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Abstract

In this paper, we tackle the problem of action recognition
using body skeletons extracted from video sequences. Our
approach lies in the continuity of recent works representing
video frames by Gramian matrices that describe a trajec-
tory on the Riemannian manifold of positive-semidefinite
matrices of fixed rank. Compared to previous work, the
manifold of fixed-rank positive-semidefinite matrices is en-
dowed with a different metric, and we resort to different
algorithms for the curve fitting and temporal alignment
steps. We evaluated our approach on three publicly avail-
able datasets (UTKinect-Action3D, KTH-Action and UAV-
Gesture). The results of the proposed approach are com-
petitive with respect to state-of-the-art methods, while only
involving body skeletons.

1. Introduction

In the last decades, automatic analysis of human motion
has been an active research topic, with applications that
have been exploited in a number of different contexts, in-
cluding video surveillance, semantic annotation of videos,
entertainment, human computer interaction and home care
rehabilitation, to say a few. Differences in body proportion
(size, height, corpulence), body stiffness and training, in-
fluence the way different people perform an action. Even
one same person is not able to perform the same action
twice, exactly replicating the same sequence of body poses
in space and time. This variability makes the task of human
motion analysis very challenging.

For years, the approaches could be distinguished in two
main classes: those operating on pixel values extracted
from the RGB stream (either stacking groups of consecu-
tive frames or extracting motion vectors) and those build-
ing upon the higher level representation of body skele-
tons. These latter approaches were supported by the dif-

fusion of low-cost RGB-D cameras (such as the Microsoft
Kinect) that can operate in real-time, while reliably ex-
tracting the 3D coordinates of body joints. More recently,
deep CNN architectures have demonstrated real-time and
accurate extraction of the coordinates of body joints from
RGB streams (7). These advances make it possible to use a
skeleton-based body representation in a much broader range
of domains and operative contexts than before, being not
limited by the short operative range of RGB-D sensors that
typically operate indoor and in the range of a few meters.
The design of the recognition/classification module on top
of the body skeleton representation makes it possible to de-
scribe an action as a sequence of body poses, each one cor-
responding to a point in a feature space, whose dimension
is proportional to the number of body joints. By exploit-
ing the geometric properties of the manifold where these
pose descriptors lie, it is possible to define a similarity met-
ric that is invariant under translation, scaling, rotation and
also under variations of the speed of execution of the ac-
tion. Furthermore, the explicit representation of an action
as a trajectory, i.e., a sequence of poses, on the manifold
makes it possible to extract statistical summaries, such as
mean and deviation from the mean, from a group of actions.
Through these summaries, one action can be better charac-
terized for the purpose of detecting outliers corresponding
to the anomalous execution of an action, that can be of par-
ticular relevance for action prediction. In fact, when analyz-
ing the skeleton sequences, there are four main aspects to
challenge: (1) A shape representation invariant to undesir-
able transformations; (2) A temporal modeling of landmark
sequences; (3) A suitable rate-invariant distance between ar-
bitrary sequences, and (4) A solution for temporal sequence
classification.

This paper lies in the continuity of recent works that
model the comparison and classification of temporal se-
quences of landmarks on the Riemannian manifold of
positive-semidefinite matrices. Building on the work (18),
our approach involves four different steps: 1) We build a



trajectory on the Riemannian manifold from the body skele-
tons; 2) We apply a curve fitting algorithm on the trajec-
tories to denoise the data points; 3) We perform a tempo-
ral alignment using a Global Alignment Kernel, defining a
positive-semidefinite kernel; 4) Finally, we use this kernel
with a classic SVM to classify the actions. An overview of
the full approach is given in Fig. 1.

The novelties with respect to (18) are:

• The manifold of positive-semidefinite matrices is here
endowed with a different metric;

• A recent curve fitting method is used to smooth trajec-
tories on the manifold;

• We use Global Alignment Kernel for temporal align-
ment, instead of Dynamic Time Warping.

The rest of the paper is organized as follows: in Sec-
tion 2, we summarize the closest works in the literature.
In Section 3, we explain how we represent our data on the
manifold of fixed-rank positive-semidefinite matrices, and
present the Riemannian metric that we will use in this pa-
per. In Section 4, we describe the curve fitting algorithm
that we will use to denoise the trajectories. The curve align-
ment method and the classifier are presented in Section 5,
while results and discussions are reported in Section 6. Fi-
nally, in Section 7, we conclude and draw some perspectives
of the work.

2. Related Work
A detailed review of the many approaches to human ac-

tion recognition and classification is out of the scope of this
paper. The interested reader can refer to (21) for a de-
tailed and updated survey. In the following, we focus on
approaches that use body skeletons as inputs to the recogni-
tion/classification module.

One of the first approaches to perform action recognition
by the analysis of trajectories of tracked body interest points
was presented in Matikainen et al. (31). Despite the promis-
ing results obtained, the authors did not take into account
the geometric information of the trajectories. More recently,
in the case of human skeleton in RGB-D images, Devanne
et al. (9) proposed to formulate the action recognition task
as the problem of computing a distance between trajectories
generated by the joints moving during the action. An action
is then interpreted as a normalized parameterized curve in
RN . However, this approach does not take into account the
relationship between the joints. In the same direction, Su
et al. (38) proposed a metric that considers time-warping
on a Riemannian manifold, thus allowing the registration of
trajectories and the computation of statistics on the trajecto-
ries. Su et al. (39) applied this framework to the problem of
visual speech recognition. Similar ideas have been devel-
oped by Ben Amor et al. (3) on the Kendall’s shape space

with application to action recognition using rate-invariant
analysis of skeletal shape trajectories.

Anirudh et al. (2) started from the framework of Trans-
ported Square-Root Velocity Fields (TSRVF), which has
desirable properties including a rate-invariant metric and
vector space representation. Based on this framework, they
proposed to learn an embedding such that each action tra-
jectory is mapped to a single point in a low-dimensional
Euclidean space, and the trajectories that differ only in the
temporal rate map to the same point. The TSRVF represen-
tation and accompanying statistical summaries of Rieman-
nian trajectories are used to extend existing coding methods
such as PCA, KSVD, and Label Consistent KSVD to Rie-
mannian trajectories. In the experiments, it is demonstrated
that such coding efficiently captures distinguishing features
of the trajectories, enabling action recognition, stroke reha-
bilitation, visual speech recognition, clustering, and diverse
sequence sampling.

In (44), Vemulapalli et al. proposed a Lie group trajec-
tory representation of the skeletal data on a product space
of special Euclidean (SE) groups. For each frame, this rep-
resentation is obtained by computing the Euclidean trans-
formation matrices encoding rotations and translations be-
tween different joint pairs. The temporal evolution of these
matrices is seen as a trajectory on SE(3)×· · ·×SE(3) and
mapped to the tangent space of a reference point. A one-
versus-all SVM, combined with Dynamic Time Warping
and Fourier Temporal Pyramid (FTP) is used for classifica-
tion. One limitation of this method is that mapping trajec-
tories to a common tangent space using the logarithm map
could result in significant approximation errors. Aware of
this limitation, in (45) the same authors proposed a mapping
combining the usual logarithm map with a rolling map that
guarantees a better flattening of trajectories on Lie groups.

More recently, Kacem et al. (18) proposed a geomet-
ric approach for modeling and classifying dynamic 2D and
3D landmark sequences based on Gramian matrices de-
rived from the static landmarks. This results in an affine-
invariant representation of the data. Since Gramian matrices
are positive-semidefinite, the authors rely on the geometry
of the manifold of fixed-rank positive-semidefinite matri-
ces, and more specifically, to the metric investigated in (4).
However, this metric is parametrized, and the parameter
should ideally be learned from the data. In addition, this
paper adopts Dynamic Time Warping for sequence align-
ment. The resulting distance does not generally lead to a
positive-definite kernel for classification.

All the approaches described above rely on the use of
hand-crafted features enabling representation of the action
as a trajectory or point in some suitable manifold. Differ-
ently from these approaches, many neural network mod-
els have been proposed that rely on training for the extrac-
tion of deep learned features. Recurrent neural networks



Figure 1. Overview of the proposed approach - After automatic body skeletons detection for each frame of a sequence, the Gram matrices
are computed to build the trajectory on the S+(d, n) manifold. We apply a curve fitting algorithm on the trajectory to smooth the curve and
reduce noise. Global Alignment Kernel (GAK) is then used to align the trajectories on the manifold. Finally, we use the kernel generated
from GAK with SVM to classify the actions.

(RNNs) and particularly Long-Short-Term Memory Net-
works (LSTMs) have been used to perform action recog-
nition by the analysis of sequences of skeleton poses (53).
However, these methods typically lose structural informa-
tion when converting the skeleton data and joint connectiv-
ity into the vector-shaped input of the neural network. As an
alternative, some approaches introduce Convolutional Neu-
ral Networks (CNNs) (24) and Graph Convolutional Net-
works (GCNs) (49; 23) in the overall architecture so as to
retain the structural information among joints of the skele-
ton. Although these approaches result in state-of-the-art
performance (11) on public action recognition benchmarks,
it is not possible to define a formal mathematical framework
to compute a valid metric on the internal, learned feature
representation so as to perform a statistical analysis of the
learned actions.

3. Our Approach

3.1. Shape Representation

To represent body movement dynamics, we rely on the
time series made of the coordinates of the n tracked body
points (i.e., p1 = (x1, y1), . . . , pn = (xn, yn) in 2D, or
p1 = (x1, y1, z1), . . . , pn = (xn, yn, zn) in 3D), during
each video sequence. Each video sequence is thus charac-
terized by a set of landmark configurations {Z0, . . . , Zτ},
where τ is the number of frames of the video sequence, and
where each configuration matrix Zi (1 ≤ i ≤ τ) ∈ Rn×d

encodes the position of the n landmarks in d dimensions
(with d = 2 or d = 3). We aim to measure the dynamic
changes of the curves made of the landmark configurations,
remaining invariant to rotation and translation. Similarly as
in (18), this goal is achieved through a Gram matrix repre-

sentation, where we compute the Gram matrices as:

G = ZZT . (1)

These Gram matrices are n×n positive-semidefinite ma-
trices, of rank smaller than or equal to d (always equal
to d in the datasets considered). Conveniently for us, the
Riemannian geometry of the space S+(d, n) of n × n
positive-semidefinite matrices of rank d has been studied
in (4; 17; 41; 42; 28; 30), and used in, e.g., (10; 32; 14; 29).

A classical approach in the design of algorithms on man-
ifolds consists in resorting to first order local approxima-
tions on the manifold, called tangent spaces. This requires
two tools: the Riemannian exponential (that allows us to
map tangent vectors from the tangent space to the mani-
fold), and the Riemannian logarithm (mapping points from
the manifold to the tangent space).

In (18), the manifold S+(d, n) is identified to the quo-
tient manifold (St(d, n) × Pd)/Od, where St(d, n) :=
{Y ∈ Rn×d|Y TY = Id} is the Stiefel manifold, Pd is the
manifold of d × d positive-definite matrices, and Od is the
orthogonal group in dimension d. We consider here another
representation of the manifold S+(d, n), that will result in
different expressions for the distance between two points,
the Riemannian exponential and logarithm.

3.2. The Quotient Manifold Rn×d∗ /Od
We consider here the identification of S+(d, n) to the

quotient manifold Rn×d∗ /Od, where Rn×d∗ is the set of full-
rank n×dmatrices. This geometry has been studied in (17;
28; 30).

The identification of S+(d, n) with the quotient
Rn×d∗ /Od comes from the following observation. Any PSD
matrix G ∈ S+(d, n) can be factorized as G = ZZT , with



Z ∈ Rn×d∗ . However, this factorization is not unique, as
any matrix Z̃ := ZQ, with Q ∈ Od, satisfies Z̃Z̃T =
ZQQTZT = G. The two points Z and Z̃ are thus equiva-
lent with respect to this factorization, and the set of equiva-
lent points

ZOd := {ZQ|Q ∈ Od},

is called the equivalence class associated to G. The quo-
tient manifold Rn×d∗ /Od is defined as the set of equiva-
lence classes. The mapping π : Rn×d∗ → Rn×d∗ /Od, map-
ping points to their equivalence class, induces a Riemannian
metric on the quotient manifold from the Euclidean metric
in Rn×d∗ . This metric results in the following distance be-
tween PSD matrices:

d(Gi, Gj) =

[
tr(Gi) + tr(Gj)− 2tr

((
G

1
2
i GjG

1
2
i

) 1
2

)] 1
2

.

(2)
This distance can be expressed in terms of the landmark

variables Zi, Zj ∈ Rn×d∗ as follows:

d(Gi, Gj) = min
Q∈Od

‖ZjQ− Zi‖F . (3)

The optimal solution is Q∗ := V U>, where Z>i Zj =
UΣV > is a singular value decomposition.

As stated by the next theorem, when d = 2, the distance
can also be formulated as follows:

Theorem. Let Gi, Gj ∈ S+(2, n) be two Gram matrices,
obtained from landmark matrices Zi, Zj ∈ Rn×2. The Rie-
mannian distance (2) can be expressed as:

d(Gi, Gj) =
(

tr(Gi)− 2
√

(a+ d)2 + (c− b)2 + tr(Gj)
) 1

2

,

(4)

where ZTj Zi =
(
a b
c d

)
.

Proof. See Appendix. �

Expressions for the Riemannian exponential and loga-
rithm are given in (28). We used the implementations pro-
vided in the Manopt toolbox (5).

4. Trajectory Modeling
The dynamic changes of body joints movement are char-

acterized by trajectories on the Riemannian manifold of
positive-semidefinite matrices of fixed rank (see Fig. 1).
More specifically, we fit a curve βG to a sequence of land-
mark configurations {Z0, . . . , Zτ} represented by their cor-
responding Gram matrices {G0, . . . , Gτ} in S+(d, n). This
curve will enable us to model the spatio-temporal evolution
of the elements on S+(d, n).

Modeling a sequence of landmarks as a piecewise-
geodesic curve on S+(d, n) showed very promising results

when the data are well acquired, i.e., without tracking errors
or missing data, see (18; 19; 34). To account for both miss-
ing data and tracking errors, we rely on a more recent curve
fitting algorithm: fitting by composite cubic blended curves,
proposed in (13, §5). Specifically, given a set of points
G0, . . . , Gτ ∈ S+(d, n) associated to times t0, . . . , tτ , with
ti := i, the curve βG, defined on the interval [0, τ ], is de-
fined as:

βG(t) := γi(t− i), t ∈ [i, i+ 1],

where each curve γi is obtained by blending together fitting
cubic Bézier curves computed on the tangent spaces based
on the data points di and di+1.

These fitting cubic Bézier curves depend on a parameter
λ, allowing us to balance two objectives: proximity to the
data points at the associated time instants, and regularity
of the curve (measured in terms of mean square accelera-
tion). A high value of λ results in a curve with possibly
high acceleration, but that will almost interpolate the data,
while taking λ→ 0 will result in a geodesic. The interested
reader can refer to (13, §5) for more information about the
curve fitting procedure.

5. Classification
Now that we have defined how to represent a sequence

and how to compare two distinctive landmark configura-
tions, we present in this section how we compare two land-
mark sequences and how to classify the actions performed
in these same sequences.

5.1. Global Alignment

As we described in Section 4, we represent a sequence as
a trajectory of Gram matrices in S+(d, n). The sequences
represented in this manifold can be of different length as the
execution rate of the actions can vary from one person to an-
other, meaning that we can not effectively compare them. A
common method to do so is to use Dynamic Time Warping
(DTW) as proposed in several works (3; 18; 15). However,
DTW does not define a proper metric and can not be used to
derive a valid positive-definite kernel for the classification
phase. To address the problem of non positive definiteness
of the kernel defined by DTW, Cuturi et al. (8) proposed the
Global Alignment Kernel (GAK), which allows us to de-
rive a valid positive-definite kernel when aligning two time
series. More recently Otberdout et al. (33) have proposed
to classifiy deep trajectories in SPD manifold using GAK.
The generated kernel can be used directly with Support Vec-
tor Machine (SVM) for the classification phase, whereas it
is not the case with kernels generated with DTW. In fact,
the kernels built with DTW do not show favorable positive
definiteness properties as they rely on the computation of an
optimum rather than the construction of a feature map. Note



that the computation of the kernels with GAK can be done
in quadratic complexity, similarly to naive implementation
of DTW. The next paragraph describes how to compute the
similarity score between two sequences, using this Global
Alignment Kernel.

Let us now consider Z1 = {Z1
0 , · · · , Z1

τ1} and Z2 =
{Z2

0 , · · · , Z2
τ2}, two sequences of landmark configuration

matrices. Given a metric to compute the distance between
two elements of each sequence, we propose to compute the
matrix D of size τ1× τ2, where each D(i, j) is the distance
between two elements of the sequences, with 1 ≤ i ≤ τ1
and 1 ≤ j ≤ τ2.

D(i, j) = d(Z1
i , Z

2
j ). (5)

The kernel k̃ can now be computed using the halved
Gaussian Kernel on this same matrix D. Therefore, the ker-
nel k̃ can be defined as:

k̃(i, j) =
1

2
∗ exp

(
−D(i, j)

σ2

)
. (6)

As reported in (8), we can redefine our kernel such as:

k(i, j) =
k̃(i, j)

(1− k̃(i, j))
. (7)

This strategy assures us that the kernel is positive semi-
definite and can be used in its own. Finally, we can compute
the similarity score between the two sequences Z1 and Z2.
Remember that this computation is performed in quadratic
complexity, like DTW. To do so, we define a new matrix
M that will contain the path to the similarity between our
two sequences. We define M as a zeros matrix of size
(τ1 + 1)× (τ2 + 1) and M0,0 = 1. Computing the terms of
M is done using Theorem 2 in (8, §2.3):

Mi,j = (Mi,j−1 +Mi−1,j−1 +Mi−1,j) ∗ k(i, j). (8)

The similarity score we seek is the value at
M(τ1+1),(τ2+1). Algorithm 1 describes all the steps to
get the similarity score.

Finally, we build a new matrix K of size nseq × nseq ,
where nseq is the number of sequences in the dataset we
test. This matrix is symmetric and contains all the similarity
scores between all the sequences of the dataset and it is used
as the kernel for the classification phase with SVM. As this
matrix is built with values computed from positive semi-
definite kernel, it is a positive semi-definite matrix itself.

5.2. Classification with SVM

Our trajectory representation reduces the problem of
landmark sequence classification to that of trajectory classi-
fication in S+(d, n). Given that GAK provides a valid PSD
kernel as demonstrated by Cuturi et al. (8), and given that

input : Two sequences of landmark configurations
Z1 = {Z1

0 , · · · , Z1
τ1}, where Z1

0≤i≤τ1 and
Z2 = {Z2

0 , · · · , Z2
τ2}, where Z2

0≤j≤τ2 .
output: The similarity score between two sequences

Z1, Z2

k̃ ←− 1
2 ∗ exp

(
−D(Z1,Z2)

σ2

)
Equations (5) and (6)

for i← 0 to τ1 do
for j ← 0 to τ2 do

k(i, j)←− k̃(i,j)

(1−k̃(i,j)) Equation (7)

end
end
M ←− zeros(τ1 + 1, τ2 + 1)
M0,0 ←− 1
for i← 1 to τ1 + 1 do

for j ← 1 to τ2 + 1 do
Mi,j ←−
(Mi,j−1 +Mi−1,j−1 +Mi−1,j) ∗ k(i, j) See
Equation (8)

end
end
similarity ←−Mτ1+1,τ2+1

return similarity, the similarity score between Z1 and
Z2

Algorithm 1: Computing the similarity score between two
sequences using Global Alignment Kernel (8)

our local kernel K satisfies this condition as discussed be-
fore, we use the standard SVM with theK kernel that repre-
sents the matrix containing the similarity scores between all
the sequences of a dataset to classify the aligned trajectories
with global alignment on S+(d, n).

By contrast, DTW may define a non positive definite ker-
nel. Hence, we adopt the pairwise proximity function SVM
(ppfSVM), which assumes that instead of a valid kernel
function, all that is available is a proximity function without
any restriction. That is, let us consider T = {βG : [0, 1]→
S+(d, n)}, the set of time-parameterized trajectories of the
underlying manifold. Like in (18, §4.1), we define a matrix
Ddtw containing the similarity measure between two trajec-
tories aligned with DTW. In that case, given m trajectories
in T , the proximity function P : T × T → R+ between
two trajectories Z1 and Z2 is defined by,

P(Z1, Z2) = Ddtw(Z1, Z2) . (9)

Using this proximity function, the main idea of ppfSVM
is to represent each training example Z with a vector
[P(Z,Z1), . . . ,P(Z,Zm)]T . The set of trajectories can
be represented by a m × m matrix P , where P (i, j) =
P(Z1, Z2), with 1 ≤ i, j ≤ m. From this matrix P we
can use a classical linear SVM.



6. Experimental Results

To validate the proposed approach, we have conducted
experiments on three publicly available datasets with 3D
and 2D actions: UTKinect-Action3D, KTH-Action and
UAV-Gesture. Our experiments followed the experimental
settings commonly used for these datasets.

6.1. UTKinect-Action3D Dataset

The UTKinect-Action3D dataset (48) is a widely used
dataset for 3D action recognition. It contains 199 se-
quences, consisting of 10 actions, namely walk, sit down,
stand up, pick up, carry, throw, push, pull, wave hands and
clap hands performed by 10 different subjects. The videos
and the skeletons were captured with a Microsoft Kinect
and the skeletons are composed of 20 body joints. In our ap-
proach, we use the available skeletal joint locations, where
each body joint is defined with its x, y and z coordinates.
Following the same experimental settings of (40; 26; 20),
we performed the Leave-One-Out cross validation, mean-
ing that we used one sequence for testing and the rest for
training. Our experimental results are summarized in Ta-
ble 1. In particular, the columns are as follows: Curve Fit-
ting indicates if we performed the curve fitting algorithm
described in Section 4; Lambda indicates the value of the
lambda parameter in curve fitting; Alignment Method indi-
cates if we used the standard DTW to align sequences or
GAK as described in Section 5.1; Sigma indicates the value
of the sigma parameter for the Gaussian Kernel when using
GAK; and Results indicates our scores.

Table 1. Our results on the UTKinect-Action3D dataset
Curve Fitting Lambda Alignment Method Sigma Results

Yes 0.5 DTW - 97%
No - DTW - 97.49%
Yes 0.5 GAK 0.3 97.49%
No - GAK 0.3 97.99%
Yes 0.5 GAK 0.5 97.99%

The best accuracy that we obtained on this dataset is
97.99%. Overall, we can say that the application of curve
fitting does not increase our results. Our assumption is
that the data in this dataset are very clean, and we can
loose some information with the application of smoothing
on clean data. Note that we obtained better results when
using the Global Alignment Kernel rather that DTW.

Table 2. Comparison of our approach with state-of-the-art results
for the UTKinect-Action3D dataset. *: Deep Learning approach

Protocol
Methods H-H LOOCV
Trajectory on S+(d, n) (18) (2019) - 96,48%
SCK+DCK (22) (2016) 98.2% -
Bi-LSTM (40) (2018)* - 98.49%
LM3TL (50) (2017) - 98.8%
GCA-LSTM (26) (2018)* - 99%
MTCNN (20) (2018)* - 99%
Hankel & Gram matrices (52) (2016) - 100%
Ours - 97.99%

In Table 2, we compare our method with recent state-of-
the-art results. Overall, our approach achieves competitive
results with respect to most recent approaches. We directly
compare our results with (18) as we work on the same ge-
ometric space of S+(d, n) manifold. The main differences
between our method and the method in (18) is the use of
a different metric and of the Global Alignment Kernel in-
stead of DTW. Our metric is simpler that the metric in (18),
as we do not have to estimate the parameter k used in Eq. (7)
in (18) for distance computation. Furthermore, the k param-
eter in (18) is more of a constraint as they have to determine
its best value for each dataset they test. The use of GAK is
also an advantage for us as it defines a positive semi-definite
kernel, which is not the case for DTW allowing us to use a
classic SVM instead of ppfSVM.

Figure 2. Comparison of two sequences that are confused in
UTKinect-Action3D dataset (top: Throw action, bottom: Push ac-
tion)

The Figure 2 presents two sequences that are confused,
leading to a misclassification for one of them. In that case,
the top action (i.e. Throw) is misclassified as the bottom
action (i.e. Push). One of the reasons can be the position of
the arm at the end of the action, which is the same in the two
sequences. The Throw action is the most confused action in
the dataset.

6.2. KTH-Action Dataset

The KTH-Action dataset (37) is a 2D action recognition
dataset. It consists of six actions, namely boxing, handclap-
ping, handwaving, jogging, running and walking performed
by 25 subjects in four different conditions, which are out-
door, outdoor with scale variations, outdoor with different



clothes and indoor. The sequences were acquired with a
static camera at a frame rate of 25 fps and a resolution of
160 × 120 pixels. The dataset contains a total of 599 clips,
with 100 clips per actions (1 clip is missing for one action).
As the sequences in the dataset are 2D videos, we have to
extract the skeletons of the subjects performing the actions.
To do so, we used the OpenPose framework (6) to extract
the skeletons in the COCO format, with 18 body joints.
Note that we clean the landmark sequences by removing
the frames where the body joints where not effectively es-
timated. Keeping all the frames leads to worst results due
to misdetected joints, meaning that we do not need all the
frames available to recognize an action. Figure 3 shows the
configuration of the body joints that we analyzed. For this
dataset, we followed the Leave-One-Actor-Out cross vali-
dation protocol, meaning that we use one subject for testing
and the rest for training. Table 3 summarizes our experi-
mental results on this dataset.

Figure 3. Skeleton with the COCO format.

Table 3. Our experimental results on the KTH-Action dataset
Curve Fitting Lambda Alignment Method Sigma Results

No - DTW - 94.49%
Yes 10 DTW - 94.66%
No - GAK 0.2 95.16%
Yes 10 GAK 0.2 96.16%

Here, again, we obtained better results when using the
GAK, demonstrating superior performance over DTW. The
results reported with DTW are the best accuracy over all
the configurations we tested. Unlike the data in UTKinect-
Action3D dataset, the data in KTH-Action are 2D and low
resolution videos, with presence of noise in the background,
leading to noisy skeleton data after extraction. In this re-
gard, the application of the curve fitting algorithm improves
our results by 1%. We compare our approach with the state-
of-the-art in Table 4. Overall, our method achieves compet-
itive results with recent approaches, while only using skele-
tal data.

Table 4. Comparison of our approach with state-of-the-art results
for the KTH-Action dataset. *: Deep Learning approach

Methods Input data Protocol Accuracy
Schüldt et al. (37) (2004) RGB Split 71.7%
Liu et al. (25) (2009) RGB LOAO 93.8%
Yoon et al. (51) (2010) Skeleton - 89%
Raptis & Soatto (36) (2010) RGB LOAO 94.5%
Wang et al. (47) (2011) RGB Split 94.2%
Gilbert et al. (12) (2011) RGB LOAO 95.7%
Jiang et al. (16) (2012) RGB LOAO 95.77%
Vrigkas et al. (46) (2014) RGB LOAO 98.3%
Veeriah et al. (43) (2015)* RGB Split 93.96%
Liu et al. (27) (2016) RGB Split 95%
Almeida et al. (1) (2017) RGB LOAO 98%
Our Skeleton LOAO 96.16%

6.3. UAV-Gesture Dataset

The UAV-Gesture dataset (35) is a 2D videos dataset,
consisting of 13 actions corresponding to UAV (i.e., Un-
manned Aerial Vehicles) gesture signals. These actions are
All Clear, Have Command, Hover, Land, Landing Direc-
tion, Move Ahead, Move Downward, Move To Left, Move
To Right, Move Upward, Not Clear, Slow Down and Wave
Off. The actions are performed by 11 different subjects in
an outdoor scenario with slight camera movements. The
dataset contains 119 high-quality clips consisting of 37151
frames. As reported in (35), this dataset is not primarily
designed for action recognition, but it can be used for this
specific task. The skeletons are available with the dataset
and the OpenPose framework was also used to extract them
in the COCO format. Table 5 compares our results with the
baseline experiment reported in (35).

Table 5. Comparison of our approach with the baseline on the
UAV-Gesture dataset. *: Deep Learning approach

Method Curve Fitting Lambda Alignment Method Results
P-CNN (35) (2018)* - - - 91.9%

Ours No - GAK 91.6%
Ours Yes 10 GAK 92.44%

This is a very recent dataset and its principal interest
does not rely on action recognition, meaning a lack of re-
sults to compare our results with. However, the authors
have tested their dataset for the case of action recognition
based on skeletons with Pose-Based Convolutional Neural
Network (P-CNN) descriptors, that gives us a baseline to
compare our results. The baseline achieves an accuracy of
91.9% with a Deep Learning based approach, whereas our
approach achieves an accuracy of 92.44%, outperforming
the state-of-the-art results when applying curve fitting and
the GAK alignment method.

The Figure 4 presents two very similar actions in the
dataset, that is All Clear and Not Clear. The only big dif-
ference between these two actions is the orientation of the
hand on the raised arm. This information is not captured
when only retrieving the body skeleton from the OpenPose
framework, even if it is possible to retrieve the hand skele-
ton. Note that with our method, the two actions are only



confused three time on a total of 22 sequences, meaning
that our method is capable of differentiate minimal changes
in the actions.

Figure 4. Comparison of two sequences that are confused in UAV-
Gesture dataset (top: All Clear action, bottom: Not Clear action)

6.4. Computation Time Comparison

In this analysis, we have computed the time for each step
of our approach. Applying the curve fitting algorithm can be
resource demanding on some manifolds, as it requires suc-
cessive computations of Riemannian exponentials and loga-
rithms (see (13) for more information on the computational
cost of the method). The alignment method can also be re-
source demanding, regarding the size of the trajectory. With
all these parameters in mind, we propose to compute the
time that our method takes to compute specific tasks from
pose extraction to action classification. The tests were con-
ducted on a laptop equipped with an Intel Core i7-8750H
CPU, 16G of RAM and a NVidia Quadro P1000 GPU. Ta-
ble 6 and Table 7 summarize the execution time of each
part of our method for the KTH-Action and UAV-Gesture
datasets, respectively. For metric notation, M1 refers to
Eq. (3) and M2 refers to Eq. (4), in Section 3.2.

Table 6. Execution time (in seconds) obtained on the KTH-Action
dataset for the different steps of the method for one sequence.

Pose extraction Curve Fitting Alignment method - Metric Alignment Classification
147 0.069 DTW - M1 0.034 0.41
147 0.069 DTW - M2 0.02 0.41
147 0.069 GAK - M1 0.04 0.49
147 0.069 GAK - M2 0.019 0.49

Table 7. Execution time (in seconds) obtained on the UAV-Gesture
dataset for the different steps of our method for one sequence.

Pose extraction Curve Fitting Alignment method - Metric Alignment Classification
- 0.504 DTW - M1 0.128 0.038
- 0.504 DTW - M2 0.072 0.038
- 0.504 GAK - M1 0.138 0.53
- 0.504 GAK - M2 0.066 0.053

For the KTH-Action dataset, we consider a sequence of
61 frames and a sequence of 192 frames for UAV-Gesture.
First, we can observe that the pose extraction phase takes
most of the execution time for the KTH-Action dataset.
This is partially due to the fact that our GPU is not powerful
enough (we get around 3.5fps with our Quadro P1000). The
extraction time is not reported for the UAV-Gesture dataset

as the skeletons are available with the dataset. The second
thing we can observe is the low difference in computation
time for the alignment part when switching from DTW to
GAK. We can also note that when we useM2, the computa-
tion time can be reduced by a factor 2 compared to the use
ofM1, showing that the formula (4) is in our case cheaper to
evaluate than (3). If we only consider the execution time for
the treatment of the skeletons, it takes around 0.499 seconds
to classify an action of the KTH-Action dataset and around
0.614 seconds for an action of the UAV-Gesture dataset in
the best case scenario.

7. Conclusion and Future Work
In this paper, we have proposed a method for comparing

and classifying temporal sequences of 2D/3D landmarks on
the positive semi-definite manifold. Our approach involves
three different steps: 1) We build a trajectory on the Rie-
mannian manifold from the body skeletons; 2) we apply a
curve fitting algorithm on the trajectories to denoise the data
points; 3) we perform a temporal alignment using a Global
Alignment Kernel. Our experiments on three publicly avail-
able datasets show that the proposed approach gives com-
petitive results with respect to state-of-the-art methods.
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9. Appendix
Proof. of Theorem 3.2. We can reformulate our metric in-
troduced in Eq. (3) with:

d2(Gi, Gj) = tr
[
(ZjQ− Zi)(ZjQ− Zi)T

]
= tr(Gi)− 2 tr(ZiQ

TZTj ) + tr(Gj).

To minimize our distance, we need to maximize the term
tr(ZiQ

TZTj ). Let ZTj Zi be a 2 × 2 matrix with four un-
known values a, b, c, d and let Q ∈ Op, we maximize:

max tr

[(
a cos Θ− b sin Θ −

− c sin Θ + d cos Θ

)]
.

(10)

From Eq. (10) we now have to find the maxi-
mum of (a + d) cos Θ + (c − b) sin Θ, meaning that
we have to maximize

√
(a+ d)2 + (c− b)2 cos (O −O′).

As we want to maximize this value, O has to be
equal to O′, so

√
(a+ d)2 + (c− b)2 cos (O −O′) 6√

(a+ d)2 + (c− b)2. Therefore we can say that:

max tr(ZiQ
TZTj ) =

√
(a+ d)2 + (c− b)2. (11)
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