I. Kevric, M. A. Cappel, and J. H. Keeling, New world and old world Leishmania infections: A 447 Practical Review, Dermatol Clin, vol.33, pp.579-593, 2015.

F. Frézard, R. Monte-neto, and P. Reis, Antimony transport mechanisms in resistant 449 leishmania parasites, Biophys Rev, vol.6, pp.119-132, 2014.

J. H. No, Visceral leishmaniasis: Revisiting current treatments and approaches for future 451 discoveries, Acta Trop, vol.155, pp.113-123, 2016.

A. Chattopadhyay and M. Jafurulla, A novel mechanism for an old drug: amphotericin B in 453 the treatment of visceral leishmaniasis, Biochem Biophys Res Commun, vol.416, pp.7-12, 2011.

M. A. Silva, S. Siqueira, L. B. Freire, I. B. Araujo, K. Silva et al., , p.455

E. E. Ag, How can micelle systems be rebuilt by a heating process, Int J 456 Nanomedicine, vol.7, pp.141-150, 2012.

M. A. Dea-ayuela, S. Rama-iniguez, J. A. Sanchez-brunete, J. J. Torrado, and J. M. Alunda,

F. Fernandez, Anti-leishmanial activity of a new formulation of amphotericin B, p.459, 2004.

, Med Int Health, vol.9, pp.981-990

C. Petit, Y. V. Gaboriau, F. Bolard, J. Croft, and S. L. , Activity of a heat-induced 461 reformulation of amphotericin B deoxycholate (fungizone) against Leishmania donovani, 1999.

, Antimicrob Agents Chemother, vol.43, pp.390-392

W. Huang, Z. Zhang, X. Han, J. Tang, J. Wang et al., , p.464, 2002.

, Amphotericin B in sterol-free and cholesterol-or ergosterol-containing supported, J, vol.83, pp.3245-3255

M. Cheron, C. Petit, J. Bolard, and F. Gaboriau, Heat-induced reformulation of amphotericin 468, 2003.

, B-deoxycholate favours drug uptake by the macrophage-like cell line J774, J Antimicrob 469 Chemother, vol.52, pp.904-910

C. Petit, M. Cheron, V. Joly, J. M. Rodrigues, J. Bolard et al., In-vivo therapeutic 471 efficacy in experimental murine mycoses of a new formulation of deoxycholate-amphotericin 472 B obtained by mild heating, J Antimicrob Chemother, vol.42, pp.779-785, 1998.

R. Stoodley, K. M. Wasan, and D. Bizzotto, Fluorescence of amphotericin B-deoxycholate 474 (fungizone) monomers and aggregates and the effect of heat-treatment, Langmuir, vol.23, p.8718, 2007.

A. A. Date and M. S. Nagarsenker, Parenteral microemulsions: an overview, Int J Pharm, vol.477, pp.19-30, 2008.

B. Damasceno, V. A. Dominici, I. A. Urbano, J. A. Silva, I. B. Araujo et al., Amphotericin B microemulsion reduces 480 toxicity and maintains the efficacy as an antifungal product, J Biomed Nanotechnol, vol.8, pp.290-481, 2012.

W. Silveira, B. Damasceno, L. F. Ferreira, I. Ribeiro, K. S. Silva et al., , p.483

A. A. Silva-júnior, A. G. Oliveira, and E. Egito, Development and characterization of a 484 microemulsion system containing Amphotericin B with potential ocular applications, Curr 485 Neuropharmacol, vol.14, pp.1-1, 2016.

F. Gaboriau, M. Chéron, L. Leroy, and J. Bolard, Physico-chemical properties of the heat-487 induced 'superaggregates' of amphotericin B, Biophys Chem, vol.66, pp.1-12, 1997.

D. Audisio, S. Messaoudi, S. Cojean, J. F. Peyrat, J. D. Brion et al., , p.489

M. Alami, Synthesis and antikinetoplastid activities of 3-substituted quinolinones 490 derivatives, Eur J Med Chem, vol.52, pp.44-50, 2012.

L. A. Stauber, Host resistance to the Khartoum strain of Leishmania donovani, Rice, vol.492, pp.80-96, 1958.

B. Purkait, A. Kumar, N. Nandi, A. H. Sardar, S. Das et al., , p.494

T. Singh, D. Das, and P. , Mechanism of amphotericin B resistance in clinical isolates of 495, 2012.

L. Donovani, Antimicrob Agents Chemother, vol.56, pp.1031-1041

M. J. Lawrence and G. D. Rees, Microemulsion-based media as novel drug delivery systems, 2000.

, Adv Drug Deliv Rev, vol.45, pp.89-121

J. Jain, C. Fernandes, and V. Patravale, Formulation development of parenteral phospholipid-499 based microemulsion of etoposide, AAPS PharmSciTech, vol.11, pp.826-831, 2010.

T. Pham, C. Gueutin, M. Cheron, S. Abreu, P. Chaminade et al., , 2014.

, Development of antileishmanial lipid nanocomplexes, Biochimie, vol.107, pp.143-153

A. E. Silva, G. Barratt, M. Cheron, and E. Egito, Development of oil-in-water microemulsions 503 for the oral delivery of amphotericin B, Int J Pharm, vol.454, pp.641-648, 2013.

M. Larabi, A. Gulik, J. P. Dedieu, P. Legrand, G. Barratt et al., New lipid formulation 505 of amphotericin B: spectral and microscopic analysis, BBA Biomembranes, vol.1664, pp.172-181, 2004.

J. Starzyk, M. Gruszecki, K. Tutaj, R. Luchowski, R. Szlazak et al., , p.507

W. I. Gruszecki, Self-association of Amphotericin B: Spontaneous formation of molecular 508 structures responsible for the toxic side effects of the antibiotic, J Phys Chem B, vol.118, pp.13821-509, 2014.

V. Fanos and L. Cataldi, Amphotericin B-induced nephrotoxicity: a review, J Chemother, vol.511, pp.463-470, 2000.

M. De-rycker, I. Hallyburton, J. Thomas, L. Campbell, S. Wyllie et al., , p.513

P. G. Wyatt, J. A. Frearson, A. H. Fairlamb, and D. W. Gray, Comparison of a high-throughput high-514 content intracellular Leishmania donovani assay with an axenic amastigote assay, Antimicrob 515 Agents Chemother, vol.57, pp.2913-2922, 2013.

G. De-muylder, K. K. Ang, S. Chen, M. R. Arkin, J. C. Engel et al., , p.517, 2011.

, Leishmania intracellular amastigotes: comparison to a promastigote screen and identification 518 of a host cell-specific hit, PLoS Negl Trop Dis, vol.5, p.1253

F. Gaboriau, M. Cheron, C. Petit, and J. Bolard, Heat-induced superaggregation of 520, 1997.

, amphotericin B reduces its in vitro toxicity: a new way to improve its therapeutic index

, Antimicrob Agents Chemother, vol.41, pp.2345-2351

S. O. Sarr, S. Perrotey, I. Fall, S. Ennahar, M. Zhao et al., , 2011.

, Icacina senegalensis (Icacinaceae), traditionally used for the treatment of malaria, inhibits in 524 vitro Plasmodium falciparum growth without host cell toxicity, Malar J, vol.10, p.85

N. C. Vieira, C. Herrenknecht, J. Vacus, A. Fournet, C. Bories et al., Selection of the most promising 2-substituted quinoline as antileishmanial 527 candidate for clinical trials, Biomed Pharmacother, vol.62, pp.684-689, 2008.