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Abstract 24 

Nowadays, environmental pollution by microplastics (< 5mm; MP) is a major issue. MP are 25 

contaminating marine organisms consumed by humans. This work studied MP contamination 26 

in two bivalve species of commercial interest: blue mussel (Mytilus edulis) and common cockle 27 

(Cerastoderma edule) sampled on the Channel coastlines (France). In parallel, 13 plastic 28 

additives and 27 hydrophobic organic compounds (HOC) were quantified in bivalves flesh 29 

using SBSE-TD-GS-MS/MS to explore a possible relationship between their concentrations 30 

and MP contamination levels. MP were extracted using a 10% potassium hydroxide digestion 31 

method then identified by µ-Raman spectroscopy. The proportion of contaminated bivalves by 32 

MP ranged from 34 to 58%. Blue mussels and common cockles exhibited 0.76 ± 0.40 and 2.46 33 

± 1.16 MP/individual and between 0.15 ± 0.06 and 0.74 ± 0.35 MP/g of tissue wet weight. Some 34 

HOC and plastic additives were detected in bivalves. However, no significant Pearson or 35 

Spearman correlation was found between MP loads and plastic additives or HOC concentrations 36 

in bivalve tissues for the two species. 37 

Keywords 38 

microplastic, mussel, cockle, plastic additive, hydrophobic organic compounds 39 

Capsule 40 

Microplastic contamination and pollutant levels of commercially important bivalves in France. 41 

  42 
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1. Introduction 43 

Nowadays, plastic is a commonly used material with numerous benefits for everyday human 44 

life (Thompson et al., 2009). To meet the growing demand, plastic production increased 45 

exponentially since the 1950’s from 2 million metric tons produced in 1950 to 381 million 46 

metric tons in 2015 (Geyer et al., 2017). Simultaneously, plastics tend to accumulate in natural 47 

environments due to their durability, resistance and trash mismanagement (Barnes, 2002; 48 

Horton et al., 2017).  49 

Small plastic particles, called microplastics (MP; <5 mm) (Arthur et al., 2009) are ubiquitous 50 

in the marine environment (Li et al., 2016b) and are found in beach sediment (Claessens et al., 51 

2011; Dekiff et al., 2014) and in the water column (Collignon et al., 2012; Desforges et al., 52 

2014; Lattin et al., 2004). Coastal environments are also subjected to MP pollution. Indeed, as 53 

these environments are interfaces between land and sea, pollution can either originate from 54 

terrestrial or marine origins. Terrestrial activities are responsible on average for 80% of plastic 55 

load in the Oceans (Andrady, 2011) but with high variability along the coasts (Filella, 2015). 56 

Several studies found MP in coastal environments (Li et al., 2016b; Naidoo et al., 2015; Nel 57 

and Froneman, 2015; Ng and Obbard, 2006) with the highest levels up to 16,272 MP/m3 in 58 

coastal waters around Geoje Island, South Korea (Song et al., 2014) and up to 8,720 MP/kg 59 

(dry weight) of beach sediment in Wanning, China (Qiu et al., 2015). 60 

Numerous marine species are known to ingest MP (Lusher, 2015) including coastal species 61 

harvested or cultivated for human consumption. Due to their commercial interest and the fact 62 

that the whole animal is eaten by consumers, contaminations of bivalves are a major subject of 63 

concern for food safety and human health. Their feeding mode directly exposes bivalves to 64 

pollutants such as MP present in their surrounding environment. Consequently bivalves, 65 

especially mussels (Mytilus spp.), are commonly used as a sentinel organism to monitor 66 

anthropogenic pollution in marine coastal environments (Goldberg, 1975; Li et al., 2019). 67 
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Indeed, ingestion of MP has been demonstrated in situ in numerous bivalves species including 68 

mussels (Mytilus edulis and Mytilus galloprovincialis), oysters (Crassostrea gigas) or clams 69 

(Venerupis philippinarum) (Davidson and Dudas, 2016; Phuong et al., 2018; Van 70 

Cauwenberghe and Janssen, 2014; Vandermeersch et al., 2015). For example Van 71 

Cauwenberghe and Janssen (2014) reported up to 0.36 MP/g of tissue wet weight (ww) in 72 

mussels collected on German coasts whereas Phuong et al., (2018) reported 0.23 MP/g of tissue 73 

ww in mussels sampled on the French Atlantic coast. In laboratory experiments, uptake of MP 74 

resulted in different side effects on bivalves physiology (Browne et al., 2008; Cole and 75 

Galloway, 2015; Paul-Pont et al., 2016; Sussarellu et al., 2016; von Moos et al., 2012; Wegner 76 

et al., 2012). For example, exposition of oysters (C. gigas) to polystyrene microspheres 77 

modified their feeding capacity and affected reproductive outputs (Sussarellu et al., 2016). 78 

Apart from the physical injuries caused by MP, their ingestion could also be associated with 79 

the release of hydrophobic organic compounds (HOC) or plastic additives (Hermabessiere et 80 

al., 2017). Some studies proposed the use of several chemicals as proxies of plastic ingestion 81 

including polychlorinated biphenyls (PCB) (Teuten et al., 2009), di(2-ethylexyl) phthalate 82 

(DEHP) (Fossi et al., 2014, 2012) or polybrominated diphenyl ethers (PBDE) (Tanaka et al., 83 

2013). 84 

In the present study, two species of bivalves, the blue mussel (M. edulis) and the common 85 

cockle (Cerastoderma edule) were chosen to study MP contamination. These species live in 86 

different habitats and are both commonly found on French coasts. Cockles live at the interface 87 

between sediment and water where higher contamination is expected (Besseling et al., 2014) 88 

whereas mussels live in the water column on rocks or on lines and piling in aquaculture. In 89 

addition, both species are commercially important seafood products. France is one of the top 90 

producers of mussels (Mytilus spp.) in Europe with 47,394 tons produced in 2016 (FAO, 2018) 91 

and 1,890 tons of cockle were produced in France in 2016 (FAO, 2018). Globally, in Europe, 92 
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mussels are one of the most consumed seafood products with an apparent consumption of 1.33 93 

kg/capita in 2015 (European Commission, 2018). 94 

The aims of this work were (i) to quantify MP content in two common commercial bivalves 95 

species, the blue mussel and the common cockle, sampled along the Channel coast of France, 96 

(ii) to quantify HOC and plastic additives in the bivalves tissues and (iii) to explore relationships 97 

between MP loads in bivalves and HOC and plastic additive tissue concentrations. 98 

2. Material and methods 99 

2.1. Sampling 100 

Sampling sites were located along the Channel coasts (Fig. 1) which exhibit the most important 101 

tide system in Europe associated with strong currents (Salomon and Breton, 1993). The Baie 102 

des Veys (BdV) (Fig. 1A) is an estuarine bay under the influence of two rivers: the Taute and 103 

the Vire with a total mean discharge of 53 m3/s. The intertidal part of the bay supports intensive 104 

oyster farming with around 10,500 tons (Grangeré et al., 2009). The BdV also supports mussel 105 

farming and professional fishing of C. edule. Moreover, this bay could also be influenced by 106 

the Seine flow depending on meteorological conditions (Ellien et al., 2004). The Baie d’Authie 107 

(BA) (Fig. 1B) is a small estuary influenced by the river Authie which has a mean flow of 9 108 

m3/s mainly influenced by agricultural activities (Billon et al., 2001; Gillet et al., 2008). Finally, 109 

Le Portel (LP) (Fig. 1B) beach is not influenced by any river but is located in an area under the 110 

influence of 116,000 inhabitants in 2014 (INSEE, 2015). Overall, BdV and BA are small 111 

estuaries with small influence of human activities whereas LP is located in a relatively high 112 

populated area.  113 

Mussels (n=50) were collected at LP (50°42’30.02”N, 1°33’34.43”E) on Oct 29th, 2015. 114 

Mussels (n=50) and cockles (n=50) were then sampled at the BdV (49°22'23.4”N, 115 

1°06'40.0”W) on Nov 1st, 2015. Finally, cockles (n=50) were sampled at the BA 116 
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(50°22’17.22”N, 1°35’4.8”E) on Nov 15th, 2015. In total, 100 mussels and 100 cockles were 117 

collected. After field sampling, the shell was cleaned in the laboratory with filtered bidistilled 118 

water and length was measured for all individuals. Then bivalves were shelled and their soft 119 

tissue wet weights (ww) were recorded. Samples were wrapped in a piece of paper then in 120 

aluminum foil and stored at -20°C before subsequent analysis. Atmospheric blank was 121 

performed during opening and weighting (see 2.2.1). 122 

 123 

Fig 1: Blue mussel and common cockle sampling locations along the French coasts of the Channel in Normandy (A) and 124 
in Hauts-de-France (B). BA: Baie d’Authie, BdV: Baie des Veys and LP: Le Portel. 125 
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2.2. Microplastics analyses 126 

2.2.1. Prevention of procedural contamination 127 

To avoid overestimation of the MP concentration in bivalves due to airborne, container, and 128 

tool contamination, preventative measures were applied. All used materials were made of glass. 129 

All solutions: distilled water, 70% (v/v) ethanol, 10% potassium hydroxide (KOH) were filtered 130 

through a 90 mm diameter GF/A 1.6 µm glass fiber filters (Whatman, Velizy-Villacoublay, 131 

France) until no particle was found on the filter. Moreover, all glassware, tools and bench 132 

surfaces were rinsed with filtered distilled water, filtered 70% ethanol then by filtered distilled 133 

water before being used. Glass fiber filters were verified under a stereomicroscope to ensure 134 

the absence of particle before being used. 135 

Atmospheric blanks were performed at every step of the work: dissection, digestion and 136 

filtration using glass petri dishes open to the environment during procedures. Furthermore, for 137 

each digestion batch, a procedural blank made of only 10% KOH followed the same treatment 138 

as the bivalve samples. Digestion and filtration were performed in a fume hood specifically 139 

dedicated to MP analyses, with a switched-off aspiration system, to prevent contamination with 140 

airborne particles from the ambient air. Finally, operators did not wear gloves and synthetic 141 

clothing to limit contamination due to fixed airborne particles and they wore lab coats made of 142 

cotton. 143 

The used µ-Raman spectroscopy method did not allow the polymer identification of fibers 144 

because these particles are too thin (Käppler et al., 2016). Thus, fibers were only counted. In 145 

addition, in order to account for airborne contamination, whenever a fiber was found in a blank 146 

(atmospheric or procedural), it was subtracted from the final result if a fiber of the same type 147 

(i.e. color and shape) was found in the sample. Results for fiber counts without subtraction of 148 

blank are available in Supplementary Table 1. Some particles were classified as pigment 149 
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containing particles as no confirmation of polymeric composition could be made. Together with 150 

fibers, pigment containing particles were not considered in MP contamination results. 151 

2.2.2. Tissue digestion and filtration 152 

Digestion of mussels and cockles were performed according to Dehaut et al., (2016). After 153 

thawing, individuals were placed in 300 mL Erlenmeyer flasks then 10% KOH was added. For 154 

bivalves from LP and BA, 100-250 mL of 10% (w/w) KOH were added (ChimiePlus, Saint 155 

Paul de Varax, France) and then samples were placed 24 h in an incubator (Binder BD 240, 156 

Tuttlingen, Germany) set at 60 ± 1°C with agitation set at 200-300 rpm (IKA KS250, Staufen, 157 

Germany or 2mag MIXDrive 6 HT, Munich, Germany). For bivalves sampled at BdV, a 158 

solution of 10% KOH (w/v) was prepared using KOH pellets (Sigma-Aldrich, Saint-Quentin-159 

Fallavier, France) and distilled water. Bivalves were put in 250 mL of prepared 10% KOH then 160 

placed on an agitation plate (IKA RT15, Staufen, Germany) set at 300 rpm and 60 ± 1°C for 24 161 

h. After digestion, all samples were filtered on clean 90 mm diameter GF/A 1.6 µm glass fiber 162 

filters (Whatman,Velizy-Villacoublay, France) using a vacuum system. Filters were then placed 163 

in closed Petri dishes until subsequent analysis. Procedural blank was performed at the same 164 

time as manipulating mussel and cockle soft tissue (see 2.2.1). 165 

Except for mussels from LP due to a handling issue, two pools of 100 mL, of bivalve digestates 166 

by species and location, obtained with 10 mL belonging to 10 different individuals were 167 

prepared and conserved at -20°C until further analyses of HOC and plastic additives. 168 

2.2.3. Visual sorting and µ-Raman analysis 169 

Filters were observed under a Zeiss Stemi 508 stereomicroscope (Zeiss, Marly le Roi, France). 170 

Particles resembling MP (MP-like) were counted and characterized according to their shape 171 

(fragment, fiber, bead, foam or pellet) and color (Lusher et al., 2017). Colors were attributed 172 

by a unique operator in order to allow comparisons. MP-like were then isolated for subsequent 173 

µ-Raman spectroscopy analysis. Pictures of MP-like were taken and sizes were measured in 174 
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pixel using GIMP 2 software (2.8.16). The maximum length in µm of MP-like particles was 175 

calculated using a scale bar. No particle smaller than 15 µm was observed on filters. Particles 176 

were thus categorized depending on their maximum size according to the following class sizes: 177 

15-50, 50-100, 100-500 and >500 μm. 178 

µ-Raman analyses were conducted according to Frère et al., (2016). Briefly, all MP-like were 179 

analyzed with a LabRam HR800 (HORIBA Scientific, Villeneuve d’Ascq, France) using laser 180 

wavelength set at 785 nm (Laser diode, Oxxius, Lannion, France) or 514 nm (Ar Laser, Melles 181 

Griot, Bensheim, Germany). A laser wavelength of 785 nm was first attempted and if 182 

identification was not conclusive, acquisition with laser wavelength set at 514 nm was carried 183 

out. Experimental conditions for µ-Raman analyses - integration time, accumulation, laser 184 

power and wavelength - were set to limit fluorescence and increase the spectral quality of the 185 

analyzed particles. Particles identifications were performed by comparing acquired spectra to 186 

reference spectra to home-made database including the following reference polymers: Low 187 

Density Polyethylene (LDPE), High Density Polyethylene (HDPE), Polypropylene (PP), 188 

Polystyrene (PS), Unplasticized Polyninyl Chloride (uPVC), Polyethylene Terephthalate 189 

(PET), Polyamide-6 (PA-6), Polyamide-12 (PA-12), Polytetrafluoroethylene (PTFE), 190 

Polymethylmethacrylate (PMMA), Acrylonitrile-Butadiene-Styrene (ABS), Polyurethane 191 

(PUR) acquired from GoodFellow (Lille, France). Then, downstream, chemometric analyses 192 

were carried out in order to obtain a better identification for previously unidentified particles 193 

(Batzan et al., 2018) (Supplementary Table 2). Identification was established based on the 194 

similarity percentage (minimum value of 70%) between particles and reference spectra. In 195 

addition, spectra with no identification in the home-made database were compared to spectra 196 

described by Socrates (2004). 197 
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2.3. Analyses of hydrophobic organic compounds and plastic additives 198 

2.3.1. Target chemicals 199 

Five groups of chemicals were analyzed including 15 polycyclic aromatic hydrocarbons (PAH), 200 

6 polychlorinated biphenyls (PCB), 6 organochloride pesticides (OCP), 6 phthalates and 7 201 

PBDE (Table 1). 202 

Table 1: List of the analyzed chemicals in digestates of cockles from Baie d’Authie (BA), cockles and mussels from Baie 203 

des Veys (BdV). 204 

Chemical 

family 

Target chemical or 

congener 

PubChem ID 

PAH 

Naphtalene 

Benzothiophene 

Biphenyl 

Acenaphtylene 

Acenaphtene 

Fluorene 

Dibenzothiophene 

Benzo(g,h,i)perylene 

Phenanthrene 

Anthracene 

Fluoranthene 

Pyrene 

Benzo(a)anthracene 

Chrysene 

Benzo(b+k)fluoranthene 

931 

7221 

7095 

9161 

6734 

6853 

3023 

9117 

995 

8418 

9154 

31423 

5954 

9171 

9158 

PCB 

PCB-7 

PCB-28 

PCB-52 

PCB-105 

PCB-156 

PCB-169 

36399 

23448 

37248 

36188 

38019 

23448 

OCP 

Hexachlorobenzene 

Aldrin 

Isodrin 

Dieldrin 

2,4-DDE a 

Endrin 

8370 

101611446 

10066 

3048 

246598 

12358480 

PBDE 

BDE-28 

BDE-47 

BDE-99 

BDE-100 

BDE-153 

BDE-154 

BDE-183 

154083 

95170 

36159 

154083 

155166 

15509898 

15509899 
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Phthalate 

BBP b 

DEHP c 

DEP d 

DMP e 

DnBP f 

DEHA g 

2347 

8343 

6781 

8554 

3026 

7641 
a 2-(2-Chlorophenyl)-2-(4-chlorophenyl)-1,1-

dichloroethene 
b butyl benzyl phthalate 
c di(2-ethylexyl) phthalate 
d diethyl phthalate 
e dimethyl phthalate 
f di-n-butyl phthalate 
g Diethylhexyl adipate 

 205 

2.3.2. Chemical analyses 206 

Analytes were directly extracted then analyzed from the digestate pool using stir bar sorptive 207 

extraction-thermal desorption-gas chromatography-tandem mass spectrometry (SBSE-TD-208 

GC–MS/MS) (Lacroix et al., 2014). Briefly, a polydimethylsiloxane stir bar (Twister 20 209 

mm×0.5 mm, Gerstel, Mülheim an der Ruhr, Germany) was placed in the 100 mL digestate and 210 

extractions were carried out on a magnetic laboratory agitator (MIX15, Munich, Germany) set 211 

at 700 rpm for 16 h in the dark at room temperature. After the extraction step, stir-bars were 212 

retrieved, rinsed with Evian® water and placed on a gas chromatography system Agilent 7890A 213 

coupled with an Agilent 7000 triple quadrupole mass spectrometer (Agilent Technologies, 214 

Little Falls, USA) and equipped with a Thermal Desorption Unit (TDU) combined with a 215 

Cooled Injection System (CIS) (Gerstel, Mülheim an der Ruhr, Germany). Thermodesorption 216 

was performed at 280°C for 6 min and samples where then cryofocused in the CIS at -10°C. 217 

Injection in the GC-MS/MS system was carried out in splitless mode and the CIS was heated 218 

to 300°C at 12°C/s. The GC temperature program was set as follows: 70°C for 0.5 min, then 219 

increase to 150°C at 20°C/min and finally increase to 300°C at 7°C/min, maintained for 5 min. 220 

A Rxi-5MS (30 m, 0.25 mm, 25 µm thickness) (Restek, Lisses, France) capillary column was 221 

used. Helium was used as a carrier gas with a constant flow rate of 1 mL/min.  222 
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Limits of quantification (LOQ) were calculated according to Shrivastava and Gupta (2011) 223 

using the calibrations curves method. Limits of detection (LOD) were calculated by dividing 224 

the LOQ by 3.3. Calibration curves were drawn using mussel tissues digested in 10% KOH for 225 

3 h at 80°C added with standard chemicals. Analytes were quantified relatively to deuterated 226 

compounds using a calibration curve ranging from 0.01 ng to 10 ng. For PAH, PCB and OCP 227 

quantification naphthalene d8, biphenyl d10, phenanthrene d10, pyrene d10, chrysene d12, 228 

benzo(a)pyrene d12, benzo(g,h,i)perylene d12 were used as standards. For the plastic additives, 229 

phthalates and PBDE, di (2-ethylhexyl) phthalate d4 and BDE 77 were respectively used as 230 

standards. All standards were obtained from LGC Standard (Wesel, Germany) and Interchim 231 

(Montluçon, France). 232 

2.4. Statistical analyses 233 

All statistical analyses were performed using R Statistical Software version 3.4.0 (R Core Team, 234 

2015). As hypothesis of residuals normality, tested using Shapiro-Wilk test, and 235 

homoscedasticity, tested on regression residues, were not verified, non-parametric Kruskal-236 

Wallis tests were performed instead of ANOVA. When significant differences were 237 

highlighted, a post-hoc test using the Fisher’s least significant difference (LSD) criterion and 238 

Bonferroni correction was applied using the agricolae package (1.2-7) (De Mendiburu, 2014). 239 

Microplastic color, sizes classes and polymer composition were compared using Chi-Square 240 

test. To perform Chi-square test, data were summed to meet application requirements (Cochran, 241 

1952). Relationships between MP or anthropogenic particle (AP) load and HOC or plastic 242 

additive concentration in bivalves were assessed using correlation test (Pearson or Spearman) 243 

with the corrplot package (0.84) (Wei et al., 2017). Differences were considered significant 244 

when p-value was below 0.05. 245 

Results are expressed as a mean ± 2 standard error (S.E.), representing the 95% confidence 246 

interval (95% CI). Contamination results were expressed as percentage of contaminated 247 
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individuals, mean particles/individuals and mean particles/g of tissue ww. Results were given 248 

for contamination by MP, fiber, pigment containing particles (PCP) and all categories 249 

(MP+fiber+PCP). 250 

3. Results and discussion 251 

3.1. Biometric parameters 252 

Mussels from LP and BdV measured 47.3 ± 1.2 mm and 47.9 ± 1.5 mm and weighted 3.5 ± 0.5 253 

g (soft tissue wet weight) and 5.7 ± 0.6 g, respectively. Cockles from BA and BdV measured 254 

35.2 ± 0.4 mm and 27.3 ± 0.5 mm and weighted 3.2 ± 0.1 g and 3.0 ± 0.2 g, respectively. On 255 

average, cockles and mussels measured legal market sizes: 27 mm and 30 mm for cockles for 256 

professional and recreational fishing respectively and 40 mm for mussels for recreational and 257 

professional fishing (LegiFrance, 2018; Préfecture de Haute Normandie, 2015a, 2015b; 258 

Préfecture de Normandie, 2016). 259 

3.2. Microplastics in mussels and cockles 260 

Overall, 1636 particles were visually isolated and sorted from the 200 sampled bivalves of BA, 261 

LP and BdV. Among them, 324 were fibers varying from 2.4 to 50.2% of particles according 262 

to sites and species. A total of 1312 particles (80%) were analyzed with µ-Raman spectroscopy 263 

and identified as MP, PCP, natural particles, or unidentified (Table 2). The identified particles 264 

correspond to MP (5 to 32.8%), PCP (0 to 2.5%), and natural particles (6.6 to 21.5%) (Table 265 

2). Unidentified particles with µ-Raman account for 27 to 60.9% of analyzed particles (Table 266 

2). Absence of identification was due to absence of peak in particles spectra, saturated signal 267 

due to high fluorescence or mismatch with databases. Overall, natural particles (6.6 to 21.5%) 268 

were mainly composed of minerals (exclusively quartz), organic and inorganic carbon 269 

corresponding to sand or shell particles (Table 2). The majority of PCP contained a blue 270 
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pigment known as the phthalocyanine blue 15 (PB15). As this pigment is used in the plastic 271 

industry, it can be attributable to plastic (Lewis, 2005). Such PCP were also found in mussels 272 

sampled in Germany (Van Cauwenberghe and Janssen, 2014). Nevertheless, these could not be 273 

rigorously considered as MP since these PCP could also be paint particles, as demonstrated by 274 

Imhof et al. (2016). 275 

Table 2. Particles analyzed by µ-Raman spectroscopy and fibers visually isolated and sorted from mussels and cockles. 276 

Species 
Sampling 

site 1 
Fiber 3 

Unidentified 

particles 4 

Identified 4 

Total Natural 

particles 5 
Microplastics PCP6 

Mussel 

LP 2 
77 465 164 38 19 763 

10.1% 60.9% 21.5% 5.0% 2.5% 100% 

BdV 2 
121 65 16 39 0 241 

50.2% 27.0% 6.6% 16.2% 0% 100% 

Cockle 

BA 2 
9 169 65 123 9 375 

2.4% 45.1% 17.3% 32.8% 2.4% 100% 

BdV 2 
117 73 39 28 0 257 

45.5% 28.4% 15.2% 10.9% 0% 100% 
1 LP: Le Portel; BdV: Baie des Veys; BA: Baie d’Authie 
2 Results are expressed in terms of absolute number of particles and relative proportion of each items among the total count by 

line (in italic)  
3 Not analyzed by µ-Raman 

4 Analyzed by µ-Raman 

5 Natural particle included minerals, organic and inorganic carbon. 

6 Pigment containing particles 

 277 

For mussels sampled at LP, MP were identified in 17 mussels (34%) whereas 23 mussels (46%) 278 

from BdV were contaminated by MP. Concerning cockles from BA, 29 (58%) individuals were 279 

contaminated by MP whereas 21 cockles (42%) from BdV were contaminated (Table 3). The 280 

presence of MP in cockles and mussels from the four sites varied from 0.56 ± 0.22 281 

MP/individual, namely 0.19 ± 0.08 MP/g of tissue wet weight (ww) for cockle from BdV to 282 

2.46 ± 1.16 MP/individual, namely 0.74 ± 0.35 MP/g of tissue ww for cockle from BA (Table 283 

3). MP contamination in mussels and cockles was significantly different according to location 284 

and species (Kruskal-Wallis, p<0.05). Cockles sampled at BA were more contaminated by MP 285 

(Post-hoc after Kruskal-Wallis, p<0.05) in comparison with mussels sampled at LP and cockles 286 
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sampled at BdV. These differences were both observed for results expressed as MP/individual 287 

and MP/g of tissue ww (Table 3). Higher contamination by MP in cockles sampled at BA could 288 

be due to their position in the water column. Indeed, as suggested by Besseling et al. (2014), 289 

MP concentration in sediment is expected to be higher in comparison with the water column. 290 

However, as cockles from BdV are less contaminated by MP in comparison with cockles from 291 

BA, plastic local sources may, in the present study, be a major source of contamination. 292 

However, to date, no study has been carried out to describe MP contamination at these sampling 293 

sites; consequently, it is difficult to clearly relate MP loads to the presence of MP in water or 294 

sediment of sites where bivalves were collected. 295 

Table 3. Microplastics (MP), fibers, pigmented particles and total (MP+fiber+pigment) contamination of mussels and 296 
cockles sampled at Le Portel (LP), Baie d’Authie (BA) and Baie des Veys (BdV).  297 

  
Mussel Cockle 

LP BdV BA BdV 

% of contaminated individual 

by MP 1 
34 % 46% 58 % 42 % 

MP/individual 1, 2, 3 0.76 ± 0.40 a 0.78 ± 0.30 a b 2.46 ± 1.16 b 0.56 ± 0.22 a 

MP/g of tissue ww 1, 2, 3 0.25 ± 0.16 a 0.15 ± 0.06 a b 0.74 ± 0.35 b  0.19 ± 0.08 a 

% of contaminated individual 

by fiber 
40 % 80 % 16 % 80 % 

Fiber/individual 2, 3 1.54 ± 1.2 a 2.42 ± 0.55 b 0.18 ± 0.12 c 2.34 ± 0.77 b 

Fiber/g of tissue ww 2, 3 0.49 ± 0.42 a 0.44 ± 0.1 b 0.06 ± 0.04 c 0.82 ± 0.28 b 

% of contaminated individual 

by PCP 1, 4 
24 % 0 % 8 % 0 % 

PCP/individual 1, 2, 3, 4 0.38 ± 0.23 a 0 b 0.18 ± 0.2 b  0 b 

PCP/g of tissue ww 1, 2, 3, 4 0.12 ± 0.07 a 0 b 0.06 ± 0.06 b 0 b 

% of contaminated individual 

by all categories 
68 % 86 % 72 % 86 % 

Total/individual 2, 3 2.68 ± 1.33 a 3.20 ± 0.60 b  2.82 ± 1.14 a b 2.90 ± 0.77 a b 

Total/g of tissue ww 2, 3 0.86 ± 0.47 0.59 ± 0.12 0.86 ± 0.34 1.02 ± 0.28 
1 Particles identification as MP and pigmented particles were obtained after µ-Raman spectroscopy. 

2 Results expressed as the mean ± 2 S.E (95% confidence interval). 

3 Superscript letters correspond to significant differences (per lines) after a Kruskal Wallis post-hoc test using the Fisher’s 

least significant difference and Bonferroni correction (p<0.05). 

4 Pigment containing particles 

 298 
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In the present study, quantities of MP, stricto sensu, recorded for the bivalves along French 299 

coasts of the Channel were in accordance with studies from other European coasts (Table 4) 300 

where contamination in bivalve varied from 0.04 ± 0.09 MP/g of tissue ww in Mediterranean 301 

blue mussels (M. galloprovincialis) sampled at Erbo Delta (Spain) to 4.44 MP/g of tissue ww 302 

for blue mussels (M. edulis) sampled at Oban (Scotland) (Table 4). In this work and others 303 

carried out in Europe, MP contamination appeared to be more influenced by location than by 304 

species even though the number of investigated species is limited. However, MP contamination 305 

in the two bivalves species is lower than contaminations recorded in bivalves sampled along 306 

Chinese coasts (Li et al., 2016a; Li et al., 2015) (Table 4). Mussels along the Chinese coasts 307 

were contaminated by 0.9 to 4.6 MP/g (Li et al., 2016a). These differences are likely due to MP 308 

contamination level of the studied sites. Indeed, Chinese environments were reported to be 309 

highly contaminated by MP and other plastic debris (Cai et al., 2018). 310 
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Table 4. Overview of microplastic contaminations in bivalves. 311 

Species Individuals MP/individual 
Isolation 

procedure 

Filter pore size (in 

µm) 

Polymer chemical 

identification 
Sampling location Reference 

Mytilus galloprovincialis 100 0.34 ± 0.33 p/g HNO3:HClO4 13 Hot Needle Tagus estuary, Portugal [5] 

Mytilus galloprovincialis 100 0.05 ± 0.11 p/g HNO3:HClO4 13 Hot Needle Po estuary, Italy [5] 

Mytilus galloprovincialis 25 0.15 ± 0.33 p/g HNO3:HClO4 13 Hot Needle Fangar Bay, Spain [5] 

Mytilus galloprovincialis a 25 0.25 ± 0.26 p/g HNO3:HClO4 13 Hot Needle Coro, Italy [5] 

Mytilus galloprovincialis a 100 0.04 ± 0.09 p/g HNO3:HClO4 13 Hot Needle Ebro delta, Spain [5] 

Mytilus galloprovincialis a 18 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 

Mytilus galloprovincialis b 80 1.9 ± 0.2  H2O2 1.2 FTIR Ionian Sea, Greece [14] 

Mytilus edulis 25 0.06 ± 0.13 p/g HNO3:HClO4 13 Hot Needle Saint Brieuc bay, France [5] 

Mytilus edulis 25 0.32 ± 0.22 p/g HNO3:HClO4 13 Hot Needle Inschot, Netherlands [5] 

Mytilus edulis 36 0.36 ± 0.07 p/g HNO3 5 Raman North sea, Germany [3] 

Mytilus edulis - 0.2 ± 0.3 p/g HNO3 5 Raman c North sea [4] 

Mytilus edulis - 0.37 p/g HNO3:HClO4 13 Hot Needle North sea, Belgium [1] 

Mytilus edulis 390 1.5 – 7.6 (0.9 – 4.6 p/g) H2O2 5 FTIR Chinese coasts [6] 

Mytilus edulis - 1.05 – 4.44 p/g Enzyme 52 FTIR Oban, Scotland [9] 

Mytilus edulis 120 
0.60 ± 0.56 (0.23 ± 0.20 
p/g) 

KOH 12 FTIR Atlantic coast, France [10] 

Mytilus edulis 162 1.1 – 6.4 (0.7 – 2.9 p/g) H2O2 5 FTIR United Kingdom coast [11]  

Mytilus trosssulus 450 0.04 ± 0.19 (0.26 ± 1.3 p/g) Enzyme 20 FTIR Baltic sea [13] 

Crassostrea gigas 11 0.47 ± 0.16 p/g HNO3 5 Raman Atlantic ocean [3] 

Crassostrea gigas a 12 0.6 ± 0.9 (2.10 ± 1.71 p/g) KOH - None Pacific ocean [2] 

Crassostrea gigas 60 
2.10 ± 1.71 (0.18 ± 0.16 

p/g) 
KOH 12 FTIR Atlantic coast, France [10] 

Saccostrea cucullata 330 1.7 – 4.0 (1.5 – 7.2 p/g) KOH 20 FTIR Pearl River Estuary, China [12] 

Venerupis philippinarum 27 8.4 ± 8.5 (0.9 ± 0.9 p/g) HNO3 1.2 None British Columbia, Canada [7] 

Venerupis philippinarum 27 11.3 ± 6.6 (1.7 ± 1.2 p/g) HNO3 1.2 None British Columbia, Canada [7] 

Venerupis philippinarum a 24 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 

Scapharca subcrenata a 6 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 
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Tegillarca granosa a 18 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 

Patinopecten yessoensis a 6 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 

Alectryonella plicatula a 18 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 

Sinonovacula constricta a 6 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 

Meretrix lusoria 18 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 

Cyclina sinensis 30 4.3 – 57.2 (2.1 – 10.5 p/g) H2O2 5 FTIR Chinese coasts [8] 

a Individuals sampled on local market; b Research of MP in gills and digestive gland; c Fibers were no considered as MP 

 “-“ : No data; p/g: Particle/g of tissue wet weight; FTIR: Fourier Transform Infra-Red 

References : [1] De Witte et al. (2014); [2] Rochman et al. (2015); [3] Van Cauwenberghe and Janssen (2014); [4] Van Cauwenberghe et al. (2015); [5] Vandermeersch et al. (2015); [6] 

Li et al. (2016); [7] Davidson and Dudas (2016); [8] Li et al. (2015); [9] Courtene-Jones et al. (2017); [10] Phuong et al. (2018); [11] Li et al. (2018b); [12] Li et al. (2018a); [13] Railo et 

al. (2018); [14] Digka et al. (2018) 

312 
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It is important to be aware that considering all recorded fibers as plastic particles could 313 

overestimate the contamination. Indeed, fibers identification with Raman or FTIR spectroscopy 314 

is an issue due to fibers being too thin (Cho et al., 2019; Käppler et al., 2016). According to 315 

Hermsen et al. (2017), studies with the lowest MP contamination levels in fish are those using 316 

clean air conditions, high quality assurance criteria and polymer identification. Moreover, Dris 317 

et al. (2016) demonstrated that fiber identification is important. Indeed, only 29% of analyzed 318 

fibers could be considered as plastics while others fibers were mostly made of cotton (Dris et 319 

al., 2016). Equivalent results were recently found in mussels sampled in the United Kingdom 320 

with some fibers (≈10%) identified as natural particles (Li et al., 2018b) and with 89% of fibers 321 

being identified as natural particles or unidentified in bivalves sampled on fishery markets in 322 

South Korea (Cho et al., 2019). More recently, Stanton et al. (2019) found that natural fibers 323 

represent 93.8% of the total fibers found in freshwater and atmospheric fallout samples. All 324 

these studies highlight that plastic fibers are not always dominating samples and as recently 325 

recommended (Käppler et al., 2018; Remy et al., 2015), fibers identification should be 326 

performed to allow their inclusion in MP pollution counts, only if they are made of plastic. 327 

However, to date, in some studies on MP contamination in bivalves, fibers were accurately 328 

identified as plastic particles (Courtene-Jones et al., 2017; Murray and Cowie, 2011; Phuong et 329 

al., 2018) but in other studies fibers or others particles were not verified using identification 330 

techniques (Davidson and Dudas, 2016; De Witte et al., 2014; Santana et al., 2016) (Table 4) 331 

possibly leading to an overestimation of MP contamination. Some studies (Avio et al., 2015; 332 

Davison and Asch, 2011; Foekema et al., 2013; Ory et al., 2017; Santana et al., 2016; Van 333 

Cauwenberghe et al., 2015) did not included fibers in their final MP stricto sensu counts, in 334 

order to estimate accurate MP contamination levels in seafood products. 335 

In addition to MP contamination variability according to locations, methodological approaches 336 

can also be sources of heterogeneity and variability of the results found in the literature (Table 337 
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4). Indeed, to date, there is no harmonized protocol for the extraction and characterization of 338 

MP from seafood products, despite the call from different institutions (Directive Strategy 339 

Framework, 2017; OSPAR, 2016). Differences of methods used to determine MP 340 

contamination in bivalves included different chemicals used to digest organism tissue which 341 

may lead to substantial degradation of some polymers (Dehaut et al., 2016), different types of 342 

filters (pore size and composition), identification of particles (visual vs chemical) which may 343 

lead to false positive or false negative results (Lenz et al., 2015), inclusion of fibers in the results 344 

and management of atmospheric contaminations. In this work, KOH 10% was used as its 345 

suitably was shown for bivalve digestion without degrading multiple plastic polymers (Dehaut 346 

et al., 2016; Kühn et al., 2017) whereas some acids (HNO3 and HClO4) discolored and degraded 347 

some polymers (Dehaut et al., 2016) leading to possible underestimation of MP in organisms. 348 

In addition, after chemical digestion, filtrations at 1.6 µm porosity were realized in order to 349 

recover a broad size of MP even if the smallest particle found in the present work measured 15 350 

µm. Then, particles resembling MP were chemically identified using µ-Raman spectroscopy. 351 

Such chemical identification step is essential to accurately estimate MP contamination in the 352 

environment and the biota (Dehaut et al., in press; Hermsen et al., 2018). Some guidelines were 353 

recently suggested to improve and harmonize protocols used to study MP contamination in 354 

seafood products (Dehaut et al., in press).  355 

Fibers were found in all samples (Table 3). Mussels and cockles from BdV were significantly 356 

more contaminated (Post-hoc after Kruskal-Wallis, p<0.05) with respectively 2.42 ± 0.55 357 

fiber/individual, namely 0.44 ± 0.10 fiber/g of tissue ww and 2.34 ± 0.77 fiber/individual, 358 

namely 0.82 ± 0.28 fiber/g of tissue ww, in comparison with mussels and cockles sampled at 359 

LP and BA (Table 3). Fibers and MP were found in bivalves from all sampling sites whereas 360 

PCP were only found in bivalves sampled at LP and BA (Table 3). PCP were found in 12 361 

mussels (24%) from LP with 0.38 ± 0.23 pigment/individual (0.12 ± 0.07 pigment/g of tissue 362 
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ww) and were found in 4 cockles (8%) from BA with 0.18 ± 0.2 pigment/individual (0.06 ± 363 

0.06 pigment/g of tissue ww). For mussels, all categories of particles, MP, fibers and PCP, were 364 

found in 34 individuals (68%) from LP and 43 mussels (86%) from BdV (Table 3). In BdV, 43 365 

cockles (86%) were contaminated while all types of particles were found in 36 cockles (72%) 366 

from BA (Table 3). Levels of MP, fiber and PCP contamination per individual was significantly 367 

higher in mussels sampled at BdV (3.20 ± 0.60) in comparison with mussels sampled at LP 368 

(2.68 ± 1.33) (Post-hoc after Kruskal-Wallis, p<0.05). Fibers were the dominant particles in 369 

mussels and cockles sampled from BdV (Table 2). The Baie des Veys is influenced by two 370 

rivers with a total mean discharge of 53 m3/s (Grangeré et al., 2009) and could also be 371 

influenced by the Seine depending on meteorological conditions (Ellien et al., 2004). As 372 

particles found in the Seine river are mainly in form of fibers (Dris et al., 2015), the Seine 373 

discharge could contaminate mussels and cockles of the BdV with fibers. In the present study, 374 

when PCP and fibers were included in MP counts, corresponding to all particles, contamination 375 

levels for mussels and cockles were much higher (Table 3) but stayed between the observed 376 

contamination levels found for bivalves sampled along the European coast (Table 4). Presenting 377 

data with and without PCP and fibers allowed comparisons between all available studies 378 

including those executed with and without chemically identified particles. 379 

Among the 228 MP found in mussels and cockles, five different polymers and one copolymer 380 

were identified using µ-Raman spectroscopy: PE, PP, PS, ABS, PET and styrene butadiene 381 

rubber (SBR) copolymer. PE, ABS and SBR were the most common polymers found in the 382 

cockles and mussels sampled with respectively 36.8%, 32.5% and 26.3% of all identified MP. 383 

Each remaining polymer represented less than 5% of the MP found in the bivalves. Proportions 384 

of polymers found in bivalves according to species and sampling sites were significantly 385 

different (Chi-square, p<0.001) (Fig. 2A). Indeed, PE was mainly found in mussels sampled at 386 

BdV and LP and in cockles sampled at BdV whereas ABS and SBR were mainly found in 387 
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bivalves sampled in BA and LP. Moreover, PP was only found in cockles sampled at BdV (Fig. 388 

2A). PE is common in samples which is in accordance with the available literature as PE is one 389 

of the most common polymers found in the marine environment (Frère et al., 2017; Rezania et 390 

al., 2018) and it is the most abundant polymer product worldwide (Geyer et al., 2017; 391 

PlasticsEurope, 2018). Polymers found in cockles sampled at BA were more contaminated with 392 

SBR in comparison with other sites (Fig. 2A). SBR is mainly used to make tires (Hao et al., 393 

2001; Wagner et al., 2018) which could be a source of MP in marine environment (Rochman, 394 

2018). Moreover, this plastic polymer is also used in road materials (Sundt et al., 2014). As a 395 

highway is present above the Authie River, tire and road material could be the source of this 396 

polymer found in cockles although particles identified as SBR were not all black. Additionally, 397 

positions of common cockle and mussel in the water column could influenced MP exposure in 398 

those species. Indeed, ABS density is greater than seawater (Tarrazó-Serrano et al., 2018) and 399 

will tend to sink to the bottom explaining the large proportion of this polymer contaminating 400 

cockles sampled at BA (Fig 2A). However, cockles from BdV (Fig 2A) are contaminated by 401 

PE, PP and PS although their densities are lighter than seawater (Andrady and Rajapakse, 402 

2017). Nevertheless, MP colonization by bacteria and MP incorporation into marine aggregates 403 

may increase their sinking rate (Galloway et al., 2017) and explain PE, PP and PS contamination 404 

of cockles in BdV. Furthermore, cockles live in intertidal sand flats where floating MP may be 405 

deposited at low tide. 406 

MP colors varied significantly according to sampling sites and species (Chi-square, p<0.001) 407 

(Fig. 2B). For all sampling sites and species, the blue color dominated in all samples with 24% 408 

and 69% of MP found in mussels sampled at LP and BdV and 36% and 61% in cockles sampled 409 

at BA and BdV (Fig. 2B). Other colors representing important proportions were black, 410 

transparent, pink, brown and green (Fig. 2B). In another study conducted on the Atlantic coast 411 

of France, mussels and oysters were mainly contaminated by grey, black, green and red MP but 412 
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were less contaminated by blue MP (Phuong et al., 2018). Here differences in polymers and 413 

particles colors found in bivalves could be related to differences in sources of plastic in the 414 

studied sites that remain to be ascertain in environmental studies requiring further significant 415 

analytical development. 416 

No significant difference was found for MP size classes according to species and sampling sites 417 

(Chi-square, p=0.17) (Fig. 2C). For all the 228 identified MP, size classes were represented as 418 

follow: 31.7% 15-50 µm, 34.8% 50-100 µm, 32.6% 100-500 µm and 0.9% >500 µm with the 419 

smallest MP measuring 15 µm. A majority of the MP measured less than 100 µm (66.5%). It is 420 

in agreement with a recent study using a slightly different protocol (10% KOH digestion step 421 

followed by a density separation step; 5 µm pore size cellulose filters) and size cut-off (5-5000 422 

µm), which demonstrated that 83% of MP found in mussels sampled on the French Atlantic 423 

coast measured between 20 and 100 µm (Phuong et al., 2018). The presence of smaller MP in 424 

both shellfish species reflects the fact that bivalves are filter feeders. Indeed, mussels ingest 425 

preferentially particles measuring 7-35 µm (Strohmeier et al., 2012) and cockles ingest particles 426 

measuring 7-11 µm (Iglesias et al., 1992). In addition, plastic particle numbers tend to increase 427 

with decreasing particle sizes (Erni-Cassola et al., 2017).  428 
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 429 

Fig 2: Relative abundance of microplastics (MP) according to polymer identification (A), color (B) size classes (C) found 430 
in mussels and cockles sampled at Le Portel (LP), Baie d’Authie (BA) and Baie des Veys (BdV). Microplastics were 431 
identified as polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile butadiene styrene (ABS), styrene 432 
butadiene rubber (SBR) and polyethylene terephthalate (PET). 433 
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3.3. Hydrophobic organic compounds and plastic additives concentrations in 434 

mussels and cockles 435 

The second objective of this study was to combine particular and chemical analyses to test if 436 

chemical pollutants can be a proxy of plastic contamination by comparing particles and 437 

chemical analyses. 438 

PAH were detected in mussels and cockles from BdV at 5.48 ± 3.09 ng/g and 0.06 ± 0.02 ng/g, 439 

respectively (Fig. 3). The most abundant compound was phenanthrene (24-32% of ΣPAH). PAH 440 

concentrations are far below levels found in mussels from the Bay of Brest (France) (639 ± 73 441 

ng/g and 492 ± 44 ng/g) and Barcelona (Spain) (273 – 405 µg/kg dry weight) (Lacroix et al., 442 

2017; Porte et al., 2001). However, PAH concentrations are in the range of those found in 443 

mussels and clams sampled in Milan market (Italy): not detected (n.d) - 13.95 ng/g and n.d - 444 

4.35 ng/g (Chiesa et al., 2018).  445 

PCB were only found in mussels sampled at BdV with 1.00 ± 0.59 ng/g, PCB 105 being the 446 

most concentrated congener (Fig. 3). PCB concentration in mussels from BdV were below 447 

concentrations found in mussels sampled at Milan market (Italy) (n.d – 49.2 ng/g) (Chiesa et 448 

al., 2018) or sampled at Le Conquet (France) (10.46 ng/g dry weight) (Bodin et al., 2007). 449 

Moreover, the PCB concentration found in mussels from the BdV, a non-polluted area, are far 450 

below concentrations recorded in mussels (538.45 ng/g dry weight) sampled at Antifer, Bay of 451 

Seine (France) which is a highly polluted estuary (Bodin et al., 2007).  452 

Organochloride pesticides (OCP) were measured in mussels from BdV and cockles from BA at 453 

concentrations of 0.23 ± 0.12 ng/g and 0.04 ± 0.08 ng/g respectively (Fig. 3). These levels are 454 

below the concentrations found in mussels (max: 7.58 ng/g dry weight) from the Adriatic Sea 455 

(Kožul et al., 2009).  456 
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 457 

Fig 3: Average concentration (ng/g) of ΣPAH, ΣOCP, ΣPBDE, ΣPCB and ΣPhthalate (+ confidence interval 95%) in 458 
mussels sampled at BdV (n=2) and cockles sampled at BA and BdV. n.d: values below limit of detection. BA: Baie 459 
d’Authie; BdV: Baie des Veys. 460 

Phthalates were the most concentrated pollutants in digestates for all samples (Fig. 3). Average 461 

ΣPhthalate were respectively 26.36 ± 18.16 ng/g, 75.53 ± 12.49 ng/g and 29.18 ± 27.23 ng/g for 462 

mussels sampled at BdV and cockles samples at BA and BdV with DEHA or DMP being the 463 

most concentrated phthalates for all samples (50-98% of ΣPhthalate). These results are in 464 

accordance with studies on the contamination of mussels and oysters by phthalates at False 465 

creek, Vancouver, Canada. In the study by Mackintosh et al. (2004), mean ΣPhthalate (including 466 

DEP, diisobutyl phthalate (DiBP), DnBP, DEHP, di-n-octyl phthalate (DnOP) and 467 

dionylphthalate (DNP)) were 17.27 ng/g and 16.78 ng/g for mussels and oysters respectively. 468 

However, as phthalates studied by Mackintosh et al. (2004) are not the same, comparisons have 469 

to be made carefully. In another study, Blair et al. (2009) found 585 ng/g wet weight for the 470 

monobutyl phthalate (MnBP) in mussel tissue.  471 
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Finally, PBDE were detected in both species from all the sampling locations with 0.07 ± 0.05 472 

ng/g, 0.23 ± 0.45 ng/g and 1.16 ± 1.71 ng/g for mussels from BdV and cockles from BA and 473 

BdV, respectively (Fig. 3). These are below concentrations found in mussels from the coast of 474 

Spain (0.229 ng/g) and France (2.71 – 9.88 ng/g) (Bellas et al., 2014; Johansson et al., 2006). 475 

at relatively low levels compared with commonly reported levels in coastal and estuarine areas.  476 

Overall, the contaminant levels found in soft tissue of bivalves are low and may not represent 477 

a danger for seafood consumption. Indeed, for PCB, the regulatory threshold is fixed at 75 ng/g 478 

in Europe (European Commission, 2011). For PAH, the regulatory threshold is fixed at 50 ng/g 479 

for the sum of benzo(a)pyrene, benz(a)anthracene, benzo(b)fluoranthene and chrysene 480 

(European Commission, 2014). No regulatory threshold exists in Europe for plastic additives 481 

in seafood products. 482 

Two hypotheses were tested by measuring HOC, plastic additives and MP contents in mussels 483 

and cockles: (i) whether the HOC and plastic additive contamination could be used as indicators 484 

of MP contamination (as suggested in Fossi et al. (2012)); (ii) whether highly contaminated 485 

areas in terms of dissolved chemicals also correspond to MP hotspots. However, no correlation 486 

was found between MP contamination and HOC or plastic additive concentrations possibly 487 

because of the low number or concentrations of MP and chemicals found in the sampled 488 

bivalves. Previous studies have demonstrated that HOC or plastic additives could be used as 489 

indicators for MP contamination in marine mammals, birds or fish (Fossi et al., 2014, 2012; 490 

Rochman et al., 2014; Tanaka et al., 2013). However, some other studies demonstrated that MP 491 

are not a vector of HOC to marine organisms (Gouin et al., 2011; Kwon et al., 2017). Plastic 492 

additives are not commonly studied despite the fact that plastics are sources of these chemicals 493 

in the environment and for marine organisms (Hermabessiere et al., 2017). Indeed, Jang et al. 494 

(2016) demonstrated that mussels (Mytilus galloprovincialis) living on expanded polystyrene 495 

(ePS) buoys concentrated more hexabromocyclodecane (HBCD) than mussels living on other 496 
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substrates. As HBCD is a plastic additive present in ePS buoys, Jang et al. (2016) suggested 497 

that transfer occurs when mussels ingest ePS particles. To date, this is the only reported 498 

relationship between MP contamination and plastic additive concentration in bivalve. 499 

4. Conclusion 500 

This study is the first to describe MP contamination in commercially important bivalves from 501 

the French Channel coast and the first to evaluate the microplastic contamination of the cockle 502 

Cerastoderma edule. The present work contributes to the assessment of MP contamination in 503 

bivalves used as seafood and highlights some important points. Blue mussels and common 504 

cockles sampled from the French Channel coastlines exhibited between 0.76 ± 0.40 and 2.46 ± 505 

1.16 MP/individual and between 0.15 ± 0.06 and 0.74 ± 0.35 MP/g of tissue wet weight. As 506 

demonstrated in the present study, formal identification for MP studies is mandatory and has to 507 

be performed for all studies on MP pollution to ensure correct estimations. Indeed, without 508 

proper identification, MP contamination could be overestimated. Beyond the fact that formal 509 

MP identification is mandatory to properly assess MP pollution, MP characteristics measured 510 

by spectroscopy (shape, polymers) also provided some clues on MP sources and fates in the 511 

environment. For instance, in the present study particles identification provided evidence that 512 

plastic pollution in BA is different from a close site (LP) and that in a same site (BdV), bivalves 513 

ingest different plastic polymer depending on their habitat meaning that plastic pollution is 514 

different in the water column. In this work, no relationship between MP contamination of 515 

bivalves and the concentration of HOC or plastic additive could be shown probably due to the 516 

low number of MP and chemicals found in the bivalves soft tissues. 517 
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Supplemental Table 1: Particles analyzed by µ-Raman spectroscopy 

and fibers (blank not subtracted) visually sorted from mussels and 

cockles.  
 

Species 
Sampling 

site 1 
Fiber 3 

Unidentified 

particles 4 

Identified 4 

Total Natural 

particles 5 
Microplastics Pigments 

Mussel 

LP 2 
239 465 164 38 19 925 

25.8% 50.3% 17.7% 4.1% 2.1% 100% 

BdV 2 
184 65 16 39 0 304 

60.5% 21.4% 5.3% 12.8% 0% 100% 

Cockle 

BA 2 
188 169 65 123 9 554 

33.9% 30.5% 11.7% 22.2% 1.6% 100% 

BdV 2 
156 73 39 28 0 296 

52.7% 24.7% 13.2% 9.5% 0% 100% 
1 LP: Le Portel; BdV: Baie des Veys; BA: Baie d’Authie 
2 Results are expressed in terms of absolute number of particles and relative proportion of each items among the total count by 

line (in italic)  

3 Not analyzed by µ-Raman 

4 Analyzed by µ-Raman 

5 Natural particle included minerals, organic and inorganic carbon. 

Supplemental Table 2: Particles analyzed by µ-Raman spectroscopy 

and fibers (blank not subtracted) visually sorted from mussels and 

cockles. Results are expressed before chemometrics treatment. 
 

Species 
Sampling 

site 1 
Fiber 3 

Unidentified 

particles 4 

Identified 4 

Total Natural 

particles 5 
Microplastics Pigments 

Mussel 

LP 2 
239 513 140 2 31 925 

25.8% 55.5% 15.1% 0.2% 3.4% 100% 

BdV 2 
184 84 15 0 21 304 

60.5% 27.6% 4.9% 0.0% 6.9% 100% 

Cockle 

BA 2 
188 284 67 1 14 554 

33.9% 51.3% 12.1% 0.2% 2.5% 100% 

BdV 2 
156 95 29 2 14 296 

52.7% 32.1% 9.8% 0.7% 4.7% 100% 
1 LP: Le Portel; BdV: Baie des Veys; BA: Baie d’Authie 
2 Results are expressed in terms of absolute number of particles and relative proportion of each items among the total count by 

line (in italic)  

3 Not analyzed by µ-Raman 

4 Analyzed by µ-Raman 

5 Natural particle included minerals, organic and inorganic carbon. 

 


