation between experimental and computed values in Figure 4 also showed
a wide spread of values. Although a few compounds like 005, 020, 046, 047, and
081 were within one log unit, many others were off by three or more units, with a few
as far as more than seven units (such as 065 and 090). The Pearson correlation coef-
ficient r for both the NPT and the NV T calculations was 0.64 (with r = 1 indicating
perfect correlation, 0 no correlation, and −1 perfect anticorrelation), summarizing
the moderate success in quantitatively predicting logDcw. To quantify the ability to
rank-order the data we computed the Kendall rank correlation coefficient τ; a value
of τ = 1 indicates that the simulations predict the same ranking of compounds by
logDcw as the experimental data whereas if the rankings were completely reversed τ

would obtain the value −1 and if the simulations produced random results, a value
close to 0 would be expected. The NPT data yielded τ = 0.49, slightly better than
the value of 0.47 for the NV T predictions. The simulations are moderately successful
at rank-ordering compounds, with the NPT protocol being slightly better despite a
worse RMSE.

For a number of compounds (037, 042, 085) we also explored alternative pa-
rameterizations but without any clear improvements (Table 4). Compound 083 is a
large and complicated macrocyle that is likely able to undergo slow conformational
changes. Initially, we had only been able to sample for one tenth of the simulation
time and obtained an error of −2.13± 0.98 (1.5 ns instead of 15 ns, see Table 3).
However, neither more extensive sampling for 15 ns improved the prediction (er-
ror −3.73± 0.49) nor alternative starting conformations with 15 ns sampling (error
−2.69±0.48; see Table 4).

The overall quality of the prediction is worse than one would have expected from
the accuracy that is considered achievable for solvation free energy calculations (1–
2 kcal/mol), namely 1–2 log units at T = 300 K (estimated from Eq. 6). We did
not detect an obvious pattern in the chemical character of the compounds that were
predicted well versus the ones that were predicted poorly. However, visual inspection
of the correlation plot (Figure 4) indicated that most predictions were too positive
compared to the experimental values, which was also borne out by the (signed) mean
error (ME) of−3.03±0.05 (calculated as experimental value minus computed value,
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Table 4: Computed (logDcw) and experimental (logDexp
cw ) water-cyclohexane distribution coefficients for selected

SAMPL5 compounds with modified simulation parameters. The standard error of the mean in the last significant digits
is given in parentheses. See Table 3 for further details.

id Exp. Protocol NV T Protocol NPT Ligandbook Parameterization
logDexp

cw logDcw ∆ logDcw ∆ IDa

037 −1.50(10) −4.80(8) 3.30(13) 2844 sulfamide with CM5
042 −1.10(30) 2.27(11)b −3.37(32)b 1.75(11) −2.85(32) 2846 2H-pyridazin-3-one with CM5
083 −1.90(40) 1.83(28) −3.73(49) 2873 (15 ns equilibration MD)

083 −1.90(40) 0.79(27) −2.69(48) 2873
(15 ns equilibration MD, alternative initial
conformation)

085 −2.20(40) 1.52(10)b −3.72(41)b 2.69(10) −4.89(41) 2876 hydantoin with adapted uracil parameters

a Parameters for Gromacs (ITP and PDB files) were deposited in the Ligandbook repository https://ligandbook.org under this accession num-
ber. b These results were substituted for the computed values in Table 3 and the new data set comprised our second submission to SAMPL5 (#32).

see Table 3 for details). Overall, these results suggested the presence of a systematic
error.

If we were to assume that our results could be corrected by systematically shifting
the calculated values by the ME then the shifted NPT data would have an RMSE
of 2.55 instead of 3.95; the shifted NV T data would have a similar RMSE of 2.57
instead of 3.56. Even if such an ad-hoc correction were to be considered, the resulting
accuracy would remain modest.

It is therefore important to understand the source of the systematic error, with
the hope to improve both the systematic shift and the low accuracy. Our previous
SAMPL4 hydration free energy results [12] showed a systematically too positive
∆Gw. We therefore hypothesize that primarily the hydration free energy calculations
contribute to the systematic error in logDcw. However, the experimental distribution
coefficient data do not contain sufficient information to distinguish our hypothesis
from the other possibilities of either only ∆Gc being in error or both ∆Gw and ∆Gc
contributing similarly. In addition to logDcw, either the experimental hydration free
energies or the cyclohexane free energies would be required to directly test our hy-
pothesis. Only for compound 080 (caffeine) hydration free energy data were available
[5] and in this case, our prediction of logDcw was already fairly good with an error
of −1.02±0.22. To test our hypothesis, we began to compile an alternative test data
set of 92 compounds with known ∆Gw and ∆Gc and calculated the solvation free
energies (manuscript in preparation). Preliminary results indicated that for this data
set, the cyclohexane solvation free energy can be accurately computed with an RMSE
less than 0.8 kcal/mol. The hydration free energy ∆Gw, however, was more difficult to
compute (RMSE 1.5 kcal/mol) and was systematically overestimated, in agreement
with our previous study [12]. Among the different water models that were evaluated
in our preliminary study, TIP3P and SPC provided slightly better predictions than
TIP4P, in agreement with the results of a previous report that calculated hydration
free energies of amino acid analogues in the OPLS-AA force field with different wa-
ter models [48]. It follows from Eq. 1 that a more positive ∆Gw leads to a more posi-
tive logDcw and thus our hypothesis is consistent with the results shown here. Taken

https://ligandbook.org
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together, these results already suggest that the hydration free energy calculations are
currently the major source of error in our distribution coefficient calculations.

4 Conclusions

We used explicit solvent all-atom MD simulations with the OPLS-AA force field and
the TIP4P water model to predict water-cyclohexane distribution coefficients for the
53 compounds included in the SAMPL5 challenge. We validated cyclohexane param-
eters for the necessary cyclohexane solvation free energy calculations and introduced
a number of new OPLS-AA atom types that were necessary to cover the chemical
functionalities in the SAMPL5 compounds. The overall quality of our prediction was
worse than expected from what should be theoretically possible with current state-
of-the-art absolute solvation free energy calculations. Across the data set, there was
no statistical difference between calculations in the NV T and the NPT ensemble.
Changes in parameterizations that were tested for a subset of compounds also did not
make a difference and the errors did not seem to correspond to any specific chemical
functional groups. An overall systematic error was observed whereby predicted dis-
tribution coefficients were too positive. Experimental distribution coefficients on their
own were not sufficient to determine the source of the error. Based on calculations
for an alternative test set of compounds (manuscript in preparation) we hypothesize
that the hydration free energy calculations are the main source of the error and future
work will focus on addressing this shortcoming in our OPLS-AA parameterization
approach, including a critical assessment of the role of the water model itself.
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1 Solvation free energies

Solvation free energies ∆Gsolv in water and cyclohexane for all SAMPL5 compo-
nents reported in this study are listed in Table S1. Hydration free energies for model
compounds used for parameterization are reported in Table S2. Parameters for Gro-
macs (ITP and PDB files) were deposited in the Ligandbook repository https:

//ligandbook.org under the accession number give in the tables.
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Table S1: Solvation free energies ∆Gsolv (kcal·mol−1) from all SAMPL5
simulations reported in this study. The standard error of the mean in
the last significant digits is given in parentheses. Parameters for Gro-
macs (ITP and PDB files) were deposited in the Ligandbook repository
https://ligandbook.org under the ID accession number.

water cyclohexane
id NV T NPT NV T NPT IDa Parameterization

002 −10.23(11) −10.16(10) −14.54(10) −13.96(10) 2825
003 −6.03(9) −5.70(9) −13.86(9) −13.54(9) 2826
004 −9.65(10) −8.53(11) −15.40(12) −15.41(11) 2827
005 −18.69(15) −18.15(13) −16.76(10) −16.74(11) 2828
006 −10.15(10) −8.92(11) −11.24(11) −11.67(11) 2829
007 −11.00(10) −9.30(13) −16.28(11) −16.06(12) 2830
010 −13.44(10) −12.72(10) −13.19(9) −13.35(12) 2831
011 −13.73(10) −13.49(10) −14.39(9) −14.21(11) 2832
013 −15.67(12) −14.99(11) −20.93(13) −20.92(12) 2833
015 −13.11(13) −12.53(13) −12.88(9) −12.89(8) 2834
017 −8.78(11) −6.92(13) −16.87(12) −16.67(12) 2835
019 −13.50(11) −12.51(11) −16.36(11) −16.39(12) 2836
020 −12.64(10) −11.73(10) −14.31(10) −14.50(10) 2837
021 −14.67(9) −14.41(9) −14.19(9) −13.88(10) 2838 1,3,4-thiadiazole with CM5
024 −13.05(12) −12.74(11) −19.99(13) −19.91(14) 2839 thiophene with CM5
026 −11.33(10) −10.15(12) −11.69(9) −11.66(9) 2840
027 −13.30(9) −13.04(8) −12.70(8) −12.49(8) 2841
033 −9.96(11) −8.86(12) −18.05(12) −17.63(14) 2842 thiophene with CM5

037 −19.89(11) −20.11(9) −9.49(9) −9.48(8) 2843
sulfamide with adapted
sulfonamide

042 −11.40(12) −11.21(11) −17.42(11) −16.86(11) 2845
aromatic tautomer form of
2H-pyridazin-3-one, with
pyridazine parameters

044 −11.68(11) −10.88(11) −19.57(11) −19.56(11) 2847
045 −11.88(9) −10.74(9) −11.88(8) −11.83(9) 2848
046 −17.00(23) −16.03(30) −17.72(11) −17.24(12) 2849 thiophene with CM5
047 −14.99(16) −14.04(11) −14.78(10) −14.63(11) 2850 thiophene with CM5
048 −13.77(11) −12.98(11) −18.65(11) −18.82(11) 2851
049 −10.19(9) −9.35(9) −13.69(10) −13.43(10) 2852
050 −9.69(9) −10.16(9) −13.22(9) −13.00(8) 2853
055 −9.27(8) −8.85(7) −11.21(8) −10.87(7) 2854
056 −10.44(10) −8.85(10) −11.68(10) −11.74(11) 2855
058 −7.93(8) −6.95(8) −14.32(9) −13.72(10) 2856
059 −8.04(8) −7.23(7) −10.06(8) −9.86(7) 2857 1,2,4-thiadiazole with CM5
060 −10.82(8) −10.20(9) −13.07(8) −12.81(9) 2858
061 −10.41(29) −9.36(20) −10.07(8) −9.89(9) 2859
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Table S1 – continued

water cyclohexane
id NV T NPT NV T NPT IDa Parameterization

063 −18.09(11) −16.78(10) −11.17(9) −10.94(10) 2860
065 −18.43(16) −17.32(18) −29.64(19) −28.92(18) 2861
067 −8.87(15) −6.60(15) −13.36(10) −12.85(11) 2862
068 −9.20(11) −7.82(11) −18.13(11) −18.08(12) 2863 1,2,4-triazine with CM5
069 −13.11(12) −12.33(13) −16.01(11) −15.83(11) 2864
070 −6.89(11) −6.15(11) −14.13(11) −13.64(11) 2865
071 −10.07(10) −9.15(10) −12.80(9) −12.26(11) 2866
072 −5.72(13) −5.38(11) −11.81(11) −11.87(10) 2867
074 −21.26(11) −21.25(11) −15.49(9) −15.10(10) 2868
075 −9.00(17) −7.74(16) −12.65(10) −12.84(11) 2869

080 −13.53(8) −13.37(8) −11.57(8) −11.75(7) 2870
adapted purine and amide
parameters

081 −16.71(11) −17.23(15) −13.28(10) −13.77(11) 2871
082 −5.66(13) −4.38(19) −17.35(14) −16.71(13) 2872
083 −41.18(72) −34.96(88) −34.75(60) −35.28(87) 2873 (1.5 ns equilibration MD)
084 −13.29(17) −12.33(25) −17.54(13) −17.71(13) 2874

085 −14.25(9) −13.24(10) −14.70(9) −14.79(10) 2875
hydantoin with adapted urea
and amide parameters

086 −14.52(23) −12.76(18) −18.49(13) −18.02(12) 2877
088 −13.55(11) −11.99(12) −13.75(12) −13.36(12) 2878
090 −8.01(11) −7.07(12) −19.05(12) −17.98(11) 2879
092 −21.52(16) −19.84(20) −26.73(16) −26.32(16) 2880

037 −16.16(8) −9.57(8) 2844 sulfamide with CM5

042 −15.64(11) −16.05(12) −18.75(11) −18.45(10) 2846
2H-pyridazin-3-one with
CM5

083 −31.51(25) −34.02(28) 2873 (15 ns equilibrium MD)

083 −31.78(29) −32.86(22) 2873
(15 ns equilibrium MD,
alternative initial
conformation)

085 −12.41(10) −11.08(10) −14.49(11) −14.77(10) 2876
hydantoin with adapted
uracil parameters

a Parameters for Gromacs (ITP and PDB files) were deposited in the Ligandbook repository
https://ligandbook.org under this accession number.
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Table S2 Hydration free energies ∆Ghyd (kcal·mol−1) for
compounds used for the validation of thiophene parameteri-
zation. In all cases, parameterization of thiophene rings used
CM5 charges. The standard error of the mean in the last sig-
nificant digits is given in parentheses.

id NV T NPT IDa

thiophene −0.24(4) 0.14(5) 2881
2-Me-thiophene −0.38(5) 0.01(5) 2882

a Parameters for Gromacs (ITP and PDB files) were deposited
in the Ligandbook repository https://ligandbook.org

under this accession number.
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Fig. S1 Correlation between experimental and computed water-cyclohexane distribution coefficients
logDcw for simulations performed in the NV T ensemble. The gray band indicates ±1 log-units from ideal
correlation, shown by the dashed line. The root mean square error (RMSE), the absolute unsigned error
(AUE), and the (signed) mean error (ME) are indicated. Error bars represent the error in the experiments
or the error on the mean, derived from the simulations.

2 logDcw correlations

Figure S1 shows the correlation of the logDcw computed in the NV T ensemble to the
experimental ones. The Pearson correlation coefficient is r = 0.64 and the Kendall
rank ordering coefficient is τ = 0.47.

In general, the distribution coefficients calculated in the NV T and NPT ensemble
are highly correlated (Figure S2) with a Pearson correlation coefficient r = 0.97. The
two data sets also rank order almost all compounds in the same way as indicated by

https://ligandbook.org
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Fig. S2 Correlation between water-cyclohexane distribution coefficients logDcw for simulations per-
formed in the NV T ensemble vs ones computed from the NPT ensemble. The obvious outlier is 083.
The gray band indicates ±1 log-units from ideal correlation, shown by the dashed line. The root mean
square deviation (RMSD), the absolute unsigned deviation (AUD), and the (signed) mean deviation (MD)
are indicated. Error bars represent the error on the mean, derived from the simulations.

a high Kendall’s τ = 0.92. Only compound 083 is very different between the two
ensembles but this is almost certainly due to insufficient sampling: The simulations
were only 1.5 ns instead of 15 ns and the compound is much larger and more com-
plicated than the other compounds. With additional calculations of 15 ns simulations
(NPT only) and using different initial conformations, the solvation free energies still
differ by about 2 kcal/mol (see Table S1). It is thus likely that the NV T value is not
converged and the NPT value can only be seen as an initial guess.
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