, D2.2 -guidelines for implementing the new reliability assessment and optimization methodology. GARPUR consortium, 2016.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

I. G. Donnot and B. Donon, Leap nets for power grid perturbations, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02268886

P. W. Battaglia, Relational inductive biases, deep learning, and graph networks, 2018.

M. M. Bronstein, J. Bruna, Y. Lecun, A. Szlam, and P. Vandergheynst, Geometric deep learning: Going beyond euclidean data, IEEE Signal Processing Magazine, vol.34, issue.4, pp.18-42, 2017.

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, Spectral networks and locally connected networks on graphs, International Conference on Learning Representations (ICLR2014), 2014.

I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neural networks, 2019.

M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Advances in Neural Information Processing Systems, vol.29, pp.3844-3852, 2016.

B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, Fast Power system security analysis with Guided Dropout, European Symposium on Artificial Neural Networks, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01649938

B. Donon, B. Donnot, I. Guyon, and A. Marot, Graph neural solver for power systems, International Joint Conference on Neural Networks (IJCNN2019), 2019.
URL : https://hal.archives-ouvertes.fr/hal-02175989

L. Duchesne, E. Karangelos, and L. Wehenkel, Using machine learning to enable probabilistic reliability assessment in operation planning, 2018 Power Systems Computation Conference (PSCC), pp.1-8, 2018.

D. K. Duvenaud, D. Maclaurin, J. Aguilera-iparraguirre, R. Gómez-bombarelli, T. Hirzel et al., Convolutional networks on graphs for learning molecular fingerprints, 2015.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, Neural message passing for quantum chemistry, 2017.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets

. Weinberger, Advances in Neural Information Processing Systems, vol.27, pp.2672-2680, 2014.

W. L. Hamilton, R. Ying, and J. Leskovec, Inductive representation learning on large graphs, 2017.

R. Herzig, M. Raboh, G. Chechik, J. Berant, and A. Globerson, Mapping images to scene graphs with permutation-invariant structured prediction, vol.02, 2018.

E. Karangelos and L. Wehenkel, Probabilistic reliability management approach and criteria for power system real-time operation, 2016.

, Power Systems Computation Conference (PSCC), pp.1-9, 2016.

T. N. Kipf, E. Fetaya, K. Wang, M. Welling, and R. S. Zemel, Neural relational inference for interacting systems, Proceedings of the 35th International Conference on Machine Learning, ICML, 2018.

T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, 2016.

Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, Gated graph sequence neural networks, 2015.

K. Mills, M. Spanner, and I. Tamblyn, Deep learning and the schrödinger equation, Physical Review A, vol.96, 2017.

T. Nguyen, Neural network load-flow, IEE Proceedings -Generation, Transmission and Distribution, vol.142, issue.7, pp.51-58, 1995.

S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.10, pp.1345-1359, 2010.

A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu et al., A simple neural network module for relational reasoning, 2017.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, The graph neural network model, Trans. Neur. Netw, 2009.

J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, vol.61, pp.85-117, 2014.

K. Schütt, P. Kindermans, H. E. Felix, S. Chmiela, A. Tkatchenko et al., Schnet: A continuous-filter convolutional neural network for modeling quantum interactions, Advances in Neural Information Processing Systems, vol.30, pp.991-1001, 2017.

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, Accelerating eulerian fluid simulation with convolutional networks, 2016.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov et al., Deep sets. CoRR, 2017.

R. D. Zimmerman, C. E. Murillo-sanchez, and R. J. Thomas, Matpower: Steady-state operations, planning, and analysis tools for power systems research and education, IEEE Transactions on Power Systems, 2011.