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Abstract—The relevance of Data Stream Processing (DSP) is
nowadays established, thanks to its capability to analyze contin-
uous streams and provide statistics in real-time. A considerable
amount of work has been dedicated to improve performance
and features of DSP platforms. Thus, benchmark application
are necessary for comparison and evaluation. Unfortunately, in
literature, these applications are often briefly described, the
source is not available, they are too context-specific or don’t
provide enough flexibility. That makes it difficult for a developer
to quickly evaluate the impact of some design choices.

To address these issues, we introduce a high-level description
model of stream applications. Based on fundamental DSP char-
acteristics, this description allow an easy and flexible definition of
benchmark topologies. With this model we aim to provide easily
replicable, comparable and customizable benchmarks for DSP.
We then use a framework prototype that translates the high-level
description into platform-specific code simulating the application
workload.

Index Terms—Benchmark Application, Data Stream Process-
ing, High-Level description

I. INTRODUCTION

Streaming analytics is a top trend in the Big Data field.
The ability to process high-rate unbounded data, giving output
results in almost real-time, makes it the best technique for
many fields, such as IoT, security or social networks. The
continuous and significant amount of data generated by these
applications need to be quickly and correctly processed, as,
in most cases, those critical applications need to provide
immediate feedback.

Therefore, many platforms have been developed to manage
and process data streams, from open-source data stream pro-
cessing systems (DSPS) as Flink[1], Storm[2], Heron[3] or the
Spark Streaming[4] extension (all under the Apache project),
to industrial solutions as Google Millwheel[5]. Several works
have been done to improve these systems, from scheduling
algorithms to deep architectural renewal. The different plat-
forms and their enhancements need to be evaluated to prove
their efficacy.

This is the goal of benchmark applications. Nevertheless,
none of the state-of-the-art solutions (as we will detail in
Section II) proposes a general approach that could be used
for every kind of evaluation, context or platform. Most of
the available benchmark suites are designed for a single
specific context (e.g. IoT, social networks), making them less
relevant in others. Moreover, these applications are usually not
designed with flexibility in mind. Even some slight change
in their behavior requires modification of the source code.

Finally, the lack of space in most publications forces to leave
out important information, making it difficult to reproduce
experiments.

Thus, we feel the necessity to have a reference solution
that could be flexible and configurable while being context-
and platform-agnostic. It should cover the fundamental char-
acteristics of a DSP application, including a description of its
workload.

In this paper, we present an high-level description to
model benchmark applications, which we call Workflow
schema. Based over fundamental data stream characteristics,
the schema supports easy and quickly configurable topology
description.

We test the Workflow schema with the use of a framework
able to automatically generate platform-specific code by trans-
lating the high-level description.

Our contributions are as follows:

• We provide a detailed description and analysis of the
fundamental characteristics of typical DSP applications.

• We introduce a high-level model to precisely describe
each element of a DSP application, allowing a high
degree of flexibility.

• We demonstrate the benefit of our model by generating
micro-benchmarks for Flink being able to quickly evalu-
ate the impact of design choices.

II. RELATED WORK

Peng et Al. [6] define three different base layouts for micro-
benchmarks topologies (Fig. 1): linear, diamond and star. The
first one consists of a pipeline of tasks without any branch
split or join; the diamond shape usually starts and ends with
a single task and has multiple tasks in parallel in-between;
the star layout has multiple source and sink tasks, linked by
a single task. The same layouts are implemented directly or
indirectly by [7] (DDoS detection application) and [8].

A popular micro-benchmark application is the streaming
version of WordCount [9], [10], [11]. It is usually available as
example code in the main DSP systems such as Storm or Flink.
While this topology may be considered as real use cases, they
are normally implemented as examples and not derived from
production code.

To evaluate the maximum achievable throughput, a source-
sink topology is commonly used [9], [12], [13]. The same
topology can be altered to test I/O performance [12], [13].
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Fig. 1: Micro-Benchmarks Topology Layouts

Overall, micro-benchmarks often lacks implementation
details, missing the internal’s description. Thus, they don’t give
a clear idea of what is the actual workload of the application.
This makes it complicated to replicate a benchmark correctly.

Other works uses more complex applications designed
following real-scenarios implementations. A milestone of
stream benchmarks is Linear Road [14]. The authors defines
guidelines to implement an application that simulates a real
scenario: an urban expressway system. The objective is to
compare different platforms through the same application.

The currently most popular benchmark application is the
Yahoo! Streaming Benchmark [15]. It has been widely used
by companies to evaluate their solutions [16], [17], [18]. The
application analyzes advertisement interactions on the Web.

In StreamBench [19], the authors define a set of workloads,
characterizing them in terms of data type and computational
complexity. A total of 7 benchmark applications are combined
to two real-world data sets.

Similarly, BigDataBench [20] is a suite that makes available
benchmark workloads for both batch and streaming BigData
platforms. Their focus is on Internet services. JStorm[21]
and Spark Streaming[4] are currently supported as streaming
platforms.

RIoTBench [22] is a suite designed specifically for IoT sce-
narios. The suite regroups a large set of IoT micro-benchmarks
to cover different patterns. Together with a set of representative
IoT applications, inspired by realistic scenarios.

These benchmark applications are commonly designed for
context-specific scenarios. They consist of workloads built ad-
hoc for a specific environment, which may not match to the
user needs. They are limited by the static compositions of
tasks, and by the platform-specific implementation. This lack
of flexibility does not allow an easy customized workflow
compositions or cross-platform benchmarks.

III. MOTIVATION AND CHALLENGES

We just showed that the literature already provides us with
a large variety of benchmark applications. However, we think
that this past work presents various limitations. They are too
context-specific. These benchmarking tools are commonly
designed for specific scenarios such as IoT or internet services,
limiting their applicability to other fields of study. Moreover,

they are implemented over a specific platform. It is thus
necessary to rewrite the entire application to adapt it to other
middlewares. They are often hard to replicate due to the
lack of a specific workload description. Especially micro-
benchmarks, as they usually define a general objective for
the evaluation – e.g. I/O intensive, maximal throughput – but
fail to provide a detailed definition of the tasks internals. At
the same time, they are not flexible enough. An imprecise
description of the pipeline and hard-coded configurations do
not allow a quick and easy tuning of an application, preventing
an easy study of different implementation choices.

These drawbacks denote a lack of a generic benchmark
application, that could be used in every scenario, regardless of
the environment, and that would enable to compare different
solutions from various works. For these reasons, we think it is
necessary to have a benchmark application that addresses the
previous limits, i.e. that is: with a well defined description of
the workflow, that can be easily customized, hence adaptable
to every context; and, generic enough to be able to be adapted
to any kind of streaming platform or middleware, so as to
support current and future data stream frameworks.

To achieve these objectives, we need an high-level descrip-
tion and model of a typical data stream application. Thus,
we first define several fundamental characteristics common
to DSP applications (Section IV), which have a significant
impact on the characterization of an application workload.
We then abstract these characteristics in a set of parameters
configurable by the user through a high-level set of configu-
rations (Section V). This model can then be used to generate
benchmark applications.

IV. FUNDAMENTAL CHARACTERISTICS

The behavior and performance of stream processing appli-
cations are directly impacted by fundamental characteristics
that can be grouped into two categories: the data stream that
defines the input stream of the application; and the workflow
that describes how data is processed and transferred between
tasks. The two categories are interconnected as the workflow
is impacted by the characteristics of the data stream.



A. Data Stream Characteristics

a) Data Characteristics: In stream processing, data can
assume various forms, from text to binary. The exact size
and its variance depends on the application and also the
input format, e.g. JSON, XML, plain text. Depending on the
application field, the number of different items as well as their
popularity may also vary significantly.

b) Input Rate: Data may arrive at different rates. Modern
applications such as social networks not always feature a
Constant Bit Rate (CBR) stream. Instead, data is often sent
in bursts – e.g. extraordinary events in sensor-networks [23]
– and can follow a bimodal human behavior – e.g. day and
night activities [24].

B. Workflow Characteristics

a) Connection: A DSP application is commonly repre-
sented as a Directed Acyclic Graph (DAG) of tasks, with
the sources as roots and the sinks as leaves. The tasks can
be arbitrarily connected to form different logical shapes. As
an example, the three base layouts described in Fig. 1 are
commonly basic building bricks for more complex topologies.

b) Scalability: Streaming systems are designed to man-
age high loads of data. Hence, applications need to be scalable.
Most components of the topology can be parallelized to
spread the incoming load over multiple instances. The global
parallelism level of the application represents the total number
of instances of all tasks of an application. However, this global
value is not necessarily uniformly distributed, with some tasks
requiring more computational capabilities.

c) Traffic Balancing: When data is transmitted to a par-
allelized task, the application has to decide how to distribute
the tuples over the different instances. The various streaming
platforms usually implement some standard grouping methods:
(i) balanced routing, based on a simple round-robin algorithm
that assigns each tuple to a different instance, enabling load
balancing between the tasks; (ii) key-based routing, that sends
each tuple to a specific instance using a hash function, allowing
for stateful routing; (iii) broadcast routing, where a tuple is
replicated and sent to all the following level instances.

d) Message Reliability: Most DSP platforms offer a reli-
ability mechanism to ensure message processing, It can impact
the application throughput or its message failure probability
[25].

e) Workload: Each task composing the DAG performs
various operation on the data and some might be more
computationally intensive than others. Thus, the processing
load is not always balanced over all tasks and bottlenecks
might exist.

V. HIGH-LEVEL DESCRIPTION

The characteristics listed before have been used to build
a high-level description of the application, named Workflow
schema. To make the model easily configurable by users, it was
implemented under the form of a configuration file adopting
the YAML standard [26]. It is composed of a series of key-
values parameters grouped into different blocks.

The Workflow schema allows the user to specify the global
parameters of the application. With these configurations, it
is not necessary to define each task of the pipeline. This
schema gives the user a quick and easy way to generate simple
micro-benchmarks. The simplicity of the schema allows to
swiftly tune test-by-test some application features (e.g. data
size, parallelism, computing load), and easily experiment with
different design combinations. Following the categorization
made in the previous section, we divided the model into two
homonymous main categories.

A. Data Stream Section

In this schema, the configuration has two sections. The
datastream section contains the input data characteristics. The
current version only support synthetic data generation. The
model allows to define: how many unique values compose
the data set generated, their appearance distribution, i.e. the
probability of a value to be generated (e.g. uniform means
equal probability for each value), and the size in bytes of a
single tuple. The incoming flow is defined through its arrival
distribution (currently CBR or Gaussian), and the rate of
arrival in terms of tuples per second.

datastream:

synthetic:
data:

size: 8
values: 100
distribution: uniform

flow:
distribution: uniform
rate: 0

Fig. 2: Datastream section of Workflow schema (yamb.yml)

For example, Fig. 2 indicates that the benchmark will
generate synthetic data. Each tuple will have a size of 8 bytes
and its values will be randomly chosen among 100 different
ones with a uniform distribution. The arrival rate will be
unbounded (indicated with value 0) and uniform (CBR). The
unbounded rate will exploit the maximum capabilities of the
platform and the testing environment, without setting any time
interval between tuples.

B. Workflow Section

The high level description of the DAG is given in the
workflow section. It allows to configure the logic composition
of the graph and tasks connection as well as the internal
task workload. The DAG depth, i.e. how many levels of
subsequent tasks are in the topology, including the sources.
The global parallelism level, i.e. the total sum of all the
tasks instances, and how it is distributed over the single tasks.
How the components are connected to each other, defining
the grouping method (e.g. shuffle/round-robin, hash-based/by



key) and the shape of the topology, defined through the basic
micro-benchmark layouts (represented in Fig. 1).

The tasks workload is defined by its processing load. The
value specified in the schema will be used to simulate the
internal workload of the tasks. We envision a busy wait
simulation that will keep the CPU busy, in this manner we
are able to produce a generic load not bounded to any specific
data stream query. This allow context-agnosticism. The defined
load will then be distributed over the tasks following the
configured balancing method. A DSP application may have
a balanced load, where all the tasks have the same processing
load, as well as an application that does the heaviest work at
the beginning or vice-versa (we will go into more details in
Section VI-B Paragraph b).

workflow:

depth: 5

scalability:
parallelism: 24
balancing: balanced

connection:
shape: diamond
routing: balanced

workload:
processing: 3.0
balancing: decreasing

reliability: true

source

task_3

task_1 task_2

task_4

task_5

Fig. 3: Workflow section of Workflow schema (yamb.yml)

In Fig. 3 we consider a diamond topology with round-
robin (balanced) connections between tasks. The depth of 5
indicates there will be two more tasks after the diamond (Fig. 3
right side). With a balanced parallelism level of 24, each of
the 6 tasks will have 4 instances. The processing time at each
task will be simulated decreasing order (other modes such
as constant or increasing are possible). This mode starts by
assigning the to the first task and then decreases it by 20%
for each following ones. Hence, the most costly tasks will be
at the beginning of the topology.

VI. EVALUATION

A. Application Generation

Given the high-level description presented above, we im-
plemented a framework able to translate that configuration
into platform-specific code. Our initial prototype generates
the derived benchmark applications for Apache Flink. The
application will simulate the tasks workload based on the value
defined in the Workflow schema: the value defined correspond
to thousands of cycles in the busy wait function. The data
injected in the stream is synthetic and formed as strings of

size and distribution as specified in the datastream section of
the high-level description.

B. Proof of Concepts

In this section, we will show how it is possible to quickly
and flexibly design micro-benchmarks. All the experiments
were done on a 4-node Linux cluster on the Grid’5000 testbed
[27]. Each node has two 4-core Intel Xeon CPUs and 32GB
of memory interconnected by a 1 Gbps network. One machine
is used as master and the other 3 as worker nodes.

We use throughput and latency as the two evaluation met-
rics. The throughput is measured as the total number of tuples
processed at a given level of a topology per second. The
latency is the average time spent by tuples between the source
and a sink.

datastream:

synthetic:
data:

size: 10
values: 100
distribution: uniform

flow:
distribution: uniform
rate: 0

workflow:

depth: 4

scalability:
parallelism: 96
balancing: balanced

connection:
shape: linear
routing: none

workload:
processing: 10
balancing: balanced

Fig. 4: Base configuration file for Workflow schema experi-
ments. Highlighted values are changed during tests.

To demonstrate the benefit of the Workflow schema, we
show how starting from a common linear topology, we can
quickly evaluate the impact of small changes in the design
choices. We show 2 different micro-benchmarks, using the
base configuration file shown in Fig. 4. The considered topol-
ogy is made of single source and 3 tasks organized in a linear
layout (Fig. 1a) with an unbounded and uniform synthetic data
stream of 100 unique values of 10 bytes each. The parallelism
distribution was always balanced between tasks.



a) Parallelism Scale-up: Here, we evaluate the impact
of the parallelism level on the entire application. We have set
routing to balanced mode (i.e. rebalance in Flink).

In this evaluation we try four different parallelism levels,
starting from the lowest possible value (4, i.e. 1 instance per
task) until the highest one (96, i.e. 24 instances per task). In
the configuration file, we just need to change the parallelism
value and re-deploy NAMB.
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Fig. 5: Performance when varying components parallelism.
The different series represented are defined by the number
of source instances.

From the results in Fig. 5 we can see how, as expected,
the throughput increases when increasing the application par-
allelism (Fig. 5a). More sources and more tasks to process
data, increases the global emission rate. As we have enough
tasks to process the data generated by the sources, the final
throughput equals the sums of all the sources. Starting from
a single source emission rate of 36 tuples/ms, the throughput
linearly increases with the number of source instances: 218
tuples/ms with 6 sources, 646 tuples/ms with 18, up to 791
tuples/ms with 24 sources. On the other hand, the latency
increases as well (Fig. 5b) due to the placement of the tasks
on different nodes, following the network distance principle
[6].

b) Computing Load Balancing: In this experiment, we
try to change the workload balancing, to see the impact of a
computing bottleneck on the application performance. In the
NAMB configuration, we just need to change the workload
balancing property. We keep the parallelism level to 96 and
the routing to direct (none).

We investigate three different distributions: balanced, which
assigns the same workload processing value to all the tasks;
increasing, which assigns the workload processing value to
the first task and increases it by 20% for each following ones;
finally, decreasing which works the same way but decreases
the workload.

0 500 1000
Running Time (s)

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (t

up
le

s/
m

s)

balanced
increasing
decreasing

(a) Throughput; higher is better

0 500 1000
Running Time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

La
te

nc
y 

(m
s)

balanced
increasing

decreasing

(b) Latency; lower is better

Fig. 6: Performance with different workload distribution

As expected, increasing the computing load greatly lowers
the throughput compared to a balanced one (Fig. 6a). However,
if the load decreases, the application can process more tuples.
The completion latency (Fig. 6b) follows the same trend. What
is interesting in this experiment is that it shows that, in Flink,
having a high load on the first task will not necessarily create
a bottleneck. Indeed, since all directly connected tasks are co-
scheduled as a chain, the overall load is more important.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an high-level description
model to define benchmark applications workflows. Based



on the analysis of the main characteristics of DSP appli-
cations, we have devised the Workflow schema. It allows
for the precise, high-level, description of an application. To
stay platform- and application-independent, we have intro-
duced a simulated task workload which can replace complex
application-dependent code with a simple equivalent busy-
wait.

We have shown how the Workflow schema can be used
to quickly benchmark a platform. As an example, we have
used Flink and shown the impact of the the parallelism level
and load distribution. Using this model, a user can investigate
the impact of changes in the overall performance by simply
modifying the configuration file instead of the real application.

We are currently working to extend the Workflow schema
to support missing common features as Windowing and Data
Variability. The former will allow to test the impact of the
window system of a platform, the latter will allow to tune
parameters to define the change of data over the topology.
As example, we will add support for data filtering and data
resizing, to simulate data transformations. Moreover we plan
to add a more task-specific description of the topology to allow
a more precise definition of the application characteristics.

We will implement a complete framework for application
generation and we envision to make it available as open source.
We intend to add support for more Stream Processing engines
as Apache Storm and Apache Spark Streaming. As well as
developing a more complete data generator to allow different
stream distributions.
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