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 84 

Abstract 85 

Aim 86 

Mechanisms of plant trait adaptation and acclimation are still poorly understood and 87 

consequently lack a consistent representation in terrestrial biosphere models (TBMs). Despite 88 

the increasing availability of geo-referenced trait observations, current databases are still 89 

insufficient to cover all vegetation types and environmental conditions. In parallel, the 90 

growing number of continuous eddy-covariance observations of energy and CO2 fluxes has 91 

enabled modelers to optimize TBMs with these data. Past attempts to optimize TBMs 92 

parameters mostly focused on model performance overlooking the ecological properties of 93 

ecosystems. The aim of this study is to assess the ecological consistency of optimized trait-94 

related parameters while improving the model performances for gross primary productivity 95 

(GPP) at sites. 96 

Location 97 

World 98 

Time period 99 

1992-2012 100 

Major taxa studied 101 

Trees and C3 grasses 102 



Methods 103 

We optimized parameters of the ORCHIDEE model against 371 site-years of GPP estimates 104 

from the FLUXNET network and we looked at global co-variation among parameters and 105 

with climate. 106 

Results 107 

The optimized parameter values are shown to be consistent with leaf-scale traits, in particular 108 

well-known trade-offs observed at the leaf level, echoing the leaf economic spectrum theory. 109 

Results show a marked sensitivity of trait-related parameters to local bio-climatic variables 110 

and reproduce observed relationships between traits and climate.  111 

Main conclusions 112 

Our approach validates some biological processes implemented in the model and enables us 113 

to study ecological properties of vegetation at the canopy level, as well as some traits that are 114 

difficult to observe experimentally. This study stresses the need for 1) implementing explicit 115 

trade-offs and acclimation processes in TBMs, 2) improving the representation of processes to 116 

avoid model-specific parameterization as well as 3) performing systematic traits 117 

measurements at FLUXNET sites in order to gather information on plant ecophysiology and 118 

plant diversity, together with micro-meteorological conditions.  119 

  120 



Introduction 121 

Terrestrial biosphere models (TBMs) describe the different processes controlling exchanges 122 

of energy and trace gases between the atmosphere and the biosphere. Process-based TBMs are 123 

useful tools for understanding the dynamics of ecosystems under changing environment, for 124 

present-day to future conditions.  125 

In most TBMs, the worldwide vegetation is divided into plant functional types (PFTs) based 126 

on general characteristics of the photosynthetic pathways, phenology, structure and 127 

physiology. Different PFTs usually share the same equations but use different parameter 128 

values to describe generic processes (photosynthesis, respiration), while biome-specific 129 

equations may be used for phenology and allocation. Therefore, for a given PFT, only the 130 

differences in climate and soil properties can determine spatial and temporal gradients in 131 

ecosystem state variables. 132 

The prescribed values of PFT-specific parameters are derived from discrete observations 133 

obtained at varying spatial scales (organs, individuals, ecosystems; Reich et al., 2007; Kattge 134 

et al., 2009) and in specific environmental conditions, despite the modulation of real world 135 

plant traits by climate (Wright et al., 2005; Ordoñez et al., 2009; van Ommen Kloeke et al., 136 

2012; Maire et al., 2015) and soil properties (Fisher et al., 2012). In addition, some TBM 137 

parameters relate to traits that are difficult to measure experimentally (e.g. root turnovers or 138 

carbon allocation), or are model-specific. These parameters can hardly be directly optimized 139 

from observations and their adjustment to varying environmental conditions can only be 140 

determined by labor intensive multi-factorial ecosystem manipulation experiments (Luo et al., 141 

2017). This rigid determination of parameter values, combined with the use of single PFT to 142 

cover a range of different species (Peaucelle et al., 2016), hinders a realistic representation of 143 

the past, present and future ecosystem dynamics both at the local or regional scale, and their 144 



response to global drivers such as climate, elevated CO2 and nutrient fertilization (Hartig et 145 

al., 2012, Atkin et al., 2015; Kroner & Way, 2016; Reich et al., 2016).  146 

To overcome the rigidity of the PFT representation, various approaches have been proposed 147 

to provide continuous distributions of plant functional traits related to model parameters. 148 

These approaches range from extrapolating trait observations across spatial gradients 149 

(Verheijen et al., 2015), to estimating optimal trait values according to ecological theories and 150 

plant-centered approaches (Reu et al., 2011; Pavlick et al., 2013; Prentice et al., 2014). The 151 

drawback of these different approaches is that they require both spatial and temporal 152 

observations for model calibration and/or validation. Despite the increasing number of geo-153 

referenced trait observations (Kattge et al., 2011), current databases are insufficient to cover 154 

all vegetation types and environmental conditions for projections at the ecosystem level 155 

(Musavi et al., 2015, 2016). Moreover, trait observations should be co-located with process 156 

and meteorology data to understand linkages between traits and ecosystem function (Law et 157 

al., 2008), which is rare in existing databases although increasingly addressed for some 158 

biomes (Bjorkman et al., 2018). Long-term monitoring of functional traits is needed to assess 159 

the adjustments to climate. As such information is still lacking, approaches have been 160 

developed that confound the spatial and temporal dimensions of trait variability.  161 

Another modeling strategy consists in optimizing TBMs against observed variables sensitive 162 

to ecosystem-level parameters in order to overcome these limitations. This approach assumes 163 

that the model structure is unbiased, so that realistic parameters values can be estimated when 164 

model simulations best match observations. Because biometric variables are sparse and often 165 

depend on processes not represented in models (Thum et al., 2017), energy and trace gas flux 166 

measurements are more appealing to optimize TBM parameters. Eddy-covariance data 167 

provide near-continuous observations of CO2, latent heat and sensible heat fluxes, and are 168 

therefore well suited for better constraining photosynthesis, respiration, transpiration and 169 



carbon phenology model parameters. Eddy-covariance measurements have been extensively 170 

used to improve specific performances of TBMs, i.e. their ability to reproduce specific 171 

observed ecosystem behaviors (Carvalhais et al., 2010; Kuppel et al., 2012; Santaren et al., 172 

2014; Schürmann et al., 2016). However, such model calibrations are disconnected, by 173 

construction, from ecological theory or trait-based relationships, and do not exploit the full 174 

potential of continuous flux observations across the globe, which provide both spatial and 175 

temporal information. 176 

In this study, we aim at assessing the consistency of model trait parameters optimized against 177 

eddy-covariance flux tower measurements of growth primary productivity (GPP) using the 178 

state-of-the-art ORCHIDEE land surface model (Krinner et al., 2005). In addition to classical 179 

optimization analyses (i.e. looking for the optimal parameter sets resulting in the highest 180 

model improvement), we focus here on the variability of optimized parameter values and on 181 

inter-traits correlations or trait-environment correlations. By doing so, we address the 182 

following research questions: 1) Are the parameters retrieved by optimizing the model against 183 

flux tower records consistent with known relationships between traits (i.e. trade-offs) ? or 2) 184 

between traits and environmental variables? and 3) What new relationship can be identified 185 

with this approach? 186 

  187 



Methods  188 

The ORCHIDEE model  189 

The land surface model ORCHIDEE (v1.9.6, without nitrogen cycle) computes biosphere-190 

atmosphere exchanges, consistently with water and carbon storage using ordinary differential 191 

equations (Krinner et al., 2005) (Figure1). Given meteorological forcing, plant and soil 192 

conditions, the model simulates photosynthesis, all components of the surface energy budget 193 

and hydrological processes at a half-hourly time step, while the dynamics of carbon storage 194 

are calculated daily. In ORCHIDEE, the land surface is discretized into 12 plant functional 195 

types (PFT) and bare soil (Table S1.1, Appendix S1). All PFTs share the same equations, but 196 

use different parameter values, except for phenology (budburst/senescence), which is PFT-197 

specific (Botta et al., 2000). 198 

 199 

Eddy-covariance GPP  200 

We used half-hourly flux observations from eddy-covariance sites within the FLUXNET 201 

network (https://fluxnet.fluxdata.org). The sites were selected on the basis of spatial 202 

homogeneity and the dominance of a vegetation type that could easily be matched to one of 203 

the PFTs in ORCHIDEE, excluding crops and C4 grasses. The vegetation type information at 204 

each site was obtained from http://fluxnet.ornl.gov. The list of analyzed FLUXNET sites (98 205 

sites, 371 site-year) and the corresponding PFTs is given in Appendix S2. The following 206 

analyses rely on GPP derived from net ecosystem exchange (NEE; reference with variable 207 

USTAR threshold) after accounting for ecosystem respiration calculated using the method of 208 

Reichstein et al., (2005) provided in the FLUXNET dataset. Years with less than 80% of 209 

available half hourly observations were discarded.  210 

 211 



Meteorological data  212 

Because ORCHIDEE needs continuous half-hourly meteorological forcing, we gap-filled time 213 

series of weather variables using the interpolation algorithm developed by Vuichard & Papale 214 

(2015). Linear interpolation was applied between available observations when the gap-215 

duration in the meteorological data was less than six hours. Otherwise, the variables were 216 

interpolated and bias corrected using the ERA-interim reanalysis (~80km, Dee et al., 2011). 217 

Snow and rain were identified according to air temperature (threshold for snow being 0°C). 218 

 219 

Data assimilation procedure 220 

The parameters of ORCHIDEE were optimized with the ORCHIDAS package developed by: 221 

Kuppel et al., (2012); Bacour et al., (2015); MacBean et al., (2015) and Peylin et al., (2016); 222 

(https://orchidas.lsce.ipsl.fr/; Figure 1). Gaussian distributions of parameter and observation 223 

errors being assumed, a gradient-based approach was used to minimize the Bayesian cost 224 

function J (Tarantola, 2005): 225 

     
 

 
         

 
                  

            ( 1 ) 

This function quantifies the difference between observations (y) and simulations (H(x)) (here 226 

GPP), and between a priori (xb) and optimized parameters (x). The B and R matrices are the 227 

prior error covariance matrices for parameters and observations, respectively (including in the 228 

latter case eddy-covariance measurement and model errors).  229 

Both R and B were taken as diagonal, as discussed in Kuppel et al. (2012). The J(x) function 230 

was iteratively minimized with the L-BFGS-B algorithm (Byrd et al., 1995), which notably 231 

allows bounding the range of variation of the parameters to optimize. After model calibration 232 

(i.e. minimizing J), the posterior error covariance matrix (A), providing the full statistical 233 

distribution of the optimized parameters was estimated by:  234 



                 ( 2 ) 

where H is the Jacobian of model at the minimum of J (Tarantola, 2005). The covariances of 235 

errors between parameters contained in the non-diagonal terms of A inform about the ability 236 

of observations given the structure of H to solve for parameters individually, or in 237 

combination. High error covariance between two parameters relates to the equifinality 238 

problem, whereby different values of these parameters result in model outputs equally 239 

matching the observations (relative to R). 240 

 241 

Optimized parameters 242 

We restricted our exercise to the parameters involved in the assimilation of CO2 following 243 

previous sensitivity analyses from Kuppel (2012). We analyzed 14 parameters controlling 244 

long-term and inter-annual GPP variability (Table 1). The key equations involving each 245 

optimized parameter as well as their effect on the simulated GPP are described in Table S1.2 246 

(Appendix S1). The parameters were related to photosynthetic capacity, phenology, carbon 247 

allocation and the water budget. Photosynthetic capacity parameters were the maximal rate of 248 

carboxylation limited by CO2 (Vcmax), the ratio between the maximal rate of carboxylation 249 

limited by light and Vcmax (Vj/Vc), the optimal temperature of photosynthesis (Topt) and the 250 

slope of the Ball-Berry model for stomatal conductance (gslope). Parameters driving 251 

phenology were the specific leaf area (SLA), leaf longevity (Lage), summer maximal leaf area 252 

index (LAImax) and the temperature for leaf senescence (Csenes). Allocation parameters were 253 

the minimal fraction of LAImax for the use of carbohydrate reserves (Klai) and the period 254 

after budburst during which the use of carbohydrates is allowed (tauleaf) for the formation of 255 

new leaves. Finally, two parameters involved in the water status of the plant were the 256 

exponential factor describing the root profile and length (Kroot) and the minimal threshold at 257 

which photosynthesis becomes limited by minimum water potential (Wlim). In addition, two 258 



scaling factor Kbm (initial biomass of leaves for evergreen species) and bbdate (spring 259 

burdburst date) were added in the optimization to allow adjusting the seasonal timing of GPP.  260 

The range in variation of the three parameters corresponding to observable traits (SLA, Vcmax 261 

and Lage) was set from the TRY database for each PFT (Niinemets et al., 1999; Deng et al., 262 

2004; Meir et al., 2007; Kattge et al., 2009, 2011; Domingues et al., 2010; Cernusak et al., 263 

2011; Azevedo & Marenco, 2012; van de Weg et al., 2012; Nascimento & Marenco, 2013). 264 

Species from the TRY database were assigned to corresponding PFTs based on available 265 

metadata about plant structure, leaf phenology and climate information extracted from 266 

species' latitude and longitude coordinates. We chose as a reference range the 2.5 - 97.5 267 

percentile of the trait distributions from TRY. The variation ranges for the other parameters 268 

were fixed based on expert judgment (Kuppel et al., 2014). 269 

 270 

Simulations and assimilation set-up 271 

At each flux tower site, we assumed that the eddy-covariance flux footprint was entirely 272 

composed by a single PFT (Appendix S2). The model was forced by local meteorological 273 

observations (see Meteorological data section) and soil texture from the harmonized 274 

worldwide soil database (Nachtergaele et al., 2012) to define the residual and saturation water 275 

contents, and the saturated hydraulic conductivity in the soil model (Ducoudré et al., 1993; 276 

Krinner et al., 2005) based on Van Genuchten (1980). Initial soil carbon pools in equilibrium 277 

with local climate were obtained with an analytical spin-up procedure (Lardy et al., 2011; Xia 278 

et al., 2012). Initial biomass was simulated until reaching equilibrium (generally after a ~300 279 

year-long simulations using the studied year meteorological data and constant CO2 set to level 280 

of the year), thus different from the real stand age observed at each site.  281 

 282 



We optimized GPP averaged over 15 days using moving windows to avoid noise from high 283 

frequency variations in the parameter optimization that could induce convergence issues 284 

(Bacour et al., 2015). As far as test data from eddy-covariance measurements are concerned, 285 

high frequency variations in fluxes include also variation in the boundary layer that are 286 

unrelated to the fluxes at the surface (Ibrom et al., 2006). Santaren et al. (2007) estimated that 287 

for parameters related to photosynthesis and phenology, optimization based on half-hourly 288 

observations did not improve the results. For each site, the optimizations were conducted 289 

year-by-year to account for trait variability over time (Wu et al., 2013). 290 

Following MacBean et al. (2015), each calibration (site-year) used ten replicates representing 291 

different starting parameter sets with values randomly picked within their allowed variation 292 

range (Table S1.3). Only the best calibration out of these ten replicates was retained for 293 

analyses. This procedure increases the chances of finding the global minimum of J as 294 

Santaren et al. (2014) showed that the gradient-based algorithm was sensitive to initial 295 

conditions with a non-linear and complex model such as ORCHIDEE.  296 

 297 

Analyses 298 

We only retained calibrations for which the optimized model reproduced GPP observations 299 

with high precision. The rationale for this was that optimized parameters from model runs 300 

which agreed poorly with GPP observations provided little or no useable information. The 301 

filtering was performed using a two-step procedure. 302 

First, the criterion for ‘improved GPP simulation’ was the relative site-year posterior RMSE 303 

(RMSEre) between observed and optimized GPP: 304 

       
    

            
 ( 4 ) 



Whenever the value of RMSEre was higher than the all-RMSEre median plus one interquartile 305 

range (IQR), the site-year was removed from the analysis. We also discarded sites with 306 

‘inconsistent parameters values’, i.e. with too large differences between the ten replicates at 307 

the same site reflecting convergence issues (equifinality) of the algorithm.  308 

Secondly, for sites with at least two RMSEre below 10 % among the ten replicates, we 309 

estimated the coefficient of variation (CV) of parameters across the replicates. We retained 310 

only years for which the median CV was below the median of all CV plus one IQR of their 311 

distribution. This filtering provided optimized parameters from 371 site-years (over 516 312 

initially considered) for 98 sites (over 116; Appendix S2) spanning seven PFTs located in 313 

boreal, temperate and tropical areas (Table S3.4; Appendix S3).  314 

 315 

For each parameter, we calculated the uncertainty reduction (UR) as:  316 

     
     

      
 ( 5 ) 

With  post and  prior being the posterior and prior parameter uncertainties (square root of the 317 

diagonal elements of A and B). We then separated in the analysis the well- from the poorly-318 

constrained parameters. Well-constrained parameters are defined as those with 1) UR higher 319 

than the median of UR distributions for all parameters and 2) a low correlation of error with 320 

other parameters (from the A matrix, Eq. 2). Note that a strong error correlation making two 321 

parameters poorly constrained individually is still an interesting result as it indicates a range 322 

of possible tradeoffs between these two parameters. 323 

The optimized parameter values were regressed against the local background bio-climatic 324 

variables (Table 2) for each site, and against the soil relative water content (volume of water 325 

by volume of soil) simulated by ORCHIDEE. Bio-climatic variables were averaged over the 326 

whole year and over the length of the growing season (GSL). For temperate sites, the growing 327 



season was defined as the period with daily temperature above 5°C and relative soil water 328 

content above 0.2 (Violle et al., 2015). In some tropical regions, the growing season length is 329 

potentially limited by water availability (wet/dry seasons), we thus kept the same definition as 330 

for temperate ecosystems. For boreal sites, we adapted the definition of the growing season 331 

such as weekly temperature must be above 0°C. Analyses were performed with the R.3.2 332 

software (R Core Team, 2016) and standardized major axis (SMA) analyses were performed 333 

with the 'lmodel2' package (Legendre, 2014). Because we sought to compare simulated 334 

correlations with common ecological properties observed at the global scale, we analyzed 335 

different groups of PFTs: all PFTs together; deciduous versus evergreens; needleleaves versus 336 

broadleaves; and C3 grasses (Table S1.1). Regressions were performed both with and without 337 

a logarithmic transformation of the data.   338 



Results and comparison to existing literature 339 

Optimization performances 340 

A full description of the optimization performances and parameter uncertainty reduction can 341 

be found in Appendix S3.  342 

In all cases, the optimized GPP time series better agrees with observations than the prior ones, 343 

with the RMSE being reduced by 76.6 ± 13.0 % (Table S3.4; Appendix S3). The median 344 

posterior RMSEre is 0.19 and the IQR is 0.11. The median CV over all parameters is 0.24 345 

(IQR=0.13). After optimization, the parameter uncertainty (Eq. 5) is reduced by 30 % on 346 

average (Table S3.5; Appendix S3). 347 

The posterior error correlation matrix A (Eq.2) reveals a positive correlation between Vcmax 348 

and several other parameters including (Figure 2): Topt (r=0.57±0.05); gslope (r=-0.37±0.04); 349 

Kroot (r=0.24±0.07) and Vj/Vc (r=-0.31±0.04). There also exists a negative correlation 350 

between Kroot and gslope (r=-0.38±0.08), between Kroot and Wlim (r=-0.30±0.09) and 351 

between LAImax and Klai (r=-0.37±0.16) (Figure 2).  352 

Jointly analyzing information from the uncertainty reduction (Appendix S3) and the cross-353 

parameter error correlation enables to distinguish between: 1) well constrained parameters 354 

(Lage and SLA for evergreens/ Lage and Csenes for deciduous); 2) well constrained 355 

parameters with a risk of equifinality (gslope, Kroot, LAImax, Topt and Vcmax); and 3) poorly 356 

constrained parameters (Vj/Vc, Klai, Tauleaf and Wlim; Table 1). In the following analyses, 357 

trait co-variations have to be interpreted in respect to confidence intervals (posterior error) in 358 

parameter estimates.  359 

Co-variation between parameters 360 

We analyzed cross-site correlations between optimized parameters in relation to expected trait 361 

relationships. The co-variation between all parameters is illustrated in Figure S4.2 (Appendix 362 



S4). For more clarity and considering the large number of parameters, we only describe here 363 

the relationships involving four parameters related to phenology (SLA, Lage) and 364 

photosynthesis (Vcmax, gslope). All relationships are provided in Table S4.6 (Appendix S4). 365 

We observed a negative correlation between SLA and Lage for all PFTs (r=-0.63; Table 3) as 366 

well as for evergreens (r=-0.67) and broadleaves PFTs (r=-0.53), separately. The slope of the 367 

emerging relationship between LMA (1/SLA) and Lage (1.91; 1.63-2.24 95% confidence 368 

interval; p < 0.05) for all PFTs was close to the observed slope from field observations (1.71; 369 

1.62-1.82; Wright et al. 2004). Results highlighted other co-variations between Lage and 370 

Vcmax (r=-0.59 overall PFTs), gslope and Lage (r=-0.7 for broadleaves), LAImax and SLA 371 

(r=0.6 for needleleaves), and between SLA and Vcmax (r=-0.55 for evergreens). Here again, 372 

the slope between Lage and Vcmax emerging for broadleaves PFTs (-1.69) was close to 373 

observations (-1.13; Xu et al. 2017).  374 

No relationships were reported between gslope and Lage or between glsope and SLA, but a 375 

trade-off between the stomatal conductance (gs) and Lage was observed experimentally 376 

(Reich et al., 1992; Poorter & Bongers, 2006), as well as a positive correlation between gs 377 

and SLA (Poorter & Bongers, 2006). The optimizations showed opposite relationships 378 

between gslope and SLA depending on the PFT: a positive significant correlation was 379 

obtained for deciduous PFTs and a negative significant correlation for evergreens and grasses 380 

(Table 3).  381 

The positive relationship between SLA and LAImax emerging from optimized parameters for 382 

coniferous PFTs was consistent with the positive correlation between LAI and SLA reported 383 

by Pierce et al. (1994) for coniferous forests. Finally, a negative correlation between SLA and 384 

Vcmax has been observed experimentally for two gymnosperms species (Niinemets et al., 385 

2007), confirming the negative relationships found in our study for needleleaves. Despite the 386 



equifinality risk between gslope and the soil water stress Wlim in Figure 2, the positive 387 

correlation observed for broadleaves (r=0.7) and evergreens (r=0.52) was comparable to 388 

observations from independent data compiled by Lin et al. (2015). 389 

Other significant correlations from the optimized parameters (Table S4.6, Figure S4.2; 390 

Appendix S4) could not be verified against observations because of the correlation of errors 391 

observed in Figure 2 or because of the scarcity of ecological data preventing us to conclude 392 

about the true nature of those correlations, as for example between gslope and Vcmax. 393 

 394 

Variation of trait-related parameters with climate 395 

We analyzed correlations between parameters and climate variables (Table 4, Figure S5.4; 396 

Appendix S5). As for co-variations between parameters, we only described here those 397 

implying SLA, Lage, Vcmax and gslope. All relationships are listed in Table S5.7 and more 398 

detailed analysis are available in Appendix S5. 399 

We found a strong negative correlation between leaf lifespan (Lage) and temperatures (MAT, 400 

TMIN; r=-0.78/-0.65; Figure 3a) for evergreen PFTs. This correlation was independently 401 

reported at global scale (Wright et al., 2005; van Ommen Kloeke et al., 2012) and confirmed 402 

by Reich et al. (2014) who showed higher needle longevity with cold temperatures for boreal 403 

species. However, the observed positive correlation between Lage and MAT at the global 404 

scale for deciduous PFTs (Wright et al., 2005; van Ommen Kloeke et al., 2012) was not 405 

found specifically for deciduous systems in our study. Nevertheless, a positive correlation was 406 

observed for C3 grasses and broadleaves (including deciduous). We also found a strong 407 

negative correlation between Lage and the mean annual precipitations (MAP) for evergreens 408 

PFTs (r = -0.65), consistent with field data (van Ommen Kloeke et al., 2012). In addition, a 409 



negative correlation between Lage and incident shortwave radiation (SW) for evergreens was 410 

obtained, consistent with field observations (Poorter & Bongers, 2006).  411 

 412 

Regarding SLA, we found opposite sensitivities to MAT for evergreen (r=0.65) and deciduous 413 

forests (r=-0.55). This result is consistent with independent leaf-scale data showing a positive 414 

correlation between SLA and MAT for evergreen species (Figure 3b) and a negative 415 

correlation for deciduous ones (Wright et al. 2005). The model calibration also resulted in a 416 

positive correlation between the relative precipitation (RELP; Table 2) and SLA for deciduous 417 

trees (r = 0.60; Figure 3c). Regarding the positive correlations obtained between SLA with 418 

Kroot or gslope (Table 3), it suggests that SLA is highly sensitive to water stress for deciduous 419 

trees. For evergreens, positive correlation between SLA and precipitation also emerges when 420 

considering the length of the growing season (MAPgs, r = 0.57; Table 4); which is consistent 421 

with trait data (Wright et al., 2005). For evergreens, SLA was positively correlated to SW 422 

(r=0.53), a relationship observed by Givnish et al. (2004) and Poorter & Bongers (2006).  423 

 424 

In their meta-analysis of stomatal conductance parameters from observations of several PFTs, 425 

Lin et al. (2015) showed that the slope of the stomatal conductance is positively correlated to 426 

the mean air temperature over the growing period and to soil moisture stress. Here, our results 427 

show the same correlation between gslope and soil moisture during the growing season 428 

(r=0.71; Figure 3d) and relative precipitation (r=0.66) for deciduous or broadleaved PFTs. On 429 

the contrary, we find that gslope is negatively correlated with mean annual precipitation for 430 

C3 grasses (r=-0.59), and with shortwave radiation for broadleaved PFTs (r=-0.63). Medlyn et 431 

al. (2011) suggested that gslope is proportional to the photosynthesis compensation point for 432 

CO2, and consequently to growth temperatures of the plant (Bernacchi et al., 2001). This 433 



assumption is supported by the data from Lin et al. (2015). In our study, the relationship 434 

between gslope and temperature was not supported. 435 

 436 

Finally, Vcmax is mostly sensitive to temperature and light for broadleaved PFTs, with a 437 

negative correlation observed with MAT (r=-0.52) and SW (r=-0.54). This result contradicts 438 

previous observations by Ali et al. (2015), who suggested a positive correlation between 439 

Vcmax and seasonal temperature and light variations. 440 

 441 

Discussion 442 

Uncertainties and shortcomings of the approach 443 

This section provides an overview of possible shortcomings of our approach that may explain 444 

some residual mismatch between model and observations. Several factors can impact the 445 

optimized value of the parameters, potentially aliasing the observed relationships: 1) flux 446 

measurements errors and errors in ecosystem respiration estimates used to derive gap-filled 447 

GPP; 2) optimization protocol/setup errors; and 3) model systematic errors deriving from 448 

absent or poorly represented processes in the model. 449 

First, we restricted our analysis to GPP. This flux is not directly measured but estimated from 450 

NEE measured using the eddy-covariance method with an estimate of ecosystem respiration 451 

determined using empirical models (Reichstein et al., 2005), and thus can be biased by 452 

several factors (see Appendix S3 for a list of these factors). We chose GPP over a 453 

combination of NEE and latent heat or evapotranspiration fluxes, which has often been used 454 

to optimize ORCHIDEE (Kuppel et al., 2012; Bacour et al., 2015; Peylin et al., 2016), 455 

because it implies the optimization of more parameters related to soil, respiration and energy 456 

budget, and therefore increases the risk of equifinality. To reduce the uncertainties, it is 457 



necessary to lower the correlation of errors between parameters by assimilating 458 

complementary biophysical variables. For example, assimilating both GPP and LAI estimates 459 

at the site level could improve the evaluation of parameters such as SLA or Lage, and 460 

consequently improve the estimation of photosynthesis parameters.  461 

Second, the Bayesian framework is based on the assumption that the model/observation errors 462 

are random and that the model structure is “true”. Any bias of model structure is expected to 463 

be aliased onto the estimated parameters (MacBean et al., 2016) and might therefore impact 464 

the retrieved correlations. For instance, missing processes would be compensated during the 465 

optimization by adjusting parameters (e.g. light attenuation, vertical distribution of LAI, 466 

diffuse light, horizontal light distribution in the stand) to non optimal values. Also, while 467 

traits are usually measured at the leaf level, our approach rather focuses on traits at the canopy 468 

level (given the structure of ORCHIDEE and the assumed exponential attenuation of light and 469 

LAI from top to bottom of canopy (Krinner et al. 2005; Table S1.2), and the assimilation of 470 

GPP data). As an additional test, we conducted the above analyses using multi-year instead of 471 

single-year observations in order to add more constraints on parameters (see Figure S4.3 & 472 

S5.5). The same relationships were found as with single-year observations, thus strengthening 473 

our conclusions, showing that spatial correlations are observed even when taking into account 474 

a possible temporal variability of traits.  475 

Finally, a wrong representation of species and the lack of representation of representation of 476 

traits variability within a community in ORCHIDEE can affect simulated processes, which 477 

will ultimately impact the estimated parameter values (see Appendix S3 for a discussion on 478 

initial site conditions). Especially, the C3 grass PFT represents diverse grasslands, with 479 

different species, ecophysiology (Adams et al., 2016) and management practices (Merbold et 480 

al., 2014). This results in an increased variability and a high range of estimated plant 481 

functional traits (Figure S3.1). A refinement of the PFT definition may improve the 482 



robustness of optimizations (for instance by separating natural or semi-managed biomes), or 483 

by distinguishing genera or major species (Peaucelle et al., 2016).  484 

In order to decrease the impact of uncertainty in PFT composition and reduce the correlation 485 

errors between parameters, the use of concomitant observations of traits and carbon fluxes at 486 

the FLUXNET sites would enable a) to constrain known parameters and b) to validate 487 

optimized traits. However, functional trait observations at FLUXNET sites as well as a 488 

precise description of species composition are not yet systematic (Musavi et al., 2015, 2016).  489 

 490 

Ecological consistency of trait relationships 491 

The optimization of model parameters managed to reproduce many known ecological 492 

properties. The optimized parameters consistently matched the well-known relationships 493 

resulting from the leaf economic spectrum theory (LES, Reich et al., 1999; Wright et al., 494 

2004). Particularly our results align with the trait theory that long lived canopies are 495 

metabolically less active and are consistent with the LES empirical evidence that plants invest 496 

either in structure or photosynthesis (Liu et al., 2010; Reich, 2014).  497 

Our results also reproduced several observed trait-climate relationships at the PFT level. 498 

Globally, evergreen PFT parameters showed a strong dependency on mean annual 499 

temperature and radiation, while parameters for deciduous PFTs exhibited a strong sensitivity 500 

to precipitation and soil moisture over the growing season (Figure S5.4). As postulated by 501 

Reich (2014), climate exerts a control on the average leaf characteristics at the community 502 

level. The observed relationships obtained at the PFT level might reflect, not only differences 503 

in plant response to climate, but also differences in plant community composition (Shi et al., 504 

2015). These results suggest that both the development of acclimation processes and trait-505 



based approaches are needed in TBMs if we seek to capture the effect of biogeography on 506 

ecosystem characteristics (Lu et al., 2017; Fisher et al., 2018).  507 

 508 

Finally, while the results clearly highlight that photosynthesis and phenological mechanisms 509 

implemented in ORCHIDEE are robust enough to reproduce known behaviors of several 510 

vegetation species, belowground processes still appear poorly represented, which resulted in 511 

weakly constrained parameters and trait co-variations inconsistent with literature. These 512 

discrepancies are primarily due to a lack in eco-physiological knowledge reflecting the actual 513 

difficulty to study belowground ecological processes. The rooting system uses model-specific 514 

parameters (Kroot) that are hardly comparable to measured functional traits.  515 

 516 

Concluding remarks and recommendations 517 

The approach presented in this study is a new and effective way to validate the processes 518 

implemented in TBMs, to better define vegetation response to climate (Liang et al., others, 519 

2018), and could help improving existing data assimilation frameworks (Kaminski et al., 520 

2013; LeBauer et al., 2013; Arsenault et al., 2018) by bringing ecological constraints. The 521 

availability of continuous observations from eddy-covariance flux measurements gives a 522 

unique opportunity to resolve the different components of the short and long-term variability 523 

of traits through this approach.  524 

Our results show that optimized leaf-related parameters align with plant trait theory, and 525 

highlight the need to implement acclimation processes and trait-based approaches in models 526 

instead of using constant parameters to reduce uncertainties in spatio-temporal patterns of the 527 

modeled carbon fluxes. A first step would be to assess the behavior of the model at the global 528 

scale when trait-climate relationships characterized in this study are explicitly implemented. 529 



In parallel, relationships highlighted in this study may help to develop or validate new 530 

methods to simulate plant acclimation. Used in a prognostic way, this approach could enable 531 

to study correlations at the canopy scale and to assess the behavior of trait-related parameters 532 

that are difficult to observe experimentally. 533 

Several known ecological properties, observed at the site/leaf scale, emerged from model-data 534 

assimilation. However, quantitative comparisons with observations were possible only for two 535 

of them, SLA and Lage, which are also the two most studied traits. This is mainly because 536 

TBMs use model-specific parameters that cannot be directly compared to standard trait 537 

observations, but also because concomitant observations of functional traits, both in space and 538 

time, are scarce in the literature. A recommendation to the TBM community would be to 539 

make use of parameters (and processes) that can be related directly to observations in order to 540 

unit vegetation model and functional traits (for instance the use of the Specific Root Length 541 

for belowground processes).  542 

We argue that co-located systematic and standardized trait observations (starting with key 543 

traits related to phenology -SLA, LAI-, photosynthesis -Vcmax, Jmax, Topt-, water transport -544 

gs- and allocation -Carbon:Nitrogen ratio, shoot/root-; (Law et al., 2008) along with 545 

biometric data are needed at the FLUXNET sites or within other environmental observation 546 

networks such as ICOS (Integrated Carbon Observation System) or NEON (National 547 

Ecological Observatory Network) if we seek to distinguish temporal and spatial components 548 

of trait variability across biomes and climates. The creation of a FLUXNET trait database 549 

could improve our comprehension of trait acclimation and help us to disentangle the 550 

differences observed at regional and local scales, to improve the up-scaling of processes from 551 

the leaf to the canopy/ecosystem level and to properly calibrate/validate ecosystem models.  552 
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Table 1: Description of the 14 optimized parameters and associated processes. All the parameters are 

common to each PFT. Kbm and bbdate are scaling factor added in the model to improve the 

optimization of the seasonal cycle of the GPP but are not analyzed in the study. (See Table S1.2; 

Appendix 1 for the detailed equations involving each parameter).  

 

Parameter Description Processes involved 

SLA Specific leaf area (m
2
 gC

-1
) 

Photosynthesis, 
Phenology, Allocation 

Lage Leaf lifespan (days) 
Photosynthesis, 

Phenology 

Vcmax Maximal carboxylation rate limited by CO2 (µmol m
-2

 s
-1

) Photosynthesis 

Vj/Vc 
Ratio between the maximal carboxylation rate limited by light 

and Vcmax 
Photosynthesis 

Topt Optimal temperature of the photosynthesis (°C) Photosynthesis 

gslope 
Slope of the Ball-Berry relationship for the stomatal 

conductance 

Photosynthesis, energy 

budget 

LAImax Maximal leaf area index 
Photosynthesis, 

Phenology, Allocation 

Klai 
Minimal fraction of LAImax for the use of  carbohydrate 

reserves 
Allocation 

bbdate Budburst date (day of the year) Phenology 

tauleaf 
Period after budburst during which the use of carbohydrates 

is allowed 
Allocation 

Csenes Temperature for leaf senescence (used only for deciduous) Phenology 

Kbm 
Multiplicative factor for the initial leaf biomass (used only for 

evergreens) 
Phenology, Allocation 

Kroot Exponential factor describing the root profile and depth 
Water budget, 

Photosynthesis 

Wlim 
Minimal threshold at which the photosynthesis becomes 

limited by water availability 
Photosynthesis 



Table 2: Description of bio-climatic variables calculated at each site and for each year. 

Variable Description Units 

LAT Latitude °N 

MAT Mean annual temperature Celsius 

TMAX Mean temperature of the warmest month of the year Celsius 

TMIN Mean temperature of the coldest month of the year Celsius 

TVAR Temperature difference between TMAX and TMIN Celsius 

DTR Yearly average of diurnal temperature range Celsius 

MAP Mean annual precipitation mm y
-1

 

REH Mean annual relative humidity % 

SW Mean annual downward shortwaves radiation (visible and near IR) W m
-2

 

PDRY 
The driest quarter of the year is determined (to the nearest week), and the 

total precipitation over this period is calculated. 
mm y

-1
 

RELP PDRY divided by MAP fraction 

SHUM Yearly averaged soil humidity fraction 

GSL 
MATgs, DTRgs, SWgs, MAPgs, REHgs and SHUMgs are the same 

variables averaged during the growing season of the plant 
- 

 



Table 3 : Relationships between trait-related parameters. For some relationships, values are log-

transformed (x). For each relationship is the number of sites, as well as the correlation coefficient (r, 

blue when negative; red when positive). Only relationships with an absolute and significant (p-

value<0.05) correlation coefficient higher than 0.5 are listed for the different groups of PFT : all, 

broadleaves (bro ; TroEB, TemEB, TDB, BDB), needleleaves (need ; TEN, BEN), evergreens (ever ; 

TroEB, TemEB, TEN, BEN), deciduous (dec ; TDB, BDB) and C3 grasses (gra). Note that evergreens 

include needleleaves and that broadleaves include deciduous. The type of relationship is given for each 

trait: 0= verified with ecological observations; 1=partially verified on similar data or 3= different from 

observations. When available, the reference for verification is given. Well constrained parameters are 

in bold, parameters with a risk of equifinality are normal, poorly constrained parameters are in italics. 

Refer to Table 1 for the description of each parameter. 

Parameters r PFT log 
SMA 

slope 

n 

sites 
references Type 

Lage SLA 

-0.67 ever x -1.39 49 

(Reich et al., 1999); 

(Wright et al., 2004) 

0 

-0.53 bro x -3.47 37 0 

-0.63 All x -1.92 98 0 

Lage Vcmax 

-0.90 Bro x -1.69 37 

 (Xu et al., 2017) 

0 

-0.65 Dec  -2.15 23 0 

-0.59 All x -3.13 98 0 

gslope Lage 
-0.70 Bro x -0.74 37 (Reich et al., 1992) 

(Poorter & Bongers, 2006) 

1 

-0.57 Grass  0.00 26 1 

gslope SLA 

-0.62 Ever  -534.01 49 

(Poorter & Bongers, 2006) 

3 

0.52 Dec  418.99 23 1 

-0.51 Grass  -235.65 26 3 

LAImax SLA 0.60 Need  422.11 35 (Pierce et al., 1994) 1 

SLA Vcmax 
-0.55 Ever x -1.28 49 

(Niinemets et al., 2007) 
1 

-0.53 Need x -0.75 35 1 

gslope Wlim 
0.70 Bro x 1.61 37 

(Lin et al., 2015) 
3 

0.52 Ever x 1.47 49 3 

 



Table 4: Relationships between trait-related parameters and climate variables. For some relationships, 

traits values are log-transformed (x). For each relationship is given the correlation coefficient (r). Only 

relationships with an absolute (and significant p-value<0.05) correlation coefficient higher than 0.5 are 

listed for the different groups of PFT : all, broadleaves (bro ; TroEB, TemEB, TDB, BDB), 

needleleaves (need ; TEN, BEN), evergreens (ever ; TroEB, TemEB, TEN, BEN), deciduous (dec ; 

TDB, BDB) and C3 grasses (gra). The type of relationship is given for each trait: 0= verified with 

ecological observations; 1=partially verified on similar data; 2= not verified or, 3=different from 

observations. When available, the reference for verification is given. Well constrained parameters are 

in bold, parameters with a risk of equifinality are normal. Refers to Table 1 and 2 for the description of 

each parameter and climate variables respectively. 

Trait Climat r PFT log SMA slope Référence Type 

Lage 

LAT 
0.59 ever  24.90 (Reich et al., 2014) 0 

-0.56 bro  -13.44 - 2 

MAP 
0.66 grass  1.14 - 2 

-0.65 need x -0.66 (van Ommen Kloeke et al., 2012) 0 

MAT 

-0.78 ever x -16.95 (Wright et al., 2005; van Ommen Kloeke et al., 2012; 

Reich et al., 2014) 

0 

-0.62 need x -17.93 0 

0.54 grass x 107.81 - 2 

0.53 bro x 30.14 - 2 

SW 
-0.53 ever x -1.84 (Poorter & Bongers, 2006) 1 

0.52 bro x 3.85 - 2 

TMIN -0.65 ever x -30.99 
(Wright et al., 2005; van Ommen Kloeke et al., 2012; 

Reich et al., 2014) 
1 

SLA 

MAP 0.54 need x 0.37 
(Wright et al., 2005) 

0 

MAPgs 0.57 ever x 0.47 0 

MAT 0.65 ever x 12.16 

(Wright et al., 2005) 

0 

MATgs 
-0.63 bro x -0.86 0 

-0.55 dec x -0.96 0 

RELP 
0.60 dec x 0.25 - 2 

0.59 bro  0.08 - 2 

SW 0.53 ever  0.00 
(Givnish et al., 2004; Poorter & Bongers, 2006; Reich et 

al., 2014) 
1 

gslope 

MAP -0.59 grass x -1.12 - 2 

PDRY 0.58 dec  0.02 

(Lin et al., 2015) 

1 

REH 0.64 dec  19.24 1 

RELP 
0.66 bro  42.67 1 

0.58 dec  29.05 1 

SHUMgs 0.71 dec  20.53 1 

SW -0.63 bro  -0.10 - 2 

SWgs -0.55 dec  -0.08 - 2 

Vcmax 

MAT -0.52 bro  -4.77 (Ali et al., 2015) 3 

RELP 0.60 bro  511.72 - 2 

SW -0.54 bro  -1.15 (Ali et al., 2015) 3 

 

 



 

Figure 1: Schematic representation of the modeling protocol followed in this study. For each 

FLUXNET site-year (blue), the model ORCHIDEE (green) was calibrated with the data 

assimilation system ORCHIDAS (red) in order to reproduce GPP observations. The 

ORCHIDAS system uses a gradient-based approach (L-BFGS-B) to reduce the cost function 

J(x). For each site-year, 14 parameters (listed in Table 1) were optimized 10 times with 

different initial values. The best calibration, i.e. leading to the minimum value of J(x), was 

retained. This procedure was repeated for each site-year, resulting in 371 sets of 14 

independently optimized parameters. Finally, correlations between optimized parameters and 

climate were explored using standardized major axis regressions. 



 

Figure 2: Error correlation between optimized parameters (derived from the A matrix) averaged over 

deciduous trees, evergreen trees, and C3 grass. The color scale gives the error correlation coefficient. 

For more clarity, the coefficient is indicated in % in each matrix cell. The description of each 

parameter is listed in Table 1.  

 



 

Figure 3: Four examples of co-variations obtained between optimized parameters (Table 1) and 

environmental conditions (Table 2) of the sites for PFTs TroEB (black square), TEN (red square), 

TemEB (green triangle), TDB (blue square), BEN (cyan dots) and BDB (pink dots). Each point 

represents the mean optimized parameter (environmental variable) value for one site while the error 

bars represent the inter-annual variability (no bars means only one year of measurement). The red line 

represents the slope of the standardized major axis regression.  
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