D. Balchin, M. Hayer-hartl, and F. U. Hartl, In vivo aspects of protein folding and quality control, Science, vol.353, p.4354, 2016.

A. Finka, R. U. Mattoo, and P. Goloubinoff, Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes, Annu. Rev. Biochem, vol.85, pp.715-742, 2016.

A. Finka, S. K. Sharma, and P. Goloubinoff, Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/ HSP110 chaperones. Front, Mol. Biosci, vol.2, p.29, 2015.

P. Genevaux, C. Georgopoulos, and W. L. Kelley, The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions, Mol. Microbiol, vol.66, pp.840-857, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00211365

M. P. Mayer and L. M. Gierasch, Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones, J. Biol. Chem, 2018.

B. Bukau, J. Weissman, and A. Horwich, Molecular chaperones and protein quality control, Cell, vol.125, pp.443-451, 2006.

M. P. Mayer, Intra-molecular pathways of allosteric control in Hsp70s, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.373, 2018.

M. P. Mayer and R. Kityk, Insights into the molecular mechanism of allostery in Hsp70s. Front, Mol. Biosci, vol.2, p.58, 2015.

A. Zhuravleva, E. M. Clerico, and L. M. Gierasch, An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones, Cell, vol.151, pp.1296-1307, 2012.

R. Kityk, J. Kopp, I. Sinning, and M. P. Mayer, Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones, Mol. Cell, vol.48, pp.863-874, 2012.

E. B. Bertelsen, L. Chang, J. E. Gestwicki, and E. R. Zuiderweg, Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate, Proc. Natl Acad. Sci. USA, vol.106, pp.8471-8476, 2009.

H. H. Kampinga and E. A. Craig, The HSP70 chaperone machinery: J proteins as drivers of functional specificity, Nat. Rev. Mol. Cell Biol, vol.11, pp.579-592, 2010.

E. A. Craig and J. Marszalek, How do J-proteins get Hsp70 to do so many different things?, Trends Biochem. Sci, vol.42, pp.355-368, 2017.

H. H. Kampinga, Function, evolution, and structure of J-domain proteins, Cell Stress Chaperon, 2018.

H. H. Hau and J. A. Gralnick, Ecology and biotechnology of the genus Shewanella, Annu. Rev. Microbiol, vol.61, pp.237-258, 2007.

F. A. Honoré, V. Méjean, and O. Genest, Hsp90 is essential under heat stress in the bacterium Shewanella oneidensis, Cell Rep, vol.19, pp.680-687, 2017.

F. A. Honoré, N. J. Maillot, V. Méjean, and O. Genest, Interplay between the Hsp90 chaperone and the HslVU protease to regulate the level of an essential protein in Shewanella oneidensis, mBio, vol.10, pp.269-288, 2019.

J. C. Bardwell and E. A. Craig, Ancient heat shock gene is dispensable, J. Bacteriol, vol.170, pp.2977-2983, 1988.

H. Yang, Genome-scale metabolic network validation of Shewanella oneidensis using transposon insertion frequency analysis, PLoS Comput. Biol, vol.10, p.1003848, 2014.

P. Genevaux, F. Schwager, C. Georgopoulos, and W. L. Kelley, The djlA gene acts synergistically with dnaJ in promoting Escherichia coli growth, J. Bacteriol, vol.183, pp.5747-5750, 2001.

E. Perrody, A bacteriophage-encoded J-domain protein interacts with the DnaK/Hsp70 chaperone and stabilizes the heat-shock factor ?32 of Escherichia coli, PLoS Genet, vol.8, p.1003037, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00788538

W. Shi, Y. Zhou, J. Wild, J. Adler, C. A. Gross et al., DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli, J. Bacteriol, vol.174, pp.6256-6263, 1992.

M. P. Mayer, T. Laufen, K. Paal, J. S. Mccarty, and B. Bukau, Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy, J. Mol. Biol, vol.289, pp.1131-1144, 1999.

D. Wall, M. Zylicz, and C. Georgopoulos, The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication, J. Biol. Chem, vol.269, pp.5446-5451, 1994.

H. Gao, Global transcriptome analysis of the heat shock response of Shewanella oneidensis, J. Bacteriol, vol.186, pp.7796-7803, 2004.

F. C. Neidhardt and R. A. Vanbogelen, Positive regulatory gene for temperature-controlled proteins in Escherichia coli, Biochem. Biophys. Res. Commun, vol.100, pp.894-900, 1981.

A. Battesti and E. Bouveret, The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli, Methods San. Diego Calif, vol.58, pp.325-334, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458246

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proc. Natl Acad. Sci. USA, vol.95, pp.5752-5756, 1998.

R. Kityk, J. Kopp, and M. P. Mayer, Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones, Mol. Cell, vol.69, pp.227-237, 2018.

B. Feifel, H. J. Schönfeld, and P. Christen, D-peptide ligands for the cochaperone DnaJ, J. Biol. Chem, vol.273, pp.11999-12002, 1998.

J. Perales-calvo, A. Muga, and F. Moro, Role of DnaJ G/F-rich domain in conformational recognition and binding of protein substrates, J. Biol. Chem, vol.285, pp.34231-34239, 2010.

L. E. Vickery and J. R. Cupp-vickery, Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation, Crit. Rev. Biochem. Mol. Biol, vol.42, pp.95-111, 2007.

A. Fotin, Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating, Nature, vol.432, pp.649-653, 2004.

C. Barria, M. Malecki, and C. M. Arraiano, Bacterial adaptation to cold. Microbiol. Read. Engl, vol.159, pp.2437-2443, 2013.

S. Phadtare, Recent developments in bacterial cold-shock response, Curr. Issues Mol. Biol, vol.6, pp.125-136, 2004.

G. Feller, Protein folding at extreme temperatures: current issues, Semin. Cell Dev. Biol, vol.84, pp.129-137, 2018.

F. Piette, C. Struvay, and G. Feller, The protein folding challenge in psychrophiles: facts and current issues, Environ. Microbiol, vol.13, pp.1924-1933, 2011.

J. Kawamoto, Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10, J. Bacteriol, vol.191, pp.632-640, 2009.

H. Gao, Z. K. Yang, L. Wu, D. K. Thompson, and J. Zhou, Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins, J. Bacteriol, vol.188, pp.4560-4569, 2006.

R. Keto-timonen, Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia, Front. Microbiol, vol.7, p.1151, 2016.

O. Kandror and A. L. Goldberg, Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures, Proc. Natl Acad. Sci. USA, vol.94, pp.4978-4981, 1997.

F. Piette, Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, Mol. Microbiol, vol.76, pp.120-132, 2010.

B. Bukau and G. C. Walker, Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism, J. Bacteriol, vol.171, pp.2337-2346, 1989.

R. S. Ullers, D. Ang, F. Schwager, C. Georgopoulos, and P. Genevaux, Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli, Proc. Natl Acad. Sci. USA, vol.104, pp.3101-3106, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00142287

Z. Zeng, Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis, ISME J, vol.10, pp.2787-2800, 2016.

C. Bordi, C. Iobbi-nivol, V. Méjean, and J. Patte, Effects of ISSo2 insertions in structural and regulatory genes of the trimethylamine oxide reductase of Shewanella oneidensis, J. Bacteriol, vol.185, pp.2042-2045, 2003.

C. Baraquet, L. Théraulaz, C. Iobbi-nivol, V. Méjean, and C. Jourlin-castelli, Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis, Mol. Microbiol, vol.73, pp.278-290, 2009.

J. H. Miller, Experiments in Molecular Genetics, 1972.

M. R. Sarker and G. R. Cornelis, An improved version of suicide vector pKNG101 for gene replacement in gram-negative bacteria, Mol. Microbiol, vol.23, pp.410-411, 1997.

L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith, Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J. Bacteriol, vol.177, pp.4121-4130, 1995.

A. Battesti and E. Bouveret, Improvement of bacterial two-hybrid vectors for detection of fusion proteins and transfer to pBAD-tandem affinity purification, calmodulin binding peptide, or 6-histidine tag vectors, Proteomics, vol.8, pp.4768-4771, 2008.

H. Baaziz, ChrASO, the chromate efflux pump of Shewanella oneidensis, improves chromate survival and reduction, PloS One, vol.12, p.188516, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01696687

O. Genest, Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast, Mol. Cell, vol.49, pp.464-473, 2013.

C. Gambari, A. Boyeldieu, J. Armitano, V. Méjean, and C. Jourlin-castelli, Control of pellicle biogenesis involves the diguanylate cyclases PdgA and PdgB, the c-di-GMP binding protein MxdA and the chemotaxis response regulator CheY3 in Shewanella oneidensis, Environ. Microbiol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890343

M. Schoeffler, Growth of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory energy conservation after O 2 -driven experimental evolution, Environ. Microbiol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976026