B. Kartal, W. J. Maalcke, N. M. De-almeida, I. Cirpus, J. Gloerich et al., Molecular mechanism of anaerobic ammonium oxidation, Nature, vol.479, pp.127-130, 2011.

A. Dietl, C. Ferousi, W. J. Maalcke, A. Menzel, S. De-vries et al., The inner workings of the hydrazine synthase multiprotein complex, Nature, vol.527, pp.394-397, 2015.

W. J. Maalcke, J. Reimann, S. De-vries, J. N. Butt, A. Dietl et al., , 2016.

, Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle, The Journal of biological chemistry, vol.291, pp.17077-17092

M. Akram, A. Dietl, U. Mersdorf, S. Prinz, W. Maalcke et al.,

N. M. Almeida, J. Reimann, B. Kartal, M. S. Jetten, K. Parey et al.,

M. , A 192-heme electron transfer network in the hydrazine dehydrogenase complex, Science Advances, vol.5, p.4310, 2019.

B. Kartal, N. M. De-almeida, W. J. Maalcke, H. J. Op-den-camp, M. S. Jetten et al., How to make a living from anaerobic ammonium oxidation, FEMS microbiology reviews, vol.37, pp.428-461, 2013.

Z. Hu, H. J. Wessels, T. Van-alen, M. S. Jetten, and B. Kartal, Nitric oxide-dependent anaerobic ammonium oxidation, Nature Communications, vol.10, p.1244, 2019.

N. M. De-almeida, H. J. Wessels, R. M. De-graaf, C. Ferousi, M. S. Jetten et al., Membrane-bound electron transport systems of an anammox bacterium: A complexome analysis, Biochim Biophys Acta, vol.1857, pp.1694-1704, 2016.

J. Frank, S. Lucker, R. Vossen, M. S. Jetten, R. J. Hall et al., Resolving the complete genome of Kuenenia stuttgartiensis by guest on, 2018.

E. L. Sonnhammer, S. R. Eddy, and R. Durbin, Pfam: a comprehensive database of protein domain families based on seed alignments, Proteins, vol.28, pp.405-420, 1997.

A. B. Hooper, T. Vannelli, D. J. Bergmann, and D. M. Arciero, Enzymology of the oxidation of ammonia to nitrite by bacteria, Antonie van Leeuwenhoek, vol.71, pp.59-67, 1997.

D. J. Arp, P. S. Chain, and M. G. Klotz, The Impact of Genome Analyses on Our Understanding of Ammonia-Oxidizing Bacteria, Annu. Rev. Microbiol, vol.61, pp.503-528, 2007.

T. Yamanaka and M. Shinra, Cytochrome c-552 and cytochrome c-554 derived from Nitrosomonas europaea. Purification, properties, and their function in hydroxylamine oxidation, Journal of biochemistry, vol.75, pp.1265-1273, 1974.

D. M. Arciero, M. J. Collins, J. Haladjian, P. Bianco, and A. B. Hooper, Resolution of the four hemes of cytochrome c554 from Nitrosomonas europaea by redox potentiometry and optical spectroscopy, Biochemistry, vol.30, pp.11459-11465, 1991.

T. M. Iverson, D. M. Arciero, A. B. Hooper, and D. C. Rees, High-resolution structures of the oxidized and reduced states of cytochrome c554 from Nitrosomonas europaea, Journal of biological inorganic chemistry, vol.6, pp.390-397, 2001.

A. K. Upadhyay, A. B. Hooper, and M. P. Hendrich, NO reductase activity of the tetraheme cytochrome c554 of Nitrosomonas europaea, J Am Chem Soc, vol.128, pp.4330-4337, 2006.

J. M. Mcgarry and A. A. Pacheco, Upon further analysis, neither cytochrome c554 from Nitrosomonas europaea nor its F156A variant display NO reductase activity, though both proteins bind nitric oxide reversibly, Journal of biological inorganic by guest on, 2018.

, Society of Biological Inorganic Chemistry, vol.23, pp.861-878

B. Kartal and J. T. Keltjens, Anammox Biochemistry: a Tale of Heme c Proteins, Trends Biochem Sci, vol.41, pp.998-1011, 2016.

W. J. Maalcke, A. Dietl, S. J. Marritt, J. N. Butt, M. S. Jetten et al., Structural basis of biological NO generation by octaheme oxidoreductases, The Journal of biological chemistry, vol.289, pp.1228-1242, 2014.

S. Ukita, T. Fujii, D. Hira, T. Nishiyama, T. Kawase et al., A heterodimeric cytochrome c complex with a very low redox potential from an anaerobic ammonium-oxidizing enrichment culture, FEMS Microbiol Lett, vol.313, pp.61-67, 2010.

R. G. Kranz, C. Richard-fogal, J. S. Taylor, and E. R. Frawley, Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control, Microbiol Mol Biol Rev, vol.73, pp.510-528, 2009.

J. G. Kleingardner and K. L. Bren, Biological significance and applications of heme c proteins and peptides, Acc Chem Res, vol.48, pp.1845-1852, 2015.

J. Liu, S. Chakraborty, P. Hosseinzadeh, Y. Yu, S. Tian et al., Metalloproteins Containing Cytochrome, Iron-Sulfur, or Copper Redox Centers, Chemical reviews, vol.114, pp.4366-4469, 2014.

R. S. Hartshorne, M. Kern, B. Meyer, T. A. Clarke, M. Karas et al., A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding, Molecular microbiology, vol.64, pp.1049-1060, 2007.

D. Aragao, C. Frazao, L. Sieker, G. M. Sheldrick, J. Legall et al., Structure of dimeric cytochrome c3 from Desulfovibrio gigas at 1.2 Å resolution, 2003.

, Acta Crystallogr D Biol Crystallogr, vol.59, 2019.

J. G. Kleingardner and K. L. Bren, Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis, Metallomics, vol.3, pp.396-403, 2011.

M. Ishida, N. Dohmae, Y. Shiro, T. Oku, T. Iizuka et al., Design and synthesis of de novo cytochromes c, Biochemistry, vol.43, pp.9823-9833, 2004.

G. Moore and G. W. Pettigrew, Cytochromes c. Evolutionary, Structural and Physicochemical Aspects, 1990.

G. Palmer, The electron paramagnetic resonance of metalloproteins, Biochem Soc Trans, vol.13, pp.548-560, 1985.

A. K. Upadhyay, D. T. Petasis, D. M. Arciero, A. B. Hooper, and M. P. Hendrich, Spectroscopic characterization and assignment of reduction potentials in the tetraheme cytochrome c554 from Nitrosomonas europaea, J Am Chem Soc, vol.125, pp.1738-1747, 2003.

K. K. Andersson, J. D. Lipscomb, M. Valentine, E. Munck, and A. B. Hooper, , 1986.

, Tetraheme cytochrome c554 from Nitrosomonas europaea. Heme-heme interactions and ligand binding, The Journal of biological chemistry, vol.261, pp.1126-1138

F. Zhong and E. V. Pletneva, Ligation and Reactivity of Methionine-Oxidized Cytochrome c, Inorganic chemistry, vol.57, pp.5754-5766, 2018.

M. Ubbink, A. P. Campos, M. Teixeira, N. I. Hunt, H. A. Hill et al., Characterization of mutant Met100Lys of cytochrome c550 from Thiobacillus versutus with lysine-histidine heme ligation, Biochemistry, vol.33, pp.10051-10059, 1994.

F. Zhong, G. P. Lisi, D. P. Collins, J. H. Dawson, and E. V. Pletneva, Redoxdependent stability, protonation, and reactivity of cysteine-bound heme proteins, Proc Natl Acad Sci U S A, vol.111, pp.306-315, 2014.

J. F. Amacher, F. Zhong, G. P. Lisi, M. Q. Zhu, S. L. Alden et al., Compact Structure of Cytochrome c, 2015.

. Lysine-ligated, State: Loop Refolding and Functional Implications of a Conformational Switch, J Am Chem Soc, vol.137, pp.8435-8449

T. Motomura, M. Suga, R. Hienerwadel, A. Nakagawa, T. Lai et al., Crystal structure and redox properties of a novel cyanobacterial heme-protein with a His/Cys heme axial ligation and a per-arnt-sim (PAS)-like domain, Journal of Biological Chemistry, vol.36, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01514729

M. R. Cheesman, P. J. Little, and B. C. Berks, Novel heme ligation in a c-type cytochrome involved in thiosulfate oxidation: EPR and MCD of SoxAX from Rhodovulum sulfidophilum, Biochemistry, vol.40, pp.10562-10569, 2001.

L. Brennan, D. L. Turner, P. Fareleira, and H. Santos, Solution structure of Methylophilus methylotrophus cytochrome c": insights into the structural basis of haem-ligand detachment, Journal of molecular biology, vol.308, pp.353-365, 2001.

W. D. Butt and D. Keilin, Absorption Spectra and Some Other Properties of, 1962.

, Cytochrome c and of Its Compounds with Ligands, Proceedings of the Royal Society of London. Series B, vol.156, pp.429-458

M. Hoshino, K. Ozawa, H. Seki, and P. C. Ford, Photochemistry of nitric oxide adducts of water-soluble iron(III) porphyrin and ferrihemoproteins studied by nanosecond laser photolysis, Journal of the American Chemical Society, vol.115, pp.9568-9575, 1993.

M. F. Haroon, S. Hu, Y. Shi, M. Imelfort, J. Keller et al., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage, Nature, vol.500, pp.567-570, 2013.

K. F. Ettwig, B. Zhu, D. Speth, J. T. Keltjens, M. S. Jetten et al., , 2016.

, Archaea catalyze iron-dependent anaerobic oxidation of methane, Proc Natl Acad Sci

V. N. Khmelenina, C. Murrell, J. Smith, T. J. Trotsenko, and Y. A. , Physiology and Biochemistry of the Aerobic Methanotrophs, Aerobic Utilization of by guest on November, vol.19, 2018.

O. Hydrocarbons and F. Lipids-(rojo, , pp.1-25

B. Kartal, W. Geerts, and M. S. Jetten, Cultivation, Detection, and Ecophysiology of Anaerobic Ammonium-Oxidizing Bacteria, 2011.

. Enzymology, Research on Nitrification and Related Processes, part A, pp.89-109

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

F. Baymann, D. A. Moss, and W. Mäntele, An electrochemical assay for the characterization of redox proteins from biological electron transfer chains, Analytical biochemistry, vol.199, pp.269-274, 1991.

D. A. Moffet, J. Foley, and M. H. Hecht, Midpoint reduction potentials and heme binding stoichiometries of de novo proteins from designed combinatorial libraries, Biophysical chemistry, vol.105, pp.231-239, 2003.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat Methods, vol.8, 2011.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

M. H. Farhoud, H. J. Wessels, P. J. Steenbakkers, S. Mattijssen, R. A. Wevers et al., , 2005.

, Molecular & Cellular Proteomics, vol.4, pp.1653-1663

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical biochemistry, vol.72, pp.248-254, 1976.

E. A. Berry and B. L. Trumpower, Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra, Analytical biochemistry, vol.161, pp.1-15, 1987.

S. Na, Y. O. Kim, S. Yoon, S. Ha, I. Baek et al., UBCG: Upto-date bacterial core gene set and pipeline for phylogenomic tree reconstruction, Journal of Microbiology, vol.56, pp.280-285, 2018.

I. Letunic and P. Bork, Interactive Tree Of Life (iTOL) v4: recent updates and new developments, W256-W259 by guest on November, vol.47, 2019.

, Candidatus Brocadia sp. (RIJ93553.1), BroSp1; Candidatus Brocadia sp. UTAMX1 (OQZ04649.1), BroSp2; Candidatus Brocadia sp, p.3

, Candidatus Brocadia sp. BROELEC01 (RZV58464.1), BroSa; Candidatus Brocadia sapporoensis (WP_070066581.1), JetCa; Candidatus Jettenia caeni

, ScaRu; Candidatus Scalindua rubra (ODS33861.1), ScaJa; Candidatus Scalindua japonica (WP_096896270.1), ScaBr; Candidatus Scalindua brodae (KHE90513.1), NitEu; Nitrosomonas europaea (Q57142), DesDe; Desulfovibrio desulfuricans (F0JDN8), LepFe; Leptospirillum ferriphilum (J9ZB89), IgnBa; Ignavibacteria bacterium (A0A1J5F6W4), ScaSp; Candidatus Scalindua sp. SCAELEC01 (RZV91387.1), 2019.

, A) Spectra of KsTH (black lines) and horse heart cytochrome c (grey lines) in the oxidized state as prepared (dashed lines) and after dithionite reduction (solid lines). B) Spectrum of reduced KsTH before (black line) and after addition of CO (grey line). C) Spectrum of oxidized KsTH before (black line) and after addition of addition of NO (grey line). D) Spectrum of reduced KsTH before (black line) and after addition of NO (grey line). Each inset shows a close-up view of the Q-band region, 2019.

, Downloaded from (orange line) and after addition of NO-saturated water to a final concentration of 60 µM (green line) and 600 µM

, NO-saturated water (dashed grey line), temperature 15 K, microwave power 1 mW, modulation amplitude 10 Gauss

, D) Spectrum recorded after addition of dithionite and nitrite, temperature 50 K, microwave power 6.4 mW, p.3

, Optical redox titration Using an optically transparent thin layer electrochemical cell, redox potentials in the range from +290 to -475 mV were applied in oxidizing and reducing directions, Gauss. Figure, vol.6, 2019.