L. Goff, A. Artero, V. Jousselme, B. Tran, P. D. Guillet et al., From Hydrogenases to Noble Metal-Free Catalytic Nanomaterials for H 2 Production and Uptake, Science, vol.326, issue.5958, pp.1384-1387, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01154219

P. D. Tran, A. Le-goff, J. Heidkamp, B. Jousselme, N. Guillet et al., Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes: Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake, Angew. Chem., Int. Ed, vol.50, issue.6, pp.1371-1374, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00960638

V. Artero, M. Chavarot-kerlidou, and M. Fontecave, Splitting Water with Cobalt, Angew. Chem., Int. Ed, vol.50, issue.32, pp.7238-7266, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01063099

M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. Dubois, and D. L. Dubois, A Synthetic Nickel Electrocatalyst with a Turnover Frequency above 100,000 s ?1 for H 2 Production, Science, vol.333, issue.6044, pp.863-866, 2011.

W. M. Singh, T. Baine, S. Kudo, S. Tian, X. A. Ma et al., Electrocatalytic and Photocatalytic Hydrogen Production in Aqueous Solution by a Molecular Cobalt Complex, Angew. Chem., Int. Ed, vol.2012, issue.24, pp.5941-5944

W. Lubitz, H. Ogata, O. Rudiger, E. Reijerse, and . Hydrogenases, Chem. Rev, vol.114, issue.8, pp.4081-4148, 2014.

F. Lakadamyali, M. Kato, N. M. Muresan, and E. Reisner, Selective Reduction of Aqueous Protons to Hydrogen with a Synthetic Cobaloxime Catalyst in the Presence of Atmospheric Oxygen

, Angew. Chem., Int. Ed, vol.2012, issue.37, pp.9381-9384

D. W. Wakerley and E. Reisner, Oxygen-Tolerant Proton Reduction Catalysis: Much O 2 about Nothing?, Energy Environ. Sci, vol.8, issue.8, pp.2283-2295, 2015.

K. A. Vincent, A. Parkin, and F. A. Armstrong, Investigating and Exploiting the Electrocatalytic Properties of Hydrogenases, Chem. Rev, vol.107, issue.10, pp.4366-4413, 2007.

N. Plumere, O. Rudiger, A. A. Oughli, R. Williams, J. Vivekananthan et al., A Redox Hydrogel Protects Hydrogenase from High-Potential Deactivation and Oxygen Damage, Nat. Chem, vol.6, issue.9, pp.822-827, 2014.

V. Fourmond, S. Stapf, H. Li, D. Buesen, J. Birrell et al., Mechanism of Protection of Catalysts Supported in Redox Hydrogel Films, J. Am. Chem. Soc, vol.137, issue.16, pp.5494-5505, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01428049

A. A. Oughli, F. Conzuelo, M. Winkler, T. Happe, W. Lubitz et al., A Redox Hydrogel Protects the O 2 -Sensitive [FeFe]-Hydrogenase from Chlamydomonas Reinhardtii from Oxidative Damage, Angew. Chem., Int. Ed, vol.54, issue.42, pp.12329-12333, 2015.

A. A. Oughli, A. Ruff, N. P. Boralugodage, P. Rodríguez-macia, N. Plumere et al., Dual Properties of a Hydrogen Oxidation Ni-Catalyst Entrapped within a Polymer Promote Self-Defense against Oxygen, Nat. Commun, vol.9, issue.1, p.864, 2018.

K. Sakai, Y. Kitazumi, O. Shirai, K. Takagi, and K. Kano, High-Power Formate/Dioxygen Biofuel Cell Based on Mediated Electron Transfer Type Bioelectrocatalysis, ACS Catal, vol.7, issue.9, pp.5668-5673, 2017.

A. Ruff, J. Szczesny, S. Zacarias, I. A. Pereira, N. Plumere et al., Protection and Reactivation of the [NiFeSe] Hydrogenase from Desulfovibrio Vulgaris Hildenborough under Oxidative Conditions, ACS Energy Lett, vol.2017, issue.5, pp.964-968

P. Liebgott, A. L. De-lacey, B. Burlat, L. Cournac, P. Richaud et al., Original Design of an Oxygen-Tolerant [NiFe] Hydrogenase: Major Effect of a Valine-to-Cysteine Mutation near the Active Site, J. Am. Chem. Soc, vol.133, issue.4, pp.986-997, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01977599

V. Schroder, B. Emonts, H. Janßen, and H. Schulze, Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar, Chem. Eng. Technol, vol.27, issue.8, pp.847-851, 2004.

H. Li, U. Munchberg, W. Lubitz, E. Freier, and N. Plumere,

H. A. Liebhafsky, Suppressing H 2 O 2 Generation to Achieve O 2 -Insensitivity of a [NiFe] Hydrogenase in Redox Active Films, J. Am. Chem. Soc, vol.1932, issue.5, pp.1792-1806, 2019.

H. Li, D. Buesen, R. Williams, J. Henig, S. Stapf et al., Preventing the Coffee-Ring Effect and Aggregate Sedimentation by in Situ Gelation of Monodisperse Materials, Chem. Sci, vol.9, issue.39, pp.7596-7605, 2018.

C. Le?er, S. Dementin, P. Bertrand, M. Rousset, and B. Guigliarelli, Inhibition and Aerobic Inactivation Kinetics of Desulfovibrio Fructosovorans NiFe Hydrogenase Studied by Protein Film Voltammetry, J. Am. Chem. Soc, vol.126, issue.38, pp.12162-12172, 2004.

P. N. Bartlett and K. F. Pratt, Theoretical Treatment of Diffusion and Kinetics in Amperometric Immobilized Enzyme Electrodes Part I: Redox Mediator Entrapped within the Film, J. Electroanal. Chem, vol.397, issue.1?2, pp.61-78, 1995.

A. Abou-hamdan, B. Burlat, O. Gutie?rez-sanz, P. Liebgott, C. Baffert et al., O 2 -Independent Formation of the Inactive States of NiFe Hydrogenase, Nat. Chem. Biol, vol.2013, issue.1, pp.15-17
URL : https://hal.archives-ouvertes.fr/hal-01556905

A. Abou-hamdan, P. Liebgott, V. Fourmond, O. Gutie?rez-sanz, A. L. De-lacey et al., Relation between Anaerobic Inactivation and Oxygen Tolerance in a Large Series of NiFe Hydrogenase Mutants, Proc. Natl. Acad. Sci. U. S. A, vol.2012, issue.49, 19916.
URL : https://hal.archives-ouvertes.fr/hal-01825482

D. Barrio, M. Sensi, M. Orain, C. Baffert, C. Dementin et al., Electrochemical Investigations of Hydrogenases and Other Enzymes That Produce and Use Solar Fuels, Acc. Chem. Res, vol.51, issue.3, pp.769-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01745738

A. Volbeda, L. Martin, P. Liebgott, A. L. Lacey, and J. C. Fontecilla-camps, NiFe]-Hydrogenases Revisited: Nickel-Carboxamido Bond Formation in a Variant with Accrued O 2 -Tolerance and a Tentative Re-Interpretation of Ni-SI States, Metallomics, vol.7, issue.4, pp.710-718, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166115

C. L. Bird and A. T. Kuhn, Electrochemistry of the Viologens, Chem. Soc. Rev, vol.10, issue.1, p.49, 1981.

J. A. Cracknell, A. F. Wait, O. Lenz, B. Friedrich, and F. A. Armstrong, A Kinetic and Thermodynamic Understanding of O 2 Tolerance in [NiFe]-Hydrogenases, Proc. Natl. Acad. Sci. U. S. A, vol.106, issue.49, pp.20681-20686, 2009.

M. Pandelia, V. Fourmond, P. Tron-infossi, E. Lojou, P. Bertrand et al., Membrane-Bound Hydrogenase I from the Hyperthermophilic Bacterium Aquifex Aeolicus: Enzyme Activation, Redox Intermediates and Oxygen Tolerance, J. Am. Chem. Soc, issue.20, pp.6991-7004, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677474

S. Morozov, O. Voronin, E. Karyakina, N. Zorin, S. Cosnier et al., Tolerance to Oxygen of Hydrogen Enzyme Electrodes, Electrochem. Commun, vol.8, issue.5, pp.851-854, 2006.

A. F. Wait, A. Parkin, G. M. Morley, L. Santos, and F. A. Armstrong, Characteristics of Enzyme-Based Hydrogen Fuel Cells Using an Oxygen-Tolerant Hydrogenase as the Anodic Catalyst, J. Phys. Chem. C, vol.2010, issue.27, pp.12003-12009

P. Wulff, C. Thomas, F. Sargent, and F. A. Armstrong, How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure, J. Biol. Inorg. Chem, vol.21, issue.1, pp.121-134, 2016.

V. Radu, S. Frielingsdorf, S. D. Evans, O. Lenz, and L. J. Jeuken, Enhanced oxygen-tolerance of the full heterotrimeric membranebound [NiFe]-hydrogenase of Ralstonia eutropha, J. Am. Chem. Soc, vol.136, issue.24, pp.8512-8515, 2014.

X. Yang, L. C. Elrod, J. H. Reibenspies, M. B. Hall, and M. Y. Darensbourg, Oxygen Uptake in Complexes Related to [NiFeS]-and [NiFeSe]-Hydrogenase Active Sites, Chem. Sci, vol.2019, issue.5, pp.1368-1373