S. D. Allison, A trait-based approach for modelling microbial litter decomposition, Ecol. Lett, vol.15, pp.1058-1070, 2012.

S. D. Allison, M. D. Wallenstein, and M. A. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci, vol.3, pp.336-340, 2010.

C. Averill and B. Waring, Nitrogen limitation of decomposition and decay: How can it occur?, Glob. Change Biol, vol.24, pp.1417-1427, 2018.

H. Bahri, D. P. Rasse, C. Rumpel, M. F. Dignac, G. Bardoux et al., Lignin degradation during a laboratory incubation followed by 13 C isotope analysis, Soil Biol. Biochem, vol.40, 1916.
URL : https://hal.archives-ouvertes.fr/bioemco-00321896

P. W. Barnes, H. L. Throop, D. B. Hewins, M. L. Abbene, and S. R. Archer, Soil coverage reduces photodegradation and promotes the development of soil microbial films on dryland leaf litter, Ecosystems, vol.15, pp.311-321, 2012.

B. Berg and C. Mcclaugherty, Plant Litter. Decomposition, Humus Formation, Carbon Sequestration, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01130323

G. B. Bonan, M. D. Hartman, W. J. Parton, and W. R. Wieder, Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the Community Land Model version 4 (CLM4), Glob. Change Biol, vol.19, pp.957-974, 2013.

H. Bozdogan, Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions, Psychometrika, vol.52, pp.345-370, 1987.

V. Brovkin, P. M. Van-bodegom, T. Kleinen, C. Wirth, W. K. Cornwell et al., Plantdriven variation in decomposition rates improves projections of global litter stock distribution, Biogeosciences, vol.9, pp.565-576, 2012.

E. E. Campbell and K. Paustian, Current developments in soil organic matter modeling and the expansion of model applications: a review, Environ. Res. Lett, vol.10, p.123004, 2015.

E. E. Campbell, W. J. Parton, J. L. Soong, K. Paustian, N. T. Hobbs et al., Using litter chemistry controls on microbial processes to partition litter carbon fluxes with the Litter Decomposition and Leaching (LIDEL) model, Soil Biol. Biochem, vol.100, pp.160-174, 2016.

C. C. Cleveland and D. Liptzin, C : N:P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass?, Biogeochemistry, vol.85, pp.235-252, 2007.

M. F. Cotrufo, M. D. Wallenstein, C. M. Boot, K. Denef, P. et al., The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Glob. Change Biol, vol.19, pp.988-995, 2013.

M. F. Cotrufo, J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix et al., Formation of soil organic matter via biochemical and physical pathways of litter mass loss, Nat. Geosci, vol.8, pp.776-779, 2015.

O. C. Devêvre and W. R. Horwáth, Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures, Soil Biol. Biochem, vol.32, pp.1773-1785, 2000.

Q. Duan, S. Sorooshian, and V. K. Gupta, Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol, vol.158, pp.265-284, 1994.

Q. Y. Duan, V. K. Gupta, and S. Sorooshian, Shuffled complex evolution approach for effective and efficient global minimization, J. Optimiz. Theory App, vol.76, pp.501-521, 1993.

D. Finn, K. Page, K. Catton, E. Strounina, M. Kienzle et al., Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry, Soil Biol. Biochem, vol.91, pp.433-462, 1988.

O. Franklin, E. K. Hall, C. Kaiser, T. J. Battin, and A. Richter, Optimization of Biomass Composition Explains Microbial Growth-Stoichiometry Relationships, Am. Nat, vol.177, pp.29-42, 2011.

S. D. Frey, J. Lee, J. M. Melillo, and J. Six, The temperature response of soil microbial efficiency and its feedback to climate, Nat. Clim. Change, vol.3, pp.395-398, 2013.

Y. Fujita, J. M. Witte, and P. M. Van-bodegom, Incorporating microbial ecology concepts into global soil mineralization models to improve predictions of carbon and nitrogen fluxes, Global Biogeochem. Cy, vol.28, pp.223-238, 2014.

P. García-palacios, B. G. Mckie, I. T. Handa, A. Frainer, S. Hättenschwiler et al., The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes, Global Biogeochem. Cy, vol.30, p.1001, 2010.

H. L. Gholz, D. A. Wedin, S. M. Smitherman, M. E. Harmon, and W. J. Parton, Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition, Glob. Change Biol, vol.6, pp.751-765, 2000.

C. M. Gilmour and J. T. Gilmour, Assimilation of carbon by the soil biomass, Plant Soil, vol.86, pp.101-112, 1985.

D. S. Goll, V. Brovkin, B. R. Parida, C. H. Reick, J. Kattge et al., Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosciences, vol.9, pp.3547-3569, 2012.

D. S. Goll, N. Vuichard, F. Maignan, A. Jornet-puig, J. Sardans et al., A representation of the phosphorus cycle for OR-CHIDEE (revision 4520), Geosci. Model Dev, vol.10, pp.3745-3770, 2017.

A. S. Grandy and J. C. Neff, Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function, Sci. Total Environ, vol.404, pp.297-307, 2008.

B. Guenet, C. Neill, G. Bardoux, A. , and L. , Is there a linear relationship between priming effect intensity and the amount of organic matter input?, Appl. Soil Ecol, vol.46, pp.436-442, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666203

M. Guimberteau, D. Zhu, F. Maignan, Y. Huang, C. Yue et al., ), a land surface model for the high latitudes: model description and validation, Geosci. Model Dev, vol.11, pp.121-163, 2018.

S. Güsewell and J. T. Verhoeven, Litter N : P ratios indicate whether N or P limits the decomposability of graminoid leaf litter, Plant Soil, vol.287, pp.131-143, 2006.

S. Hansen, H. E. Jensen, N. E. Nielsen, and H. Svendsen, Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY, Fert. Res, vol.27, pp.245-259, 1991.

M. E. Harmon, W. L. Silver, B. Fasth, H. U. Chen, I. C. Burke et al., Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison, Glob. Change Biol, vol.15, pp.1320-1338, 2009.

D. B. Hewins, S. R. Archer, G. S. Okin, R. L. Mcculley, and H. L. Throop, Soil-litter mixing accelerates decomposition in a Chihuahuan Desert grassland, Ecosystems, vol.16, pp.183-195, 2013.

S. E. Hobbie, Plant species effects on nutrient cycling: revisiting litter feedbacks, Trends Ecol. Evol, vol.30, pp.357-363, 2015.

S. E. Hobbie and P. M. Vitousek, Nutrient limitation of decomposition in Hawaiian forests, Ecology, vol.81, pp.1867-1877, 2000.

Y. Huang, B. Guenet, P. Ciais, I. A. Janssens, J. L. Soong et al., OR-CHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition, Geosci. Model Dev, vol.11, pp.2111-2138, 2018.

J. Ingwersen, C. Poll, T. Streck, and E. Kandeler, Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface, Soil Biol. Biochem, vol.40, pp.864-878, 2008.

I. A. Janssens, W. Dieleman, S. Luyssaert, J. A. Subke, M. Reichstein et al., Reduction of forest soil respiration in response to nitrogen deposition, Nat. Geosci, vol.3, pp.315-322, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00853609

T. Kätterer and O. Andrén, The ICBM family of analytically solved models of soil carbon, nitrogen and microbial biomass dynamics -descriptions and application examples, Ecol. Model, vol.136, pp.191-207, 2001.

M. Kearns and D. Ron, Algorithmic stability and sanity-check bounds for leave-one-out cross-validation, Neural Comput, vol.11, pp.1427-1453, 1997.

H. Knicker, Soil organic N -An under-rated player for C sequestration in soils?, Soil Biol. Biochem, vol.43, pp.1118-1129, 2011.

G. Krinner, N. Viovy, N. De-noblet-ducoudré, J. Ogée, J. Polcher et al., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy, vol.19, p.1015, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02865384

C. J. Kucharik, J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe et al., Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure, Global Biogeochem. Cy, vol.14, pp.795-825, 2000.

J. Kyaschenko, K. E. Clemmensen, E. Karltun, and B. D. Lindahl, Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities, Ecol. Lett, vol.20, pp.1546-1555, 2017.

L. Lekkerkerk, H. Lundkvist, G. I. Ågren, G. Ekbohm, and E. Bosatta, Decomposition of heterogeneous substrates; An experimental investigation of a hypothesis on substrate and microbial properties, Soil Biol. Biochem, vol.22, pp.161-167, 1990.

J. Liski, T. Palosuo, M. Peltoniemi, and R. Sievänen, Carbon and decomposition model Yasso for forest soils, Ecol. Model, vol.189, pp.168-182, 2005.

Y. Luo, A. Ahlström, S. D. Allison, N. H. Batjes, V. Brovkin et al., Toward more realistic projections of soil carbon dynamics by Earth system models, Global Biogeochem. Cy, vol.30, pp.40-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02922844

S. Manzoni and A. Porporato, Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biol. Biochem, vol.41, pp.1355-1379, 2009.

S. Manzoni, R. B. Jackson, J. A. Trofymow, and A. Porporato, The global stoichiometry of litter nitrogen mineralization, Science, vol.321, pp.684-686, 2008.

S. Manzoni, J. A. Trofymow, R. B. Jackson, and A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter, Ecol. Monogr, vol.80, pp.89-106, 2010.

S. Manzoni, P. Taylor, A. Richter, A. Porporato, and G. I. Agren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils, New Phytol, vol.196, pp.79-91, 2012.

S. Manzoni, P. Capek, M. Mooshammer, B. D. Lindahl, A. Richter et al., Optimal metabolic regulation along resource stoichiometry gradients, Ecol. Lett, vol.20, pp.1182-1191, 2017.

A. K. Metherell, L. A. Harding, C. V. Cole, and W. J. Parton, CENTURY Soil Organic Matter Model Environment Technical Documentation, 1993.

J. A. Molina, C. E. Clapp, M. J. Shaffer, F. W. Chichester, and W. E. Larson, NCSOIL, A Model of Nitrogen and Carbon Transformations in Soil: Description, Calibration, and Behavior, Soil Sci. Soc. Am. J, vol.47, pp.85-91, 1983.

D. L. Moorhead and R. L. Sinsabaugh, A Theoretical Model of Litter Decay and Microbial Interaction, Ecol. Monogr, vol.76, pp.151-174, 2006.

M. Mooshammer, W. Wanek, I. Hammerle, L. Fuchslueger, F. Hofhansl et al., Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling, Nat. Commun, vol.5, 2014.

H. Pagel, J. Ingwersen, C. Poll, E. Kandeler, and T. Streck, Micro-scale modeling of pesticide degradation coupled to carbon turnover in the detritusphere: model description and sensitivity analysis, Biogeochemistry, vol.117, pp.185-204, 2013.

W. Parton, W. L. Silver, I. C. Burke, L. Grassens, M. E. Harmon et al., Global-scale similarities in nitrogen release patterns during long-term decomposition, Science, vol.315, pp.361-364, 2007.

W. J. Parton, J. W. Stewart, C. , and C. V. , Dynamics of C, N, P and S in grassland soils: a model, vol.5, pp.109-131, 1988.

E. A. Paul, Soil Microbiology, Ecology and Biogeochemistry, 2007.

C. E. Prescott, Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?, Biogeochemistry, vol.101, pp.133-149, 2010.

S. Recous, D. Robin, D. Darwis, M. , and B. , Soil inorganic N availability: Effect on maize residue decomposition, Soil Biol. Biochem, vol.27, pp.1529-1538, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02713538

M. Rubino, J. A. Dungait, R. P. Evershed, T. Bertolini, P. D. Angelis et al., Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13 C labelled-leaf litter experiment, Soil Biol. Biochem, vol.42, pp.1009-1016, 2010.

J. P. Schimel, M. N. Weintraub, M. W. Schmidt, M. S. Torn, S. Abiven et al., The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biol. Biochem, vol.35, pp.49-56, 2003.

R. L. Sinsabaugh, S. Manzoni, D. L. Moorhead, and A. Richter, Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling, Ecol. Lett, vol.16, pp.930-939, 2013.

S. Sitch, B. Smith, I. C. Prentice, A. Arneth, A. Bondeau et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Soil Sci. Soc. Am. J, vol.9, pp.555-569, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01757605

C. E. Stewart, P. Moturi, R. F. Follett, and A. D. Halvorson, Lignin biochemistry and soil N determine crop residue decomposition and soil priming, Biogeochemistry, vol.124, pp.335-351, 2015.

U. Talkner, M. Jansen, and F. O. Beese, Soil phosphorus status and turnover in central-European beech forest ecosystems with differing tree species diversity, Eur. J. Soil Sci, vol.60, pp.338-346, 2009.

R. K. Thiet, S. D. Frey, and J. Six, Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues, Soil Biol. Biochem, vol.38, pp.837-844, 2006.

G. Tramontana, M. Jung, C. R. Schwalm, K. Ichii, G. Camps-valls et al., Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, vol.13, pp.4291-4313, 2016.

M. Tuomi, R. Laiho, A. Repo, and J. Liski, Wood decomposition model for boreal forests, Ecol. Model, vol.222, pp.709-718, 2011.

E. L. Verberne, J. Hassink, P. D. Willigen, J. J. Groot, and J. A. Veen, Modelling organic matter dynamics in different soils, Neth. J. Agr. Sci, vol.38, pp.221-238, 1990.

C. Walela, H. Daniel, B. Wilson, P. Lockwood, A. Cowie et al., The initial lignin : nitrogen ratio of litter from above and below ground sources strongly and negatively influenced decay rates of slowly decomposing litter carbon pools, Soil Biol. Biochem, vol.77, pp.268-275, 2014.

Y. P. Wang, R. M. Law, and B. Pak, A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, vol.7, pp.2261-2282, 2010.

H. Zhang, Global soil carbon projections are improved by modelling microbial processes, Nat. Clim. Change, vol.3, pp.909-912, 2013.

W. R. Wieder, C. C. Cleveland, W. K. Smith, and K. Todd-brown, Future productivity and carbon storage limited by terrestrial nutrient availability, Nat. Geosci, vol.8, pp.441-444, 2015.

X. Yang, P. E. Thornton, D. M. Ricciuto, and W. M. Post, The role of phosphorus dynamics in tropical forests -a modeling study using CLM-CNP, Biogeosciences, vol.11, pp.1667-1681, 2014.

S. Zaehle, B. E. Medlyn, M. G. De-kauwe, A. P. Walker, M. C. Dietze et al., Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO 2 Enrichment studies, New Phytol, vol.202, pp.803-822, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02638404

C. F. Zhang, F. R. Meng, J. S. Bhatti, J. A. Trofymow, and P. A. Arp, Modeling forest leaf-litter decomposition and N mineralization in litterbags, placed across Canada: A 5-model comparison, Ecol. Model, vol.219, pp.342-360, 2008.

J. Zhang and J. J. Elser, Carbon:Nitrogen:Phosphorus Stoichiometry in Fungi: A Meta-Analysis, Front. Microbiol, vol.8, p.1281, 2017.