U. and P. Agreement, , 2015.

J. Rogelj, D. Shindell, K. Jiang, S. Fifita, P. Forster et al., Mitigation pathways compatible 487 with 1.5°C in the context of sustainable development, IPCC Spec, pp.93-174, 2018.

A. Tatin, J. Bonin, and M. Robert, A Case for Electrofuels, ACS Energy Lett, vol.2016

C. Zamfirescu and I. Dincer, Using ammonia as a sustainable fuel, J Power Sources, vol.185, pp.459-65, 2008.

S. Giddey, S. Badwal, C. Munnings, and M. Dolan, Ammonia as a Renewable Energy Transportation 493

. Media, ACS Sustain Chem Eng, vol.5, pp.10231-10240, 2017.

I. I. Cheema and U. Krewer, Operating envelope of Haber-Bosch process design for power-to-ammonia

, RSC Adv, vol.8, pp.34926-34962, 2018.

G. Dana, A. Elishav, O. Bardow, A. Shter, G. E. Grader et al., Nitrogen-Based Fuels: A Power-to-497

, Fuel-to-Power Analysis, Angew Chemie -Int Ed, vol.55, pp.8798-805, 2016.

A. Valera-medina, H. Xiao, O. , M. David, W. Bowen et al., Ammonia for power, Prog Energy, p.499

, Combust Sci, vol.69, pp.63-102, 2018.

H. Kobayashi, A. Hayakawa, K. Somarathne, and E. C. Okafor, Science and technology of ammonia 501 combustion, Proc Combust Inst, vol.37, pp.109-142, 2019.

V. F. Zakaznov, L. A. Kursheva, and Z. I. Fedina, Determination of normal flame velocity and critical diameter 503 of flame extinction in ammonia-air mixture, Combust Explos Shock Waves, vol.14, pp.710-713, 1978.

P. D. Ronney, Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity

, Combust Sci Technol, vol.59, pp.123-164, 1988.

U. J. Pfahl, M. C. Ross, J. E. Shepherd, K. O. Pasamehmetoglu, and C. Unal, Flammability limits, ignition energy, 508 and flame speeds in H2-CH4-NH3-N2O-O2-N2 mixtures, Combust Flame, vol.123, 2000.

T. Jabbour and D. F. Clodic, Burning Velocity and Refrigerant Flammability Classification

, Heat Refrig Air Cond Eng, vol.110, pp.522-555, 2004.

K. Takizawa, A. Takahashi, K. Tokuhashi, S. Kondo, and A. Sekiya, Burning velocity measurements of 513 nitrogen-containing compounds, J Hazard Mater, vol.155, pp.144-52, 2008.

A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo et al., Laminar burning velocity and, p.516

, Markstein length of ammonia/air premixed flames at various pressures, Fuel, vol.159, pp.98-106, 2015.

S. G. Davis, J. L. Pagliaro, T. F. Debold, M. Van-wingerden, and K. Van-wingerden, Flammability and explosion 519 characteristics of mildly flammable refrigerants, vol.49, pp.662-74, 2017.

B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo et al., Experimental and kinetic modeling investigation 522 on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure 523 conditions, Combust Flame, vol.210, pp.236-282, 2019.

J. H. Lee, S. I. Lee, and O. C. Kwon, Effects of ammonia substitution on hydrogen/air flame propagation and 525 emissions, Int J Hydrogen Energy, vol.35, pp.11332-11373, 2010.

J. H. Lee, J. H. Kim, J. H. Park, and O. C. Kwon, Studies on properties of laminar premixed hydrogen-added 527 ammonia/air flames for hydrogen production, Int J Hydrogen Energy, vol.35, pp.1054-64, 2010.

J. Li, H. Huang, N. Kobayashi, Z. He, and Y. Nagai, Study on using hydrogen and ammonia as fuels: 530 Combustion characteristics and NOx formation, Int J Energy Res, vol.38, pp.1214-1237, 2014.

A. Ichikawa, A. Hayakawa, Y. Kitagawa, K. Amila-somarathne, K. Kudo et al.,

, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated 534 pressures, Int J Hydrogen Energy, vol.40, pp.9570-9578, 2015.

X. Han, Z. Wang, M. Costa, Z. Sun, Y. He et al., Experimental and kinetic modeling study of laminar 536

, Combust Flame, vol.206, pp.214-240, 2019.

P. Kumar and T. R. Meyer, Experimental and modeling study of chemical-kinetics mechanisms for H2-539 NH3-air mixtures in laminar premixed jet flames, Fuel, vol.108, pp.166-76, 2013.

J. A. Miller, M. D. Smooke, R. M. Green, and R. J. Kee, Kinetic Modeling of the Oxidation of Ammonia in 542

. Flames, Combust Sci Technol, vol.34, pp.149-76, 1983.

R. P. Lindstedt, F. C. Lockwood, and M. A. Selim, Detailed kinetic modelling of chemistry and temperature 544 effects on ammonia oxidation, Combust Sci Technol, vol.99, pp.253-76, 1994.

Z. Tian, Y. Li, L. Zhang, P. Glarborg, and F. Qi, An experimental and kinetic modeling study of premixed 547 NH3/CH4/O2/Ar flames at low pressure, Combust Flame, vol.156, pp.1413-1439, 2009.

A. A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction 550 mechanism, Combust Flame, vol.156, pp.2093-105, 2009.

E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo et al., Experimental and numerical 552 study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust Flame, vol.553, pp.185-98, 2018.

R. Cavaliere, M. Costa, X. S. Bai, R. C. Da-rocha, M. Costa et al., Chemical kinetic modelling of 555 ammonia/hydrogen/air ignition, premixed flame propagation and NO emission, Fuel, vol.246, pp.24-33, 2019.

O. Mathieu and E. L. Petersen, Experimental and modeling study on the high-temperature oxidation of 558 Ammonia and related NOx chemistry, Combust Flame, vol.162, 2015.

J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, and K. Yamada, Chemical kinetic modeling of ammonia 561 oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air 562 combustion, Int J Hydrogen Energy, vol.43, pp.3004-3018, 2018.

A. Goldmann and F. Dinkelacker, Approximation of laminar flame characteristics on premixed 564 ammonia/hydrogen/nitrogen/air mixtures at elevated temperatures and pressures, Fuel, vol.224, pp.366-565, 2018.

M. Metghalchi and J. C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene 567 at high pressure and temperature, Combust Flame, vol.48, pp.191-210, 1982.

B. Galmiche, F. Halter, and F. Foucher, Effects of high pressure, high temperature and dilution on laminar 570 burning velocities and Markstein lengths of iso-octane/air mixtures, Combust Flame, vol.159, pp.3286-571, 2012.

P. Brequigny, C. Endouard, C. Mounaïm-rousselle, and F. Foucher, An experimental study on turbulent 573 premixed expanding flames using simultaneously Schlieren and tomography techniques, Exp Therm, vol.574

, Fluid Sci, vol.95, pp.11-18, 2018.

J. Huo, S. Yang, Z. Ren, D. Zhu, and C. K. Law, Uncertainty reduction in laminar flame speed extrapolation 576 for expanding spherical flames, Combust Flame, vol.189, pp.155-62, 2018.

A. P. Kelley and C. K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding 579 spherical flames, Combust Flame, vol.156, pp.1844-51, 2009.

P. D. Ronney and G. I. Sivashinsky, A Theoretical Study of Propagation and Extinction of Nonsteady 581

, Spherical Flame Fronts, SIAM J Appl Math, vol.49, pp.1029-1075, 1989.

F. Halter, T. Tahtouh, and C. Mounaïm-rousselle, Nonlinear effects of stretch on the flame front 583 propagation, Combust Flame, vol.157, pp.1825-1857, 2010.

R. J. Moffat, Describing the uncertainties in experimental results, Exp Therm Fluid Sci, vol.1, pp.3-17, 1988.

P. Brequigny, H. Uesaka, Z. Sliti, D. Segawa, F. Foucher et al., Uncertainty in measuring 587 laminar burning velocity from expanding methane-air flames at low pressures

, Combust. Symp, 2019.

H. Yu, W. Han, J. Santner, X. Gou, C. H. Sohn et al., Radiation-induced uncertainty in laminar 590

, flame speed measured from propagating spherical flames, Combust Flame, vol.161, pp.2815-2839, 2014.

H. Nakamura and M. Shindo, Effects of radiation heat loss on laminar premixed ammonia/air flames, Proc, vol.593

, Combust Inst, vol.37, pp.1741-1749, 2019.

H. Nakamura, S. Hasegawa, and T. Tezuka, Kinetic modeling of ammonia/air weak flames in a micro flow 595 reactor with a controlled temperature profile, Combust Flame, vol.185, pp.16-27, 2017.

, ANSYS Chemkin-Pro, 2019.