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Abstract

Satellite observations are used to detect surface waters but uncertainties such as instrument

noise or retrieval errors can introduce noise or missing-data in the resulting water maps,

especially for datasets at the global scale. In this study, spatial filters based on several

a priori information are proposed to reduce noise and perform spatial interpolation to fill

missing-data in satellite-based surface water maps such as wetlands, rivers, lakes. Four main

sources of a priori of information are considered: (1) historical information at the pixel level,

(2) neighbouring information constraints based on a historical record, (3) constraints based

on topography, and (4) hydrological constraints based on a floodability index. Experiments

are conducted over synthetic but realistic data, as well as over real Sentinel 1 (SAR) and 2

(visible) water map retrievals. Mis-classification quantitative results over these three types

of data show that simple determinist spatial filters allow reducing noise and filling missing-

data. The four sources of a priori information can be exploited and combined to improve

observed water maps. This opens some ways to develop post-processing tools for improving

surface water maps at high spatial resolution from missions such as SWOT (Surface Water

and Ocean Topography) to be launched in 2020.
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1. Introduction

Global distribution and dynamics of surface waters at medium resolution (around 100 m)

are necessary to satisfy the needs of hydrologists, water and disaster managers, or climate

scientists. Permanently and temporarily inundated areas including lakes, rivers, and wet-

lands, are important because of their interaction with climate, ecology, and human wellbeing.5

For instance, nearly 30% of global methane emissions (Bousquet et al., 2006) originate from

wetland areas, risk management responds to inundation patterns (Winsemius et al., 2015),

and food security, and rice paddy cultivation relies, in certain regions of the world, on sur-

face waters. In return, surface water ecosystems are affected by human activity, land use,

hydrologic alterations, and climate change. Although the global, long-term, frequent, and10

high-resolution characterisation of all surface water types is beyond the capabilities of cur-

rent satellite observations (Aires et al., 2018), several types of datasets are being used to

document them as well as possible.

Despite the limitations from vegetation canopy and cloud cover (about 70% of Earth

surface at any time) (Wilson and Jetz, 2016), visible satellite observations are a primary15

candidate for the detection of surface waters from space. Moderate Resolution Imaging

Spectro-radiometer (MODIS) observations have been used to derive global surface water

products every two days (http://oas.gsfc.nasa.gov/floodmap/). Several datasets have also

been built from Landsat imagery: Feng et al. (2014) proposes a global, high-resolution (30 m)

inland water body dataset for year 2000, Mueller et al. (2016) focused on the Australian20

continent by processing a 27-year time series of Landsat imagery, Tulbure et al. (2016)

created a three decade dataset (1986-2011) of surface water and flooding over the over

the MurrayDarling semi-arid basin, and Verpoorter et al. (2014) mapped an inventory of

global lakes: the GLObal WAter BOdies database (GLOWABO) comprises all lakes greater

than 0.002 km2(about 117 million lakes, with a combined surface area of about 5.106 km2).25

Yamazaki et al. (2015) introduced the Global 3 arc-second Water Body Map (G3WBM)

based on Landsat imagery. Pekel et al. (2016a) recently produced a new Global Surface

Water Explorer (GSWE) dataset also from Landsat imagery but using the full 32-year record,

allowing for a better description of the trends of surface waters and their occurrence. The

limitations for the use of visible/infrared (VIS/IR) instruments are quite straightforward:30

these waves do not penetrate clouds nor vegetation. As a result, VIS/IR retrieved inundation
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maps can have missing or corrupted data. For instance, Sentinel-2 data has a large amount

of missing-data from the presence of clouds in the tropics. These missing/erroneous data can

cover large areas (difficult to interpolate them spatially) or can be present at the pixel level,

so techniques to interpolated missing areas or to reduce noise on the maps are necessary.35

Synthetic Aperture Radar (SAR) data have the potential to retrieve surface waters as

demonstrated for instance by Santoro et al. (2010) using ENVISAT-ASAR, or more recently

using the Sentinel 1 mission (Pham-Duc et al., 2017). This surface water retrieval can be

done at a resolution of up to 10 m (Cao et al., 2019). SAR data can also be used to capture

sub-canopy inundation (L-band) (Plank et al., 2017). Although existing SAR retrievals40

from a number of sensors cover a large extent of the globe, their use for mapping surface

inundation has been protracted due to the local calibration needed for accuracy. The past

or current availability of the data has not yet allowed for the production a full global high-

spatial resolution surface water dataset from SAR data, although such initiatives have been

suggested in the past, e.g. Westerhoff et al. (2013). This results from the fact that the45

necessary algorithms have limitations in terms of robustness, accuracy and automation. For

instance Shen et al. (2019) comment on the fact that automation and robustness have not

been achieved yet for vegetated areas when using L-band observations. This means that

misclassifications and missing data will be present in this type of retrievals. They attribute

errors to three different sources:50

• Water-like surfaces: smooth surfaces (at the scale of the measuring wavelength) even

bare soil or shadowed areas have scattering properties similar to those of water surfaces.

These ambiguities can introduce erroneous water pixels (i.e. over-detection). For

instance, Giustarini et al. (2013) and Matgen et al. use a change-detection algorithm

to limit these over-detections.55

• Noise-like speckle: This is one major disadvantage of SAR over optical images. This

is not a real noise (see Lee and Pottier (2009) for a definition) but homogeneous and

continuous areas can exhibit strong inhomogeneities in SAR images due to this speckle.

It increases with the spatial resolution. Filtering techniques have been developed for

that purpose, at a price of the degradation of the spatial resolution of the image.60

• and geometric correction: Due to the limited accuracy of input elevation data and
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orbit accuracy, it is frequent to see location errors at the level of a few pixels.

So far, algorithms have only partially addressed these issues and human intervention to

reduce our-detection as well as filtering to reduce under-detection are needed (Shen et al.,

2019). Therefore, techniques to interpolated missing areas and to reduce noise on retrieved65

maps need to be used as a post-processing step to improve quality of retrieval results. For

instance, Pulvirenti et al. (2011a) have developed an image segmentation methods based on

a dilution and an erosion steps to remove isolated groups of water pixels and small holes

in water bodies) to reduce speckle impact. Solutions could come from the use of auxiliary

information such as land cover, elevation, and so on (see Pulvirenti et al. (2011b)). This is70

the option tested here in this paper.

The GIEMS-D3 (Global Inundation Extent from Multi-Satellites) is a global water extent

dataset at the 3 arc-second (∼90 m) spatial resolution, see Aires et al. (2017). GIEMS-D3

is based on the coarse resolution GIEMS database from a retrieval scheme that combines

satellite observations in the visible, near-infrared, and passive/active microwaves (Prigent75

et al., 2007, 2012; Papa et al., 2010) over a 15-year period (1993-2007). The advantage of

this dataset is that it provides surface wetland estimates even below the vegetation Aires

et al. (2018).

There is clearly a need to invest more time in retrieval algorithms and potentially perform

data fusion in order to obtain a global, long-term, reliable, and high-resolution dataset80

of water extent from these several type of observations. As discussed earlier, all these

satellite datasets can suffer from retrieval errors (e.g. instrumental noise, retrieval errors, or

erroneous/missing auxiliary information). The retrieved surface water maps can also have

missing-data, due to the presence of clouds or vegetation, or due to retrieval difficulties.

Furthermore, all these surface water satellite retrievals can be improved by combining them85

with other independent auxiliary information. The goal of this paper is first to present several

sources of a priori information that are pertinent constraints for the water presence. Four

sources of a priori information will be considered: (1) Historical information at the pixel level,

(2) Neighbouring information constrains based on historical information, (3) Constraints

based on topography information, (4) Constraints based on hydrology information. It will90

be investigated here if these four sources of information can help post-process corrupted

surface water maps by reducing noise in retrieval and fill missing-data.
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Several determinist filters are then introduced and tested to exploit these sources of a

priori information to de-noise maps or fill missing-data. These new methods are designed to

process surface water maps retrieved from satellite observations (whatever their origin), and95

not the satellite measurement itself such as the backscatter signal from a SAR instrument

(Deledalle et al., 2014). The a priori information that are proposed here (historical record,

neighbourhood constrains, elevation, or floodability index) are general and not specific to a

particular type of observations. However, they could be optimised to become more specific

to a particular type of information with some specificities in terms of uncertainties (i.e.100

instrument noise, wrong assumptions, limited information, or retrieval errors) or in terms of

missing-data (presence of clouds, instrument recalibration, etc.).

Section 2 presents the datasets used in this study. The determinist filters are introduced

in Section 3. Results are presented in Section 4 for the de-noising and in Section 5 for

the filling of missing-data. A discussion is provided in Section 6. Finally, conclusions and105

perspectives are provided in Section 7.

2. Datasets used in this study

2.1. Sentinel observations

Sentinel data have been gathered and processed over the Mekong in Vietnam and Ca-

margue in south of France. Clouds are predominant over the Mekong region (Aires et al.,110

2018) so Sentinel 1 SAR retrievals are considered for this region. Cloudiness is less of a

problem over Camargue so Sentinel 2 Visible retrievals are considered instead. The spatial

resolution of Sentinel data is 30×30 m, both for the SAR and the visible data.

2.1.1. Sentinel 1 SAR observations over Mekong

Two Sentinel 1 SAR images are available over the Mekong: Instantaneous and Reference,115

both during 2016. Fig. 1 represents the Instantaneous (Fig. 1.A) and the Reference (Fig. 1.B)

images. The Instantaneous images are of lesser quality, for they contain instrument and

retrieval noises. The Reference image is the averaging over a 40-day period preceding the

Instantaneous image. It is considered to have less noise due to this time-averaging.

In a classification problem, four diagnostics are generally defined: (1) The False Positives120

(FP) where the sample is erroneously classified as positive (i.e. inundated here); (2) the False

Negatives (FN) where the sample is erroneously classified as negative; (3) the True Positives
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Figure 1: Mekong region. First column: SAR data from Sentinel 1 for the Instantaneous (A) and Reference

(B) images. Second column is identical with a zoom on one smaller region (B and E). Third column is the

“false” positive (C) pixels (i.e. inundated pixels in Instantaneous but not in Reference images), followed by

the “false” negative (F) pixels (i.e. dry pixels in Instantaneous but not in Reference images). The spatial

domain of sub-labels (B, C, E and F) is represented by the black square in (A) and (B). Sub-domain in a

black square in (B) will be used later on (in Fig. 9).

(TP) where the sample is correctly classified as positive; and (3) the True Negatives (TN)

where the sample is correctly classified as negative. These diagnostics can be provided in

absolute number of samples, or they can be given in percentage. The third column in Fig. 1125

represents the FP (C) and FN (F) pixels of the Instantaneous image when considering the

Reference as the truth (which is a simplification).

Among the 30,140,100 pixels of the Instantaneous image, 10.5% are ocean, and 89.5%

are land. The de-noising and spatial interpolation methods will consider only the 26,989,240

land pixels (the “work space” in the following).130

Tab. 1 provides the confusion matrix between the Instantaneous and Reference im-

ages. It can be noted that most negative values in the Instantaneous image are TN values
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(TN=98.36%) but many FP errors are present in the positive values (FP=20.20%). There

are more FN pixels (418,457) than FP ones (297,099), but there are much less positive pixels

so the percentage is higher. Fig. 1 shows the spatial distribution of these differences: FP135

pixels are located in the edge of the rivers (C), and FN pixels are in the center of the river

(F). The total number of erroneous pixels is 2.37% of the total image, it represents 2.65% of

the work space (i.e. non-oceanic).

Mekong
H
HHH

HHH
HH

Ref.

Inst.
N=25,518,940 P=1,470,300

N=25,397,582 TN=25,100,483 FP= 297,099

98.36% 20.20%

P=1,591,658 FN= 418,457 TP=1,173,201

1.64% 79.80%

Errors= 715,556 2.65% / work 2.37% / total

Camargue
HHH

HHH
HHH

Ref.

Inst.
N=6,564,010 P=921,875

N=6,503,959 TN=6,480,989 FP= 22,970

98.74% 2.49%

P=981,926 FN= 83,021 TP=898,905

1.26% 97.51%

Errors= 105,991 1.42% / work 0.35% / total

Table 1: Confusion matrix for the Instantaneous and Reference images over the Mekong (Top) and the

Camargue (Bottom), see Figs. 1 and 2. N is for Negative and P for Positive pixels. “Work” is for the

working space (i.e. pixels that are not permanently wet or dry), they can be either wet or dry pixels. Pixels

over the ocean are permanently wet so they are not part of the “work” space. “Total” is for all the pixels of

the image.

2.1.2. Sentinel 2 visible observations data over Camargue

Two images are again represented in Fig. 2: the Instantaneous (A) and Reference(B)140

images over the Camargue region, but from the Visible/Sentinel 2 instrument. A cloud

mask (C) is also represented for the Instantaneous image, it indicates the missing parts

7



N N N 

N N N 

N N 

105.9°																					106.4°																			106.9°	105.9°																					106.4°																			106.9°	4.2°																										4.9°																								5.6°	

44.2°	
	
	
	
	
	

43.7°	
	
	
	
	
	
	

43.2°	

20	km	20	km	20	km	

3	km	 3	km	 3	km	

3	km	 3	km	

Figure 2: Camargue region. First row: Visible data from Sentinel 2, from left to right: Instantaneous

(A), Reference (B), and Clouds (C). Second row (D,E,F): Same as first line, but zoomed over one region

represented by the black square in (A) (see Fig. 12). Third row: FP (G) and FN (H) pixels (with Reference

as truth, see text) over the (A) square too.

of the image. The FP (G) and FN (H) images are also represented. No noisy pixels are

observed so this visible Sentinel 2 image will not be used for the de-noising experiences. It

will be used instead for the missing-data filling experiments.145

2.2. GIEMS-D3 dataset

A multi-sensor technique has been developed to estimate surface water extent at global

scale (Prigent et al., 2007, 2012; Papa et al., 2010). The method exploits the complementary

sensitivities of different satellite observations to surface characteristics (e.g., water, vegeta-

tion, soil). The following satellite observations were used to generate GIEMS: passive mi-150

crowaves, active microwave, and visible and near-infrared reflectances (Prigent et al., 2001).

Note that GIEMS estimates include all surface waters such as rivers, floodplains or lakes in-

discriminately. GIEMS is available at (http://lerma.obspm.fr/spip.php?article91lang=en).

8



Downscaling methods have recently been developed to improve the spatial resolution of

GIEMS estimates from 25 km to 500 m (15 arc-second, GIEMS-D15) (Fluet-Chouinard155

et al., 2015) (http://www.estellus.fr/index.php?static13/giems-d15) and 90 m (3 arc-second,

GIEMS-D3) (Aires et al., 2017). GIEMS-D3 has been assessed by analysing its spatial and

temporal variability, and evaluated by comparisons to other independent satellite observa-

tions (Aires et al., 2017). GIEMS-D3 has also been compared to other global high spatial

resolution datasets and it was shown in Aires et al. (2018) that this is a good source of160

information, especially for vegetated inundated areas not captured by other datasets.

2.3. Global Surface Water Occurence (GSWO) a priori from Landsat

An important source of information for de-noising or fill the missing-data in surface water

maps would be a historical record of the same surface water maps, from the same instruments.

It is also possible to use a historical record from another instrument if both instruments have165

nearly identical sensor characteristics (e.g. for optical sensors the bandwidths) so that their

data can be used interchangeably. In this way for instance both instruments are impacted in

the same way by the presence of vegetation. The GSWO dataset (Pekel et al., 2016a) uses

three million Landsat satellite images to quantify inundation over 32 years (from 1984 to

2015) at a 30 m spatial resolution. The GSWO dataset is freely available at: https://global-170

surface-water.appspot.com/. Each Landsat pixel has been classified as open water, land,

or non-valid observation using an expert system. Open water is defined as any feature of

water larger than 30 m × 30 m open to the sky, including fresh and saltwater. No seasonal

information is available, the occurence has been computed over the whole record, regardless

of the season. This aspect will be investigated in the future, if this is possible from the GSWO175

facility. GSWO database (Pekel et al., 2016b) provides the probabilities of water occurence

for each pixel based on a Landsat record of 32 years. Note that since these observations

are on the visible range, this database is reliable for open water but is less appropriate for

highly-cloudy regions or vegetated areas as shown in Aires et al. (2018).

2.4. MERIT topography a priori180

This a priori information is not based on surface water maps itself, so it is totally differ-

ent in nature than the preceding a priori information. However, it is evident hydrologically

that surface waters are strongly constrained by topography. It has been shown that topog-

raphy is a reliable source of information for determining the presence of surface waters, see
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Fluet-Chouinard et al. (2015) and Aires et al. (2017). This information is not pertinent185

everywhere in the world because inundation can be controlled by human activity instead of

topography. But very locally, lower elevation in close pixels generally means higher chance of

inundation. The “Multi-Error-Removed Improved-Terrain” (MERIT) DEM is used here; it

is freely available at http://hydro.iis.u-tokyo.ac.jp/ yamadai/MERIT DEM/ see Yamazaki

et al. (2017).190

2.5. Floodability index a priori

In Aires et al. (2017), a floodability index model was defined to estimate locally a proxy of

the probability to be flooded for each pixel i from topography information. The topographic

attributes X that were used are: Elevation over nearest river, slope, distance to nearest

river, and flow accumulation. The conditional probability P [I(i) = 1|X = x] of pixel i to be195

inundated knowing topography w, as modelled using an artificial Neural Network (NN) with

the vector of topographic variables x as inputs, and the inundation probability estimate as

output.

Fig. 3 represents, over the Mekong and the Camargue regions, the available a priori

information that will be used in this study.200

3. Spatial filters for de-noising and filling missing-data

3.1. Filtering problem

The inundation maps to be de-noised or filled in can be noted as:

O = I + ε, (1)

with I the correct binary image (0 or 1 in each one of the i = 1, · · · , N pixels), O the observed

image, and ε the corruption of the data that can originate from an erroneous switching of205

pixels due to noise or from missing-data. The goal of this study is to obtain an estimate

F(O) as close as possible to the correct image I: The filter F is asked to de-noise or fill the

missing-data in observed image O. Random filters (e.g. Markov chains) can be used for this

purpose, but they are generally computationally expensive as they request the convergence

of an iterative algorithm spanning several times all the pixels. The focus is here instead on210

deterministic filters.
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Figure 3: A priori information available over the Mekong (Top) and the Camargue (Bottom) regions, from

Left to Right: GSWO, MERIT DEM, and Floodability Index.

It will be investigated here if the a priori information of Section 2 can be exploited to

post-process corrupted surface water maps in order to reduce noise, and fill missing-data.

This type of methods cannot provide a perfect solution, they even can introduce errors into

correct pixels during the de-noising process. Tab. 2 describes the four sources of a priori215

information used in this study with the corresponding filters characteristics introduced in

this section.

The de-noising tries to obtain the right compromise between the observation (i.e. cor-

rupted surface water map) and the a priori information. As a general principle, for the

de-noising of the image O, the idea is to check in each pixel if there is no big aberration in220

the observation, and then to correct it. This approach needs to be conservative because it

can be dangerous to change too much the original observation O. For instance, if 15% of the

pixels are corrupted by noise, and 85% are good data, applying a filter on each one of the

pixels will be good on the 15% of points, but could corrupt the 85% remaining good data.
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Origin Type Feature Advantage

Filter 1a Historical record Prob., all months Pixel-based Simplicity

Filter 1b Historical record Prob., seasonal Pixel-based Simplicity

Filter 2 Historical record Local water Neighbourhood Homogeneous or location-specific

conditions External info or not

Filter 3 Topography Elevation Neighbourhood External information

Filter 4 Hydrology Floodability Index Neighbourhood External information

Table 2: The four sources of a priori information and their corresponding spatial filters characteristics.

Like often, the right balance needs to be found.225

For the missing-data filling, the spatial filters try to identify the best filling solution

based on the available a priori information, but the working space (i.e. missing pixels) is

well defined in this case.

3.2. Filter 1a & b: Pixel-scale probability

This filter is based on a historical record of the surface water masks. This historical230

record can be based on a database of observed maps O (from the same instrument), even if

the database is corrupted by noise or missing-data; or it can be based on maps from another

instrument (such as the GSWO dataset from Landsat, see Section 2.3).

Filter 1

I(i) = 1 if θi ≥ (1− τ1)

I(i) = 0 if θi ≤ τ1
If threshold τ1=0, this filter will characterise which pixels are permanently inundated or dry.235

This filter has a first application as it can be used to define the pixels that had some vari-

ability during the historical record on which it is worth working, and those that had no

variability at all and could be omitted from the filtering. If τ1=0, this mask supposes that

the historical record is reliable so that newly inundated or dry pixels will not be consid-

ered. It directly depends on the quality and representativity of the historical record and the240

resulting probabilities θi. If this is not the case, τ1 should be > 0.

When τ1 is increased, the probability θi is used to define the state of pixel i to be

inundated or not. Note that symmetric thresholds τ1 and (1−τ1) are used for high and small
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probabilities, but this could be optimised independently, for the two cases. The threshold

τ1 is related to the quality of the a priori information. In this work, it was chosen based on245

trial and error principle.

Two versions of this filter will be tested: Filter 1a will use probabilities θi estimated over

the full time record (from GSWO in Section 2.3); and Filter 1b will use probabilities for

each month of the year (from GIEMS in Section 2.2). This is a richer information if it can

be provided by the historical record.250

3.3. Filter 2: Neighbourhood

In image processing, it is a standard approach to use the information surrounding a pixel i

in order to constrain it. These spatial constraints are first obtained from the historical record.

Many neighbourhood systems can be defined in order to exploit the information surrounding

a pixel i, from simple to very complex. For instance, the neighbourhood information term can255

represent privileged directions in the hydrological structures (e.g. due to some orientation of

the river network in a region), or it can have none (Aires et al., 2013). Giving a strong weight

on the neighbourhood system constraints means this a priori is important and it become

difficult to depart from it. However, it is a good strategy to write a neighbourhood system

that is as specialised and adapted as possible to the application, and it is always possible to260

balance the observation and the a priori during the filtering stage.

A fundamental choice needs however to be made: (1) A neighbourhood system can be

considered to be homogeneous, i.e. identical for all the pixels i of the image; (2) Or the

neighbourhood system can be specified to be location-dependent. The former is simpler and

is a less precise a priori information, but it requires only a limited historical record. It will be265

used for the Sentinel real-data experiments. The latter provides richer a priori information,

but it requires a longer historical record. It will be used it for the synthetic experiments

using GIEMS-D3 data.

(1) Homogeneous neighbourhood system for the Sentinel experiments - In this a priori in-270

formation, a Sentinel image (the Reference) is used in order to infer some neighbourhood

constraints. It is not possible here to make historical statistics for each pixel because a time

record long enough is not available. Therefore, a single image is used in order to generate

a generic statistics applicable to each pixel. Let V (i) ∈ [0, 8] be the number of inundated
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Figure 4: Prob(I(i) = 1/V (i) = n) for n = 0, · · · , 8; for Mekong (A) and Camargue (B). Statistics are

performed on the Instantaneous (continuous) and the Reference (dotted) images.

pixels included in the eight pixels N (i) surrounding pixel i. Fig. 4 represents:275

Prob [I(i) = 1 | V (i) = n] , for n = 0, · · · , 8. (2)

Note that this conditional probability is valid for n = 0 too, it just represents the probability

of the pixel being inundated when no neighbouring pixel is inundated. This statistics is

performed on all the pixels of the Instantaneous and the Reference images for comparison

purpose, for the Mekong (left) and the Camargue (right) regions. It can be noted that in the

Mekong case, there is a discrepancy between the two sets of probabilities for high V (i) values280

due to the noise on the Instantaneous image (Fig. 1). This discrepancy almost disappear for

the Camargue because there is almost no noise in this case (Fig. 2). The objective of the

neighbourhood-based filter will be to get the two sets of probabilities closer, by adjusting

aberrant cases in the two extreme cases: when V (i) is small (less important here for the FP

cases on the river edges), or large (important here for the FN cases inside the river).285

(2) Pixel-based neighbourhood system - Again, a simple, non-oriented neighbourhood system

is used by considering V (i), i.e. the number of inundated pixels in the neighbourhood N (i)

of pixel i. Instead of proposing a global statistics for all the pixels of the image, these

probabilities are estimated for each individual pixel of the image. In order to use this290

neighbourhood term efficiently, an a priori estimation of all the P [I(i) = 1 | (V (i) = n)] is
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required for all n. However, a configuration V (i) = n might have never occurred in the

historical record, or it might have happened so rarely that the estimated probability is not

reliable enough. In order to solve this issue, a linear interpolation in n is chosen for all the

missing n-values. This linear interpolation is performed for each pixel i in order to build a295

complete a priori dataset on Eq. (2).

Fig. 5 illustrates this interpolation on n for several pixels. Red dots are probabilities of

Eq. (2) estimated on the historical record. Black dots represent the linearly interpolated

points. The probability function should be increasing with n: the higher the number of

neighbouring pixels inundated, the highest the probability for pixel i to be inundated. For300

extrapolating higher n values, the last available probability is used and supposed to be

constant with an increasing n.

Figure 5: Illustration of the interpolation of P [I(i) = 1 | (V (i) = n)] (Eq. (2)) for three randomly chosen

pixels. Red stars are estimations from the historical data, black stars are the resulting linear interpolation.

Fig. 6 represents the conditional probabilities P [I(i) = 1 | (V (i) = n)] for increasing n =

0, 2, 4, 6, and 8, before (Left) and after (Right) the linear interpolation in n. It can be seen

in this figure how the P [I(i) = 1 | (V (i) = n)] (for n=0 to 8) incomplete statistics have been305

spatially filled due to the interpolations in Fig. 5. Less values are missing after the interpo-

lation so our a priori became more complete and robust. As expected, the probabilities of

being inundated increase when n increases.

It is then possible to use the probability of pixel i to be inundated conditional to its neigh-310

bouring inundated pixels Vi(O) to correct image O. As mentioned earlier, this conditional

probability can be pixel-specific (if the historical record was long enough to estimate statis-

tics for each pixel), or it can be an average over the full image. Since no long historical
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(A)	For	v(i)=0	 (B)	For	v(i)=0	

(C)	For	v(i)=2	 (D)	For	v(i)=2	

(E)	For	v(i)=4	 (F)	For	v(i)=4	

(G)	For	v(i)=6	 (H)	For	v(i)=6	
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Figure 6: Maps of the P [I(i) = 1 | V (i)] (see text), before (left) and after (right) the interpolation in n, for

V (i) = 0, 2, 4, 6, and 8, from top to bottom.
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dataset is available in the two regions under study here (Camargue and Mekong), the full

image global statistics will be used in the following of this paper.315

Filter 2

For pixel i, with Vi(O) inundated pixels in its neighbourhood:

I(i) = 1 if P [I(i) = 1 | Vi(O)] > (1− τ2)

I(i) = 0 if P [I(i) = 1 | Vi(O)] < τ2
where τ2 is a threshold, to be optimised. This filter favours the inundation of pixels that are

surrounded by inundated pixels, and favours the no-inundation of pixels surrounded by dry

pixels.

Having a same neighbourhood constraint for the whole image is easier, but in some case,320

it is not optimal. For instance, a pixel with a change in landscape (e.g. rice paddy boundary)

cannot be dealt optimally by a general constraint, but a neighbourhood constraint specific

to this particular pixel will deal with local specificities by using a specific local conditional

probability.

3.4. Filter 3: Elevation325

This new filter identifies the inundated pixels in the neighbourhood, and then combines

this information with topography-based constrains (Section 2.4). The basic idea is simple:

If there is no inundation in the neighbourhood pixels N (i):

• If pixel i has lower chances to be inundated (higher elevation) than its surrounding,

then it must not be inundated;330

• If pixel i has higher chances to be inundated (lower elevation), then nothing can be

said so no change should be performed.

If there are some inundated pixels in neighbourhood V (i), then this “reference” can be used

to decide if pixel i should be inundated or not:

• If pixel i has lower chances to be inundated (higher elevation than its surrounding),335

then no change should be performed;

• If pixel i has higher chances to be inundated (lower elevation than its surrounding),

then it must be inundated.
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Filter 3

For pixel i, let V (i) be the size of the inundated pixels N (i) in the neighbourhood of i:

• If V (i) = 0 (i.e. no inundated pixel in i neighbourhood):

I(i) = 0 if elev(i) > max(elev(N (i)))

I(i) not changed if elev(i) ≤ max(elev(N (i)))

• Else if V (i) > 4:

I(i) = 1 if elev(i) ≤ min(elev(N (i)))

I(i) not changed if elev(i) > min(elev(N (i)))

In this filter, the “mean” could had been used instead of the “max” and the threshold340

V (i) > 4 could be optimised too. The choices were made here based on a trial and error

approach, and the application of this filter to another database would require optimising

these parameters.

In Westerhoff et al. (2013), the HAND (Height Above the Nearest Drainage area) is used

as a pre-processing to mask pixels with low probability of being inundated. The Filter 3 here345

is also based on topography, but it is a slightly different: (1) only local pixels are used, where

the HAND variable can be related to distant pixels, and (2) in Westerhoff et al. (2013) the

information is used as a pre-processing step and independently from the observation, when

the topography a priori is used in combination with the observations (SAR or MODIS). This

shows however how multiple forms of a priori information for the presence of surface waters350

can be derived from the same information, and how it is easy to combine them to optimise

the detection of surface waters.

3.5. Filter 4: Floodability Index

This filter is based on the same idea but it uses the Floodability Index (FI) of Sec-

tion 2.5 instead of the elevation. This FI is using topography information as for Filter 3355

but a sophisticated work was done (neural network probabilistic model, exploitation of other

topography information in addition to the elevation only) in order to obtain an index linked

to the presence of surface water:
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Filter 4

For pixel i:

• If V (i) = 0, i.e. no inundated pixel in the neighbourhood N (i):

I(i) = 0 if FI(i) < min(FI(N (i)))

I(i) not changed if FI(i) ≥ min(FI(N (i)))

• Else if V (i) > 4:

I(i) = 1 if FI(i) ≥ min(FI(N (i)))

I(i) not changed if FI(i) < min(FI(N (i)))

4. De-noising results360

De-noising an image is more difficult than filling missing-data because it is not known

a priori where the data have been corrupted or not; so when correcting for the noise, it

is possible to modify a perfectly good observation. Furthermore, when using an a priori

information for reducing the noise, the weight of the actual observation O is reduced: a

good compromise needs to be found between these two sources of information. The tests365

that will be conducted here will be based on specific data and some assumptions so the results

obtained could change in other conditions. The goal of these experiments is to present various

forms of a priori information that can be used in the de-noising of inundation maps.

4.1. Experiments on “synthetic” data over Amazon

The data used here are real observations (GIEMS-D3, Section 2.2) but the noise that370

is added for the de-noising experiments is synthetic. The original GIEMS-D3 image I (i.e.

target of the de-noising filters) is represented in the first map of Fig. 7(A). The corresponding

noisy observed image O is then presented in the second map (B) with a 30% noise level, i.e.

30% of the pixels have been switched to simulate noise.

Note first that a “symmetry” difficulty can appear in these experiments. In the original375

map I: 16.7% of the pixels are permanently inundated; 52.3% of the pixels are permanently

dry; and 31% are transitory pixels. If 30% of noise is present in the image (i.e. 30% of 0/1

switching values) then in the noisy image: 0.30 × 0.167 = 5% are erroneously dry pixels

(FN), and 0.30 × 0.523 = 15.69% are erroneously wet pixels (FP). Therefore, a spatial
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filter favouring dry pixels would automatically improve the image, but this would not be a380

satisfactory solution.

The de-noising results from the filters presented in Section 3 are presented in Fig. 7, and

the numerical results are provided in Tab. 3.

• Filter 1a - The Filter 1a with threshold τ1a = 0 improves considerably the image (from

30% to 9.3% erroneous pixels). With this threshold, the pixels are constrained to have a385

constant value in the historical record. In Tab. 3, it can be seen that Filter 1 with τ1a = 0.35

is able to act in transitory pixels and reduces further the residual noise level from 9.3% to

3% (or 31 to 10.1% of the transitory pixels), see Filter I in Fig. 7(C). This result is however

obtained by imposing the filtering of F(O) towards the historical record, reducing the weight

of the observation O. It is chosen to use Filter 1a only to identify permanently inundated390

or dry pixels. The challenge of the following filters will then be to act only in the transitory

pixels, and reduce the 31% erroneous pixels among them.

• Filter 1b - Filter 1b, by exploiting the seasonal probabilities, can improve further the

filtering. Since synthetic data are used with a knowledge of the perfect solution, tests can be

conducted in order to define the bests thresholds for each filter. The threshold τ1b = 0.1 was395

chosen here as a good compromise. It reduces the erroneous pixels, from 31% to 10.4% (see

Filter II in Fig. 7(D)), a value that is close to what is obtained with Filter 1a (τ1a=0.35). This

is counter-intuitive as it would be expected that monthly probabilities θmi should provide

better scores than an all-season probability θi. However, monthly probabilities are here

dependent on the number of samples (only 15 for the 15 years of GIEMS) and it is well400

possible that their quality is not good enough for some particular months. In the following,

a threshold τ1a=0 is chosen for Filter 1a, and τ1b=0.1 for Filter 1b. The objective of the

following filters will then be to reduce further the number 10.4% of erroneous transitory

pixels.

• Filter 2 - Filter 2 uses a localised information surrounding the pixel (contrarily to Filters 1a405

and 1b). It is based here on the number of surrounding inundated pixels V (i). The optimised

threshold τ2 = 0.3 is a satisfactory value, it decreases the score from 10.4% to 8.8%, see

Filter III in Fig. 7(E).

• Filter 3 - Filter 3 uses topography information in the form of elevation. When used

without Filter 2, the score is 8.4% which means that elevation appears here to be a better410
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Figure 7: De-noising results, from left to right and top to bottom : Noise-free image (A), noisy image (B),

and de-noising results from Filter I (C), Filter II (D), Filter III (E), Filter IV (F), and Filter V (G). See

Tab. 3 for the definition of the labels in this figure.

Fig. 7 Thresholds Nb residual Percent. residual Percent. res. error

label errors error / total pixels / transitory pixels

Noisy image (B) - 300160 30.0% -

Filter 1a τ1a = 0 93193 9.3% 31.0%

Filter I= 1a (C) τ1a = 0.35 30306 3.0% 10.1%

Filter II= 1a+1b (D) τ1a = 0 | τ1b = 0.1 31113 3.1% 10.4%

Filter III=

1a+1b+2 (E) τ1a = 0 | τ1b = 0.1 | τ2 = 0.3 26534 2.6% 8.8%

Filter 1a+1b+3 τ1a = 0 | τ1b = 0.1 | τ3 = 1 25340 2.5% 8.4%

Filter IV=

1a+1b+2+3 (F) τ1a = 0 | τ1b = 0.1 | τ2 = 0.2 | τ3 = 1 21858 2.2% 7.3%

Filter 1a+1b+4 τ1a = 0 | τ1b = 0.1 | τ4 = 1 26182 2.6% 8.7%

Filter 1a+1b+2+4 τ1a = 0 | τ1b = 0.1 | τ2 = 0.2 | τ4 = 1 19797 2.0% 6.6%

Filter V=

1a+1b+2+3+4 (G) τ1a = 0 | τ1b = 0.1 | τ2 = 0.2 | τ3 = 1 | τ4 = 1 18901 1.9% 6.3%

Table 3: De-noising results of the five filters in terms of residual errors, percentage of residual errors in the

full image, and percentage residual errors in the working space (i.e. not permanently wet or dry pixels). The

Fig. 7 sub-labels of the five chosen filtered images is indicated in bold in the second column.
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a priori information for de-noising than Filter 3 (with score 8.8%). When combined with

Filter 3, the score decreases further and significantly (statistically, p-value=0.003) from 8.4

to 7.3%, see Filter IV in Fig. 7(F). Significant has two meanings here. First, significant

in statistics means that there are numerous data so if a difference is seen between two

experiments, it is not random, there is a difference in information between the two filters.415

Second, the term significant is used here because a 1% increase in quality (from 8.4 to 7.3%)

is important because it is harder to improve a filter when it is already good. A 1.1% decrease

represents almost 13.1% (from 8.4 to 7.3%) of the errors in this case. Furthermore, in the

30 m resolution maps we are dealing here, this 1.1% decrease of errors translate into many

pixels covering several km2 of ground area, become correctly classified.420

• Filter 4 - Last a priori information is the Floodability Index used by Filter 4. When

combined with Filter 2, Filter 4 has a score of 6.6%. When combined with Filter 3, the

remaining error rate decreases even further at 6.3%, see Filter V in Fig. 7(G). This shows

that the FI is better information than the neighbourhood or elevation.

This set of experiments shows how it is possible to combine several a priori information by425

using together, hierarchically, several spatial filters. The erroneous pixels can be decreased

in the whole image from 30% to 1.9% (in the “total” space), and the erroneous pixels in

the transitory pixels from 31% to 6.3% (in the “work” space), see last line of Tab. 3. The

order in which these filters are stacked is important: some aberrant pixels can be corrected

using some simple a priori information (e.g. permanently dry or wet pixels), then more430

sophisticated information can be used to improve further the solution.

4.2. Experiments on SAR data over Vietnam

In these experiments, the Sentinel SAR Instantaneous image introduced in Section 2.1.1

is used. It was shown in that section how this image is corrupted by noise. The goal of the

filters will be to reduce this noise and it will be possible to analyse visually the image to see435

the quality of the results. In order to have some quantitative measure of quality, the results

will also be compared to the Reference image, even if it is dangerous to directly compare

these images due to the acquisition-time differences.

• Filter 1a - Tab. 4 provides the confusion matrix of the Filter 1 for τ1a from 0 to 0.35.

The highest this threshold, the highest our confidence on the GSWO a priori probability is.440

The number of erroneous pixels goes from 715,556 for the Instantaneous image (Tab. 1) to a
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range of [692,012 / 369,072], depending on τ1a. This represents a decrease of the erroneous

pixels close to 50% (part of the remaining differences is related to the time-difference). It

Filter 1a

τ1a = 0.00 N=25,516,150 P=1,473,090

N=25,397,582 TN=25,110,860 FP= 286,722

98.41% 19.46%

P=1,591,658 FN= 405,290 TP=1,186,368

1.59% 80.54%

Errors= 692,012 2.56% / work 2.29% / total

τ1a = 0.15 N=25,375,103 P=1,614,137

TN=25,170,379 FP= 227,203

99.19% 14.08%

FN= 204,724 TP=1,386,934

0.81% 85.92%

Errors= 431,927 1.60% / work 1.43% / total

τ1a = 0.30 N=25,454,111 P=1,535,129

TN=25,241,263 FP= 156,319

99.16% 10.18%

FN= 212,848 TP=1,378,810

0.84% 89.82%

Errors= 369,167 1.36% / work 1.22% / total

Table 4: De-noising statistics for the Filter 1a (based on pixel probability from GSWO) for threshold τ1a =

0, 0.15, and 0.3. True Negative (TN), False Positive (FP), False Negative (FN), and True Positive (TP) are

provided, together with the number of erroneous pixels. “Work” is for working space (pixels not permanently

inundated or dry).

can be seen that by increasing τ1a, the number of False FN decreases, and then starts to

increase; but that the FP are monotonically decreasing. Fig. 8 shows the evolution of the445

total, FN, and FP numbers with τ1a. The threshold τ1a=0.15 is chosen in the following as a

good compromise. The false positive errors still continue after this threshold, but a too large

τ1a means a very high confidence on GSWO. This would be justified in some regions (large

uniform regions as inside rivers), but this would not be true in all areas such as floodplains

23



or vegetated areas not well described by GSWO. Using only the diagnostics such as FP, FN,450

TP and TN percentages is very valuable of course, but understanding of the information

content of all the datasets is also important. The GSWO a priori information appears to

be of good quality in this part of the Mekong region and for this time of year because the

surface waters are mostly rivers, and GSWO, by using visible data, is able to detect such

open waters. Over other regions, the quality of this a priori could be of lower quality.

Figure 8: Evolution of the Total, False Positives, and False Negative errors with Filter 1a with increasing

τ1a, for the Mekong image de-noising.

455

Fig. 9 represents the GSWO a priori information, together with the Instantaneous image

and the de-noising using τ1a=0.15. The use of the a priori information provides uniform

pixel values inside the rivers, because the GSWO has uniform probabilities in these regions.

• Filter 2 - By using simple and uniform statistics on the 8 neighbours of a pixel (Prob(I(i) =460

1 | (V (i) = n)), it allows decreasing the number of erroneous pixels from 715,556 in the

Instantaneous image to 597,034 (about 17% decrease), after 4 iterations (with τ2 = 0.2).

Results are provided in Tab. 5. Even after this 17% decrease), the FP score is still high

at 18.91%. This can be explained by the fact that the neighbourhood statistics are done

globally in the ensemble of all pixels because no Sentinel historical time series was available465

to build a statistics for each pixel. A possible extension of this work could be to divide the

pixels in several specific groups (for instance pixels close to permanently inundated, close
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Figure 9: De-noising results for Filter 1a (i.e. pixel probability from GSWO) over one zoom of the Mekong

region (see black square in Fig. 1). From left to right: GSWO water occurence (A), Instantaneous noisy

image (B), filtering with τ1a = 0.15 (C), and Reference (D) image.
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to never inundated, or transitory pixels) and to perform a statistics for each one of these

groups. Similarly to Fig. 9, the de-noised map from Filter 2 (not shown) has a decreased

number of FN pixels inside the river, which is the aim of such filter. FP pixels are difficult470

to correct and numerous errors remain (18.91%). In fact, it is difficult to suppress the FP

pixels at the edge of the rivers because the neighbourhood constrain focuses here on pixels

with low number of inundated pixels. Furthermore, it cannot be known if the river edges

have changed during the 40-day antecedent period of the Reference image.

• Filter 3 - Tab. 5 shows the de-noising statistics for the DEM-based Filter 3 (with τ3 = 1).475

The number of errors decrease from 715,556 to 624,492 (a 12.7% decrease). Results are

mitigated for this filter. It should be noted however that DEM information are useful only

over land, not over water. Noise errors in this image are focused over the open waters, so

these results are not surprising.

• Filter 4 - Tab. 5 shows the de-noising statistics for the FI-based Filter 4 (with τ4 = 1).480

Number of errors decrease from 715,556 to 550,568 (a 23% decrease of the errors). Results

are better than those from the DEM (Filter 3), although the FI in entirely defined by the

DEM. This means that the FI is able to obtain a more direct information on flooding than

the elevation alone. Again, the FI provides information over land, and not over the rivers.

So this type of information should be better for images with errors over land.485

• Combining filters - The combination of the previously introduced Filters is tested here.

Tab. 6 shows the de-noising statistics. Number of errors decrease from 715,556 to 422,913

(a significant decrease by 40.9% of the errors). Note that errors are measured based on

the Reference image but that differences are inevitable between the Reference and the In-

stantaneous images. So part of the remaining errors are explained not by a default spatial490

interpolation, but by these Instantaneous/Reference differences.

More than these statistical diagnostics, a reassuring fact is that all the filters are acting

in agreement with what they were designed to do. This means that the constraints that

were specified (historical, neighbourhood-based, etc.) are sound and that the way they are

exploited in the filter is working properly. If other constrains are requested by a particular495

application, it would be possible to design other filters.
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Filter 2: Neighbour, τ2 = 0.3

Iteration 1 N=25,416,672 P=1,572,568

N=25,397,582 TN=25,096,872 FP= 300,710

TN=98.74% 19.12%

P=1,591,658 FN=319,800 TP=1,271,858

1.26% 80.88%

Errors= 620,510 2.30% / work 2.06% / total

Iteration 4 N=25,389,590 P=1599650

Ref Neg= TN=25,095,069 FP= 302,513

98.84% 18.91%

Ref Pos= FN=294,521 TP=1,297,137

1.16% 81.09%

Errors= 597,034 2.21% / work 1.98% / total

Filter 3: DEM, τ3 = 1

Filter 3 N=25,398,882 P=1,590,358

N=25,397,582 TN=25,397,582 FP= 311,596

TN=98.77% 19.59%

P=1,591,658 FN=312,896 TP=1,278,762

1.23% 80.41%

Errors= 624,492 2.31% / work 2.07% / total

Filter 4: Flood. Ind., τ4 = 1

Filter 4 N=25,233,574 P=1,755,666

N=25,397,582 TN=25,040,294 FP=357,288

TN=99.23% 20.35%

P=1,591,658 FN=193,280 TP=1,398,378

0.77% 79.65%

Errors= 550,568 2.04% / work 1.83% / total

Table 5: De-noising statistics for the Filter 2 (Neighbourhood-based) after iteration 1, and 4; for the Filter 3

(DEM based); and for the Filter 4 (Floodability Index based).
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Combination

Filter 1a / τ1 = 0.15 N=25,375,103 P=1,614,137

TN=25,170,379 FP= 227,203

99.19% 14.08%

FN= 204,724 TP=1,386,934

0.81% 85.92%

Errors= 431,927 1.60% / work 1.43% / total

+ Filter 2 N=25,357,312 P=1,631,928

TN=25,166,616 FP= 230,966

99.25% 14.15%

FN= 190,696 TP=1,400,962

0.75% 85.85%

Errors= 421,662 1.56% / work 1.40% / total

+ Filter 3 N=25,352,672 P=1,636,568

TN=25,164,951 FP= 232,631

99.26% 14.22%

FN= 187,721 TP=1,403,937

0.74% 85.78%

Errors= 420,352 1.56% / work 1.40% / total

+ Filter 4 N=25,298,093 P=1,691,147

TN=25,136,381 FP= 261,201

99.36% 15.44%

FN= 161,712 TP=1,429,946

0.64% 84.55%

Errors= 422,913 1.57% / work 1.40% / total

Table 6: De-noising statistics for the combination of Filters.
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5. Missing-data results

Filling missing pixels using spatial interpolation techniques over inundation maps is easier

than the de-noising problem of the previous section because the location of missing-data is

known, and there is no risk to wrongly modify correctly observed pixels. Furthermore, the500

filling of missing-data is faster in terms of computations because the filters need to be applied

only on the missing pixels, not on the full image.

5.1. Missing pixel results on “synthetic” data over Amazon

Fig. 10(A) shows the original GIEMS-D3 image I, and the corresponding image with

black dots in the location of 15% of missing pixels (B). The solutions provided by Filters 1a,505

1b, 2, 3, and 4 are then represented. Filter 1a is with a threshold value τ1a=0.

N 30	km	

Figure 10: Filling results over an Amazon region. From left to right and top to bottom : Original image

I (A), image O with missing pixels (B), and filling results from Filter I (C), Filter II (D), Filter III (E),

Filter IV (F), and a Filter V (G) combination.
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When using these filters, all the missing pixels are not filled. By increasing the threshold

of each filters, more pixels are processed, but the errors in the filled pixels increase. Each

application would require a different balance based on the tolerance to errors. The numerical

results are synthesised in Tab. 7. It can be seen that it is possible to fill in a considerable510

number of the missing pixels: from 31% for Filter 1a with τ1a=0, to 0.6% when combining

the five filters in Filter V, see Filter I in Fig. 10(C). The erroneous filling stays at a low

value: from 0% with Filter 1a to 0.4% when combining the five filters (Fig. 10(G)). In order

to fill in all the pixels, the last line of Tab. 7 uses the combined Filter V with τ1a = 0,

τ1b = 0, τ2 = 0.2, τ3 = 1, and τ4 = 1, but with a post-processing by Filter 1b with threshold515

τ1b = 0.5 to fill in the 961 remaining pixels: the erroneous pixels increase from 540 to 960,

it means that 420 errors were present over the remaining 961 ambiguous pixels. The filters

have therefore a satisfactory behaviour with coherent results.

Fig. 7 Thresholds Nb Percent. Nb Percent.

sub-label (τ1a, τ1b, τ2, τ3, τ4) missing missing left errors errors

Image (B) - 150000 100.0% - -

Filter 1a τ1a = 0 46728 31.2% 0 0.0%

Filter I (C) τ1a = 0.1 22417 15.0% 459 0.3%

Filter II (D) τ1a = 0 / τ1b = 0.1 7887 5.3% 159 0.1%

Filter III (E) τ1a = 0 / τ1b = 0 / τ2 = 0.1 1994 1.3% 210 0.1%

Filter 3 τ1a = 0 / τ3 = 1 19592 13.0% 503 0.3%

Filter IV (F) τ1a = 0 / τ1b = 0 / τ2 = 0.2 / τ3 = 1 990 0.7% 535 0.3%

Filter 4 τ1a = 0 / τ4 = 1 20595 13.7% 3 0.0%

τ1a = 0 / τ1b = 0 / τ2 = 0.2 / τ4 = 1 1335 0.9% 338 0.2%

τ1a = 0 / τ1b = 0 / τ2 = 0.2 / τ3 = 1 / τ4 = 1 961 0.6% 540 0.4%

Filter V (G) τ1a = 0 τ1b = 0 τ2 = 0.2 τ3 = 1 τ4 = 1 + τ1b=0.5 0 0% 960 0.6%

Table 7: Filling results of the combined filters tested over the Amazon region: number and percentage of

missing pixels, and number and percentage of errors in “the working space” (i.e. transitory pixels). The

Fig. 7 sub-labels of the five selected filtered images is indicated in bold in the second column.

5.2. Large-area missing-data on visible Sentinel 2 data over Camargue

The a priori information becomes essential for the filling of missing-data because no520

direct observation is available in this case for the considered pixels except in the edge of the

missing area (that can be far from it when the missing area is large). It is important to use

an a priori information that is coherent with the observations otherwise, big discontinuities

can appear between the observed and the interpolated areas. The ideal scenario is to use a

priori originating from the same instrument of the observations. This can be done when a525

historical record is available for that particular instrument. Unfortunately, this is not always
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the case, in particular here for the Sentinel 2 visible data over the Camargue region. An

auxiliary a priori information needs to be used instead.

The most compatible source of information among the a priori databases presented in

Section 2 is the GSWO dataset: It is directly related to the presence of surface waters (not530

like topography), it has similar spatial resolution, and for the Camargue region, the visible

data from GSWO are coherent with the Sentinel 2 visible data. The GSWO will therefore

be used in order to fill in the missing-data in the Sentinel 2 visible instantaneous data.

• Simple thresholding - The first spatial interpolation method to fill the missing-data (related

to the cloud presence) uses a threshold on the GSWO occurence: I = 1 if GSWO > h and535

I = 0 ifGSWO < h (with h = 0.5). Fig. 11(B) represents the spatial interpolation performed

over the GSWO a priori. No discontinuities can be seen between the non-cloudy and the

cloudy regions, which means that the GSWO is an a priori information compatible with the

visible Sentinel 2 data over this region. In the Interpolated-Reference image (E), the blue

pixels indicate that the interpolated image is “drier” than the Reference (i.e. Interp-Ref=-1),540

and the red ones indicate that the interpolation is “wetter” (i.e. Interp-Ref=1).

A zoom is performed over a smaller area, in the same Camargue region (Fig. 12). It

allows to better compare with the GSWO information also represented in this figure (A).

Again, no discontinuity can be observed (E), stressing the quality of the a priori information

over this region and for these data.545

• Adaptative thresholding - In the previous approach, the water presence in a missing pixel

was decided on a simple threshold (h = 0.5) over the [0, 1] occurrence range of the GSWO

dataset. This threshold can be optimised for two reasons: (1) The occurence of water seen by

the SAR Sentinel 1 or by Landsat on GSWO might differ. Their sensitivity is not the same.

These differences might require and adjustment between the two sources of information. (2)550

The local “context” of the visible Sentinel 2 image, on non-missing pixels, can help adjusting

this threshold. This is the principle of spatial interpolation: exploit the observed data where

they are available to fill pixels where data are missing. If a region observed by the Sentinel 2

is wetter than usual, then more inundation should be allowed in its neighbourhood when

doing the spatial interpolation in the missing area. Conversely, if a Sentinel 2 estimation555

region is drier, it should have a drying effect on the interpolation.

The principle of the adaptative thresholding presented here is based on the search of a
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Figure 11: Data-missing filling results over Camargue. First row: Instantaneous (A), Interpolated with

constant (B), and adaptative thresholds (C). Second row: Reference (D), Interpolated minus Reference with

constant (E) and adaptative (F) thresholds.
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Figure 12: Zoom over the Camargue region for missing-data filling. First row: GSWO (A), Reference (B),

and Instant./Const.-Reference (C). Second row: Instantaneous (D), Interp./Constant (E), and Interp./Const.

minus Reference (F). Third row: Interp./Adaptative (H), and Interp./Adapt minus Reference (G).
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threshold h that provides the best agreement between the visible Sentinel 2 observation and

the GSWO occurence, for all the pixels over land with no clouds. For each non-missing pixel

i over land, the process is decomposed in the following steps:560

• First, all the land and non-missing pixels in the neighbourhood of pixel i are gathered

into a vector: V (i).

• The number of pixels N(i) in V (i) that are inundated is then obtained.

• The GSWO occurrences for the V (i) pixels are gathered into a vector: P = [GSWO(j), j ∈

V (i)] (see two upper graphs in Fig. 13(A and B)).565

• P is sorted in decreasing order: P ′ (see two lower graphs in Fig. 13(A and B)).

• The optimal threshold is given by h = P ′(N(i)) (same figure).

This adaptative threshold h ensures that the use of the rule GSWO(j) ≥ h on V (i) will

provide the same number of inundated pixels N(i) than in the observation map to be inter-

polated. Fig. 13(A and B) represents this process on two pixels (left and right), and the two570

obtained thresholds are 0.38 and 0.69. This choice of the optimal threshold can be made

only when inundated pixels are present in the neighbourhood (i.e. N(i) > 0). In the other

pixels (i.e. N(i) = 0), the standard choice h = 0.5 is adopted a priori.

For computational efficiency purpose, this adaptative threshold is required only at the

edges of the cloudy missing areas, it is then possible to perform a spatial interpolation inside575

the missing areas. A bilinear interpolation technique can be used for instance. A so-called

“natural-neighbour” interpolation is used.

Fig. 13(C) represents the map of the adaptative thresholds in all the non-cloudy pixels of

the image, not only over the cloud-edges, for a better understanding. Optimised threshold

can be > 0.5 (meaning that locally, the observation is “dryer” than the GSWO a priori) or580

< 0.5 (observation “wetter” than the GSWO a priori).

In agreement with Fig. 13, the interpolation results of the adaptative method are pre-

sented in Fig. 12(G). The difference is that in a part of the image, the new interpolation

gives less inundated pixels than the constant threshold approach because the Instantaneous

visible Sentinel 2 image was dryer than the GSWO dataset on that day and location. When585

compared to the Reference image, some differences can be observed in Fig. 11(F). These
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over two pixels (A and B). Upper part: GSWO occurences on neighbourhood V (i). Bottom part: Ordered

occurrences and threshold definition. (C): Optimised adaptative threshold h.
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differences can be better seen in the zoom of Fig. 12(H). Although computationally slower,

the Interp./Adapt. method allows to take into account in the spatial interpolation the speci-

ficities of the observations on that given date. This seems a better approach than using a

simple constant threshold on the GSWO occurence.590

6. Discussion

In this article, two regions over Camargue/France and Mekong/Vietnam have been con-

sidered. These two regions have been monitored respectively by visible and SAR observations

from the Sentinel satellites. It was noticed that Mekong had missing-data due to the presence

of clouds, and Camargue had noise due to instrument or retrieval errors.595

Shen et al. (2019) state that automation and robustness have not been achieved yet for

the detection of surface waters below the vegetation when using L-Band SAR observations

(due to water-like surfaces, speckle noise, or geometric corrections). VIS/IR observations

are contaminated too by clouds and vegetation presence. This means that misclassifications

and missing data will be present in retrieved surface water maps. Human intervention to600

reduce over- or under-detection is often required (Shen et al., 2019).

Sophisticated retrieval approaches have been designed for some specific observations.

For instance, change detection techniques can be used on time series of SAR backscatter

coefficients (Giustarini et al., 2013; Matgen et al.). But the development of de-noising

and missing-data filling techniques, as post-precessing step over the retrieved surface water605

maps, is more general and can be employed in any type of water maps. Pulvirenti et al.

(2011a) use an object-oriented technique based on a dilution and an erosion steps to remove

isolated groups of water pixels and small holes in water bodies. Another approach is to use

a priori information (such as land cover, elevation, etc.) and exploit it within spatial filters

(Pulvirenti et al., 2011b). This is the way tested here in this paper.610

Four sources of a priori information on surface water have been exploited to reduce noise

in surface water maps or fill missing values by spatial interpolation:

• Historical information at the pixel level: Advantage of this type of information is its

simplicity. In this work, our source of information is the Landsat-based GSWO dataset

(Pekel et al., 2016b). This type of information could be used as simple a priori for615
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SWOT retrievals (even if some limitations of such datasets need to be considered (Aires

et al., 2018)

• Neighbouring information constrains based on historical information: This is a typical

image processing approach. It generally requires a long historical record. Several forms

of neighbouring constrains can be used based on the quality of the historical data.620

• Constraints based on topography information: This a priori information is not based

on surface water maps. However, it is evident hydrologically that surface waters are

strongly constrained by topography.

• Constraints based on hydrology information: It has been shown that a floodability index

indicating which pixels are more likely to be inundated in a region can be constructed625

based on topography information. For instance, in Fluet-Chouinard et al. (2015) and

Aires et al. (2017), a floodability index was used to downscale inundation maps to a

resolution of 90 m.

It was investigated here if these four sources of a priori information can help post-processing

corrupted surface water maps by reducing noise in retrieval and fill missing-data.630

In the filling-data problem, the advantage is that the “working space” (i.e. the ensemble

of pixels that are missing and that need to be complemented) is known. Most of the time in

this context, the information content of the available observations is limited because available

pixels can be far from the pixels to be filled in. So the a priori information is essential in

this case. In the de-noising problem, the actual observations are more important because635

they are available for the considered pixels. The difficulty is related to fact that it is not

known a priori which pixels are contaminated or not by noise, and by how much. A good

compromise needs to be found between the observations and the a priori information.

De-noising - Four spatial filters have been introduced for the de-noising. It was shown

how these filters can be combined to increase the quality of the surface water maps. Re-640

sults for the Mekong region show that the filter from GSWO inundation probability is the

most performant filter. However, the region that is considered includes mostly rivers (not

floodplains), and it is known that GSWO is good to describe open waters. In other regions,

with more vegetation, GSWO would be less reliable, and the use of the other filters might

then become necessary. It was shown that the exploitation of our Floodability Index (based645
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on topography) is more performant than the raw elevation from a DEM only. This was

to be expected because this FI was designed to predict surface water presence in a better

way than the DEM. The simple neighbourhood system exploited in Filter 2 was also not

as performant than the FI. This is probably due to the lack of historical record that would

allow obtaining statistical constraints for each pixel, and not uniformly for the whole image.650

This could be improved if a historical record is used instead of one image only (using another

instrument than the Sentinel ones, or waiting after a mission launch for a time record long

enough to build pixel-scale constraints). De-noising errors still remain but when looking in

detail, the introduced filters follow well the job they were designed to accomplish (i.e. fill the

holes inside the rivers, uniformizing spatially the water surfaces, limiting isolated inundated655

pixels, etc.).

Any instrument would have specific noise characteristics (from instrument, assumptions

made, or retrieval errors). The de-noising experiments were conducted on SAR data, so a

noise model is used for the synthetic experiments that are close to what is expected for that

instrument. For another instrument, another model would be required.660

Missing-data filling - Due to the available test data, two thresholding techniques were

used on the a priori GSWO surface water occurrence to fill the missing areas due to the

presence of clouds. Again, the GSWO seems to be a good source of a priori information, for

the same reasons as for the de-noising. Two versions of this approach were considered: one

with a constant threshold, and another with an adaptative one. The adaptative thresholding665

allows to better consider the Sentinel 2 visible/GSWO differences, and to use the specific

conditions of the SAR observation to be interpolated (with drier or wetter local areas).

In the large-missing-area case, observations are not as important as in de-noising because

the observations (non-cloudy pixels) can be very far from the missing pixels. Therefore, the

a priori information becomes more important. What can be seen in Fig. 12 is that the670

a priori information drives the quality of the retrieval. Several a priori information were

tested. The so-called Reference a priori image (i.e. 40-day average of the MODIS retrievals)

coud had been used. This was not do that because the Reference is what is used to measure

the quality of the data-filling. Furthermore, this information is not always available, and a

40-day averaging a priori might not be a good solution for an instantaneous retrieval (e.g.675

during a sudden flooding event). It is also interesting to measure the quality of independent
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a priori information (topography, floodability index, etc.) because they can complement the

information provided by the observation (MODIS here).

The retrieved surface water maps can have some specificities in terms of uncertainties

(i.e. instrument noise, wrong assumptions, limited information, or retrieval errors) or in680

terms of missing-data (presence of clouds, instrument recalibration, etc.). The methods

that are proposed here are not general, they would recommend testing and adjustment

for each application. In fact, the a priori information that is proposed (historical record,

neighbourhood constrains, elevation, or floodability index) are not specific to one type of

observations, but the design of an optimal de-noising or data-filling filter would require to685

adjust their use to the problem specificities.

7. Conclusion and perspectives

In this paper, several determinist filters using several a priori information were introduced

to de-noise and fill missing-data in satellite-retrieved surface water maps. It was presented

how to exploit these a priori information and how to combine them. The methods presented690

here are not specific to one type of satellite observations, they are generic and applicable

for surface water maps whatever their origin, and flexible enough to be optimised for any

particular application. Tests were conducted on SAR- and visible-based retrievals.

Many aspects of the filters described here can be optimised further. For instance:

• A different threshold can be used for the small and large probabilities in GSWO, this695

would specialise the filters to different environments;

• More complex neighbourhood systems can be expressed, based on large dataset ex-

periments with information on surface type. Adapting the filters to surface water

environments would improve their efficiency;

• A pixel-scale neighbourhood statistics could be obtained if a long time record was700

available. This would ensure that the neighbourhood constrain would be specific for

each location, which would be a great improvement, but long time records would be

necessary;

• The DEM constraint could use the runoff information in addition to the elevation,

this would provide constrains on the flow direction that are more pertinent for local705
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inundation patterns;

• The Floodability Index (FI) that was used here could be improved. As mentioned in

the text, this FI has been derived using topography information. The model that was

used is global and general, and no specific information was provided on the type of

environment. An investigation was conducted to know where and when the floodability710

index is good or not convenient. Based on this study, a more complex FI model could

be derived that would be satisfactory in any environment. Furthermore, a newer and

more precise topography will be used, this should also improve the FI.

For the missing-data filling, if a historical record is available, a PCA approach could be

used (Aires et al., 2014) instead of the adaptative thresholding on the GSWO surface water715

occurrence that might not be appropriate for all the environments, in particular over densely

vegetated areas. By using a same source for the observations and the a priori, the coherency

can help accomplishing the data filling.

The most important contribution of this paper is to present several a priori information

ressources that can be used to improve satellite water masks. Several ways to exploit this720

a priori information were presented. Perspectives to improve the filters are numerous, in

particular when global and long time records of observations are available. Some parame-

ters of the filters can to be optimised, this could be done for each region or each type of

environments.

These sources of a priori information and spatial filters can be used as a post-processing725

step, for the improvement of satellite surface water maps, but this a priori information

could also be used as auxiliary data in retrieval algorithms. In the future, we expect to use

another important information for the post-processing of such water maps: the temporal

information. This is already an important component of current SAR retrieval algorithms

Santoro et al. (2010) and it is expected that this temporal information should leverage the730

spatial information used in the filters presented here in this paper.

The NASA/CNES Surface Water and Ocean Topography (SWOT) mission, planned for

launch in 2021, is specifically designed to provide high-spatial resolution (' 10 m) and good

temporal sampling (22 days repeat) of the extent (and altitude) of continental surface waters

thanks to an interferometric Ka-band radar (Rodriguez, 2015; Prigent et al., 2016). Although735

the SWOT data are expected to deliver a new generation of global water surface extents at
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unprecedented quality and resolution, the availability of this product is still years in the

future. Meanwhile, alternative efforts should be pursued to provide the community with

the best possible information about the spatial and temporal variations of global surface

water extents. Such efforts would also allow for the extension of the SWOT temporal record740

backward in time, with existing past imagery; this will be a crucial step in assembling multi-

decadal measurements of surface water variation.
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